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ESTIMATES OF THE LENGTH OF A CURVE

B. V. DEKSTER

In this article we establish some upper bounds for the length of a curve γ
lying in a convex region T of an π-dimensional Riemannian space. The results
obtained here have the character of a comparison theorem of the following
type. Let ks, K be respectively the minimum values of the sectional curvature
in T and of the normal curvature of the boundary of T. Under the condition
that ks > —κ\ one can assign to the region T a circle To in a &5-plane (a two-
dimensional sphere, plane or hyperbolic plane of curvature ks) whose bound-
ary has the geodesic curvature K. Then, if the maximum curvature ξ of γ is
less than K, the length of γ does not exceed the length of the longest arc con-
tained in To, having constant curvature £•. (See the corollary of Theorem 1 of

§ i )
The question on estimates of the length of a curve a in a region on a two-

dimensional surface was explored by A. D. Aleksandrov and V. V. StreΓcov in
1953 (see [1]). The estimates obtained in [1] contain some integral character-
istics of the curve and the region. Their estimates and ours (when n = 2) do
not follow from one another.

The plan of the proof of inequality (1.1) and Lemma 4 was discussed with
J. D. Bur ago who reported to the author a convenient version of the Rauch
theorem connected with Γ-Jacobi field, where Γ is a submanifold. The author
thanks J. D. Burago for his attention and help.

1. The basic construction and the results

In ^-dimensional Riemannian space M, n > 2 (of regularity class C4) we
consider a connected region which has a compact closure T and is bounded by
a nonempty, possibly disconnected regular hypersurface Γ (of class C4). The
surface Γ divides a sufficiently small ball neighborhood of any of its points
into two components we suppose that only one of them belongs to T. (Instead
of this we could suppose that T is the image under an immersion of some con-
nected compact ^-dimensional manifold with a smooth edge into M.) Let the
boundary Γ of the region T be strictly convex in the following sense: all the
normal curvatures of Γ on the side of the interior normal are not less than
some positive K. Finally, let us suppose that in the compact region T the
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sectional curvature > ks > — κ2. Such a compact region T is said to be normal.
Let us denote the distance between subsets of T (in the metric induced by

deleting T from the space M) by p(-, •)•
The basic construction is as follows. We assign to the normal region T a

circle To (on the &s-plane) whose circumference has geodesic curvature K. This
circle exists because of the condition ks > — κ2. It will be proved in § 3 that
the radius R of the ball inscribed in T (R = max ρ(X, Γ)) does not exceed the
radius Ro of the circle To, i.e.,

(1.1) R < Ro = RQ(κ,ks) = •<

1 c o t - JL ,
* k

1

K

— coth"1 — ,
k k

if £ s > 0 ,

if * , ; = 0 ,

if k, < 0 ,

where k =
Let ^: [0, L] —> Γ be a normal curve (i.e., parametrized by arc-length) of

class C2, whose curvature does not exceed χ : O < χ < Λ r ; X = f(0) e int Γ.
Furthermore let a shortest path XY C T satisfy the conditions: Y e Γ, p{X, Y)
= /o(A', Γ), and the angle φ between the curves XY and γ does not e x c e e d ^ .

In To we construct points Yo, Z o and a direction μ at the point Z o in such a

way that Yo € Γo, the shortest path Y0X0 ± Γ, X0Y0 = and the angle a
between the shortest path X0Y0 and the direction μ satisfies φ < a < \π (see
Fig. 1). We assign to the curve γ the normal arc of the circumference

Fig. 1

γ0: [0, Lo)] > To, ϊo(0) = Xo , γo(Lo) ε Γo ,

which starts from Xo in the direction μ, has geodesic curvature χ and (if
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is situated on that side of the geodesic going through Xo in the direction μ
which does not contain the point Yo. (This circumference intersects Γ o because
of the condition χ < A:.)

Let us put r(λ) = p(γ(λ), Γ), λ e [0, L] τ(λ) = MΓOU), Γ O ) , λ e [0, Lo],

where ^0( , • ) is the distance in the circle Γo

The following theorem is obtained in this paper.
Theorem 1. For a normal region T the following inequalities hold:
(1) L<L0,
(2) r(λ) <τ(λ), whenλz[0,L],
(3) // λ1 € [0, L] and λ2 e [0, L] are such that rψj = τ(λ2) = a > 0, am/ //

q : [0, a] -—> T and c2: [0, a] > To

are normal geodesies such that c^O) = γiλj, cx(a) e Γ, c2(0) =
then

(1.2) <fα), C!(0)> > <fott2),

Corollary. Γ/ẑ  length of any curve (of class C2), W/J/C/Ϊ Λ«5 ί/ẑ  maximum
curvature χ satisfying 0 <χ < K and is contained in the normal region Γ, does
not exceed the length of an arc of a circumference in the circle To which has
geodesic curvature χ, and whose ends are opposite points of Γo.

The theorem and its corollary will be proved in § 4.
Remarks. 1. By the corollary, the length of any geodesic in T is not more

than 2R0. Therefore neither closed nor infinitely long geodesies exist in J , and
the diameter D of the region T satisfies the inequality

(1.3) D<2R0.

By (1.1), R0(κ, ks) is a strictly decreasing function of both arguments. Therefore
it is more convenient to take as ks and K the corresponding exact lower bounds.

The global behavior of geodesies in a complete Riemannian space was also
explored in [5] where there is a detailed bibliography and history of the question.

2. In the estimates of the theorem and the corollary, equalities hold if

T = Γo.
3. If K < 0 or ks < — κ\ then in such a region infinitely long geodesic can

exist.
4. The requirement of regularity of class C4 is explained by the references

in [4]. It could be reduced to regularity of class C2 by means of a suitable
approximation. Later on we will remark only on the fact that certain objects
are regular without mentioning the class.

5. Lo is a strictly increasing function of the arguments a and χ and a
strictly decreasing function of the arguments K and ks in the region

K > 0, ks > -κ\ 0 < χ < K, 0 < a < JTΓ, 0 < XY < R0(ιc, ks) .
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The dependence of Lo on XY is not monotonic. In §4, as an example, the
strict decrease of Lo as a function of ks will be proved. Other assertions can
be proved in the same way or reduced to simple considerations in the ks-plane.

6. In the notation of Remark 5, Lo = L0(a) < L0Qπ). Obviously, L0(Jτr),
as a function of XY e (0, Ro], has the maximum value LQQπ) when the points
Yo and γo(Lo(^π)) are on orthogonal radii of the circle To. Accordingly

(1.4) L < Lo < Z0(|τr) .

7. The function r(λ), λ e [0, L], is strictly decreasing so that γ[0, L) C int Γ.
Let us put r(L) < rλ < r2 < XY. Then the following inequality holds

(1.5) r~\rx) - r~\r2) < τ-\rλ) - τ-\r2) .

This remark will be explained in § 4.

8. At a = 0 (see the assertion (3) of Theorem 1) inequality (1.2) is
retained if one understands ^(0) and c2(0) as the exterior normals of Γ and
Γo. (According to Remark 7, equality a = 0 is possible only if λx = L, λ2

The plan of the proof of Theorem 1 is as follows.
The function τ(λ) satisfies the differential equation (4.1), where κT is some

function of τ and the numbers K and ks (see § 4, § 3, formulas (4.1) and (3.1)).
We shall show that in the case of a general disposition of the curve γ, the
function r(X) is regular almost everywhere (see § 3) and satisfies the analogous
differential inequality (3.7). Moreover, at the points where the regularity fails
the left derivative r'_ of the function r is not less than the right one r'+, (Theo-
rem 2, §3).

Because of this, as we will see in §4, the solution τ(λ) of (4.1) under the
corresponding initial conditions majorises the function r(X). Thus r{λ) vanishes
earlier than r(λ). This circumstance gives the desired estimate.

We should say that Theorem 1 proved in the last paragraph is a direct an-
alytical consequence of Theorem 2, §3, which establishes inequalities (3.7)
and r'_ > r'+. We find it difficult to state the complete text of Theorem 2 just
now; let us remark only that Theorem 2 is a generalization of Theorem 1.10
in [3] which states that the distance from a point on a geodesic in a totally
convex set to the boundary of the set is a convex function of the position of
the point on the geodesic. A detailed remark about this is made at the end
of § 3 .

The proof of the inequality r'_ > r'+ is based on the results of § 2 where the
Toponogov lemma on the limit angle (see [6, § 6.4, Lemma 2]) is generalized
a little (see the remark at the end of §4 and Lemmas 2, 3). In particular,
Lemma 3 makes it possible to obtain a one-sided estimate of the speed of con-
vergence of angles to the limit angle.
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2. A few general remarks

Let Q be a hypersurf ace in the considered Riemannian space M and a point
q € Q. We denote by v some fixed unit normal for Q at the point q. Let
h: [ — λo,λQ] —> M be a normal curve and /ι(0) = g. Supposing that λ0 > 0 is
sufficiently small we denote by p(λ) the distance between h(λ) and Q in the
space M taken with the sign " —" if the point h(λ) is situated on that side of
the surface Q which corresponds to the normal v, and with sign " + " other-
wise. When λ0 > 0 is sufficiently small, the functions p(λ) are regular.

We denote by K the normal curvature of the surface Q on the side of the
normal — v at the point q in the direction of the component of the vector A(0)
which is tangent to Q if this component (i.e., vector τ = A(0) — vζv9 Λ(0)>) is
not zero.

Lemma 1. The following equality takes place:

, if |<

Corollary. Let φ be the angle between v and A(0), ψ the angle between v
and A'(0) (// h(0) φ 0), k(λ) the curvature of the curve h (i.e., k(λ) = |Λ*U)|),
and Kq the minimum of the normal curvatures of the surface Q at the point q.
Then

(2.2) ^"(0) < Jfc(0) sin φ - K sin2 φ .

Actually, a simple reasoning based on orthogonality of the vectors Λ(0) and
A(0) shows that — cosψ < sin^. Now (2.2) follows from (2.1). Since ρ\0) —
— cosφ, we have

(2.3) p"(0) y p

where K can be replaced by Kq.

Remarks. 1. Equality (2.1) can be rewritten in the following way:

(2.4) ^"(0) = -ifc(O) cos ψ - K sin2 0 ,

assuming that k(0) cos ψ = 0 if ψ is not defined, and K sin2 φ — 0 if K is not
defined.

2. Let M be a two-dimensional manifold and the angle ψ > ^TΓ. Then
—cosψ = sin^, i^ = ^ q , and equality takes place in (2.2) and (2.3).

3. Equality in (2.2) and (2.3) also takes place when A(0) = ±v (then

p " = 0).
Proo/ of Lemma 1. The second equality in (2.1) is obvious. So, let A(0)
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Let g(X) € Q be such that the geodesic passing through the points g(λ), h(λ)
is orthogonal to Q (when 2 = 0 w e assume g(0) = /z(0) and the corresponding
geodesic is orthogonal to Q). Denote by N the 2-dimensional surface formed
by these geodesies (in a neighborhood of q). Obviously, p(λ) is the length of
the segment g(λ)h(λ). At the same time, p{λ) is the distance on the surface N
from the point h(λ) to the curve g. Obviously, the geodesic curvature of the
curve g on the surface N is equal to K.

Denote by hx(0) the covariant derivative of the field h using parallel transfer
on the surface N. It is known that hx(0) is the orthogonal projection of the
vector Λ(0) onto 2-dimensional direction of the surface N. Therefore (y,

So, to prove (2.1) it is sufficient to establish it for the curve h on the 2-
dimensional surface N. But for the case n = 2, equality (2.1) can be obtained
easily by direct calculation based on the formula for geodesic curvature of a
curve.

Lemma 2. Let a sequence of points qv converge to an interior point p of a
normal region T in such a way that qvΦ p and the directions of the shortest
paths pqυ converge to some direction μ. Let a be the angle at the point p be-
tween μ and some shortest path pp', pf € Γ, of the length p(p, Γ). Denote by
ξu the angle between the direction of the shortest path pqv {from p to qv) at the
point qv and some shortest path qvq[, q[ <= Γ, of the length ρ(qv, Γ). Then the
sequence ξv converges and the limit

(2.5) a = \\mξv<a .

The proof of this lemma is based on the following.
Lemma 3. Let p,qεT, p ψ q, p(p, Γ) > p > 0, p(q, Γ)>p\ p\ qf € Γ,

p(p, p') = p(p, Γ), p(q, q') ~ p(q, Γ). Let a be the angle between the shortest
paths ppf and pq, and β the angle at the point q between qqf and the direction
of the shortest path pq {from p to q). Then there exist, depending only on the
surface Γ and p, numbers ε > 0 and C such that

(2.6)
cos or - cos/3

when p(p, q) < ε.
Proof of Lemma 3. Let ελ > 0 be such that the closed neighborhood Γβi of

the normal region T is still a compact set in the space M. We put Δ = p(p, q),
1 = P(P,Γ).

Let us extend the shortest path p'p as a geodesic within the region T to the
point p" such that the length λ of the geodesic p 'p" is equal to the diameter
Q) of the region T, if it is possible, or, if it is not possible, let p" <= Γ. The
geodesic pfp" is orthogonal to Γ at the point pf and, by strict convexity of Γ,
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intersects Γ at a nonzero angle at the point p" (if p" e Γ ) . It follows easily
from this that λ is a continuous function λ(ρ') of the point p' e Γ. Obviously,

lέΐp,λ(pθ].
Let c: [0,/] -+ T be the normal shortest path p'p, c(0) = p', c(l) = p.

Denote by v the unit parallel field along c such that the vector v(l) has the
direction d of the shortest path pq. Let CΔ: [0, /] —> T be the curve given by
the formula

cΔ(x) — exp i

so that Cj(0) = p', cΔ{ϊ) = q. Obviously, when Δ < ελ the curve cΔ exists and
CA([O, I]) c Γ e .

a v 1

Let a be the sphere of directions at the point p. Then the curve cΔ is deter-
mined identically by representation of a set X = (p'5 l,d,Δ)<zΓχ [p, Λ(p')l
X σ X [0, ε j . Since the triplet (p',l,d) varies in the compact region Γ X
[p, >ί(pθ] X σ, it is easy to see that a positive number ε < εj can be chosen such
that the curve cΔ is regular for any set X e Ω = Γ x [p, λ(p')] X a X [0, ε].
Obviously, ε depends only on Γ and p.

Using the first variation formula and Hadamard's lemma we can easily see
that the length lΔ of the curve cΔ satisfies

(2.7) lΔ = l - cos a-Δ + f(X)-Δ2 ,

where f(X) is a regular function in the compact set Ω. (It is important here
that p > 0.) So, if Δ < ε, then

(2.8) / , < ί - c o s α J + CΔ2 ,

where the constant C depends only on Γ and the numbers p and ε = ε(Γ, p).
Since p(#, p') < lΔ we have

(2.9) p(q, q') < p(q, p') < p{p, p') - cos a - Δ + C Δ2 .

Similarly, changing the order of the points in the pair p, q, we have

(2.10) p(p, pO < p(p, (̂ 0 < p(q, q'\— cos (π — β) Δ + CJ2 ,

if Δ < ε.
Now (2.6) follows by combining (2.9) and (2.10).

PAΌO/ O/ Lemma 2. Following word for word the exposition in [6, § 6.4,
Lemma 2] we remark that in order to prove our Lemma 2 it is sufficient to
establish inequality (2.5) under the assumption that the sequence ξv converges.

Let us put p(p,Γ) = 2ρ > 0. Then, for a sufficiently large v, ρ(qυ, Γ) > p.
By Lemma 3
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cos a — cos £„ < C-p(p, qv) ,

when p(p, qv) < ε. Now we obtain (2.5) passing to the limit when v —> oo.
Remark. 3. Originally, Lemmas 2 and 3 were stated in much more gener-

ality, but their proof was very long. The idea of the present short proof was
suggested by the referee whom the author thanks very much. This proof can
still be easily generalized for the case when Γ is an arbitrary compact set in a
complete space and p, q $ Γ. If Γ is a point, and the points qv lie on a geo-
desic, then Lemma 2 turns into Toponogov's lemma (see [6, § 6.4, Lemma 2]).

3. The distance to the boundary of the normal region
as a function of a point on a curve

Let F be the cut locus of the region T from its boundary Γ, i.e., the union
of the ends Y of geodesies XY C T with X e Γ, which are orthogonal to Γ
and have maximum length XY subject to XY = p(Y,Γ). A more detailed
description of the cut locus is given, for example, in [4, § 4] (there it is denoted
by F(d'Ω)). It is shown in [4] that F is closed and its /ι-dimensional measure is
zero. (See Lemma 8.)

We denote by Γ(t) the set of points of the normal region T whose distance
from Γ is t where 0 <t < R = maxp(X,Γ). It follows from [4, §4] that
every component of the set Γ(t)\F is a hypersurface which is parallel to Γ.
Let us remark that if qeΓ(t)\F, pzΓ, pq = t, then there are no focal
points of the surface Γ on pq (see [6, the end of § 4.3]).

Lemma 4. The normal curvatures of the surface Γ(t)/F are not less than
κt, where

(3.1) κt = κt(κ,ks) = Ί

k *-+.kt3n-kt- when ks>0(k = V\ks\) ,
k — K tan kt

•1 - Kt

, K — k tanh kt

k — K tanh kt

when ks = 0 ,

Remark. κt is the geodesic curvature of a circumference of radius Ro — t
on a &s-plane, where Ro is defined by formula (1.1). Calculations show that
*ί(£, ks) is a strictly increasing function of the arguments t, K and ks. If T is a
ball in a space of constant curvature ks, then the normal curvature of the
sphere Γ(t) is exactly κt.

For the proof of this lemma we shall need the following version of the Rauch
Theorem.

Rauch comparison theorem. Let M and M be Riemannian manifolds of
the same dimension ( > 2), Γ and Γ hypersurfaces in M and M, σ: [0, t] —>
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M and σ: [0, t] —»M normal geodesies, and suppose that σ(0) e Γ, σ(0) e fy

σ(0) _[_ Γ, d(0) J_ Γ. Assume the following conditions:
(i) there are no focal points of the submanifold Γ on σίOtt)9

(ii) the maximum of the normal curvatures of the surface Γ at the point
σ(0) on the side of the normal <j(0) does not exceed minimum of the normal
curvatures of Γ at the point σ(0) on the side of the normal σ(0) and

(iii) for any τ € [0, t] the sectional curvatures K and K at the points σ(τ)
and σ(τ) satisfy the condition K(P) > K(P) for any pair of two-dimensional
directions P and P such that P is tangent to σ and P is tangent to σ. Finally,
let V and V be Γ- and f-Jacobi fields1 along σ and σ and |F(0) | = |F(0) | .
Then

(3.2) inτ) |< |F(r) | , r 6 [0,/] .

{Thus on <j[(M) there are no focal points of the surface f'.)
The proof of this statement is entirely similar to the proof of the Rauch

theorem given, for example, in [2] (see [2, § 11.9] intermediate statement (a)
there does not need a proof in our case). The proof shows also that if V(0) Φ 0,
and K(0) φ 0, then

(3.3) i W < ^ on [0,1] .

<v,v> - <v,vy
Moreover, the inequality (3.3) holds even if |F(0) | Φ |F(0) | .

Let us prove the inequality (1.1).
We consider a normal shortest path a: [0, R] —* M which connects the

boundary Γ and the point σ(R) 6 T most distant from Γ. Such a shortest path
is orthogonal to Γ and does not contain any focal point of the surface Γ inside
itself. Let Γ be an (n — l)-dimensional sphere with the normal curvature K in
an n-dimensional space M which is Sn, Rn or the hyperbolic space of curvature
ks according as ks > 0, = 0, or < 0. The radius of the sphere Γ is equal to Ro.

Let σ:[0, R]—*M be a normal geodesic issuing from the point σ(0) e Γ
along the radius of the sphere Γ. Let us take arbitrary Γ- and Γ-Jacobi fields
V and V along σ and σ in such a way that |F(0) | = \V(ϋ)\ Φ 0. According to
(3.2), \V(τ)\ > \V(τ)\ > 0 when τ € [0, R). Therefore the center of the sphere
Γ does not lie on σ[0, R), i.e., R < Ro.

Proof of Lemma 4. Let AT be a unit vector at a point q e Γ(t)\F tangent to
the surface Γ(t)\F. We consider the normal shortest path σ: [0, t] —> Γ C M,
a{t) — q, σ(0) € Γ. The shortest path σ is orthogonal to the parallel surfaces Γ
and Γ(t)\F. It is easy to construct a geodesic variation of the shortest path σ
such that (i) its longitudinal lines are shortest paths of length t, orthogonal to

1 I.e., fields associated with a geodesic variation whose longitudinal lines are
orthogonal to Γ and Γ; see [2, §11.2, Theorem 2].



110 B. V. DEKSTER

Γ and Γ(t)\F, (ii) its transversal lines lie on the surfaces Γ(τ)\F, τ e [0, t],
and (iii) the point σ(t) moves with speed X. The field V associated with this
variation is a Γ- and Γ(0\^-Jacobi field, and moreover V(t) = X. Therefore
the normal curvature of the surface Γ(t)\F in the direction of the vector X

(3.4) ^ l ^ ^ l

Let a sphere f C M and σ: [0, t] -> M be defined as above, and Γ(t) be
the sphere of radius Ro—t concentric for the sphere Γ9 V Φ 0 an arbitrary Γ-
and Γ(0-Jacobi field along σ. Similarly we have

0.5) C| = _!_££!;.
2 < F , F > !«

Assuming that σ contains no focal points of the surface Γ we can easily show
that F(0) φ 0. Then on the basis of (3.3) it follows from (3.4) and (3.5) that

(3.6) k{X) > κt .

Theorem 2. Let γ: [0, L] —> T be a normal curve of class C2 whose curva-
ture satisfies χ(λ) < χ. Suppose that the set Φ = {λ\ λe [0, L], γ(X) e F} has
linear measure zero and p(γ[O, L], Γ) > p > 0. Let r{λ) = p(γ(λ), Γ), λ e [0, L].

(1) |r(^) - r(^2)| < \λx - 2̂1 // ^ , λ2 € [0, L] (/Λw5 r(X) is absolutely con-
tinuous).

(2) The function r(λ) is regular on the set [0, L]\Φ, and on these points we
have

(3.7) r" < V Π ^ χ ~ (1 - r'*)κr ,

where κr = κrW is defined by formula (3.1).
(3) The function r'(λ), defined on [0, L]\Φ, has a limit from the left r'_(X)

(λ Φ 0) and a limit from the right r'+{λ) (λ Φ L) at every point λ e [0, L]. Let
X = γ(X), χ e [0, L] let {XYj} be the set of the shortest paths of length r(λ),
Yj € Γ let φj be the angle between the shortest path XYj and γ(X) at the point
X. Then r'_(X) = —cos max φό (λ Φ 0) and r'+(X) = —cos min φj (λ Φ L), so
rlW) > r U) when λ 6 (0, L).

(4) The left and the right derivatives of the function r(λ) exist and are equal
to r'_(λ) and r'+(X) respectively.

(5) There exist constants μ > 0 and C depending only on the region T and
the numbers p and χ such that for 0 < λx < λ2 < L and λ2 — λι < μ the follow-
ing inequality holds:

(3.8) r'OQ - Πλd < C(λ2 - jl,) ,
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where f\λ) e [r'+(λ), r'_U)]. (// λ i Φ, then r' = r'_ =. r'+ = r'.)
Proof. (1) is an obvious consequence of the triangle inequality.
Let λ e [0, L]\Φ, i.e., γ(λ) $ F. Then in a neighborhood of γ(λ) the set Γ(r(λ))

is a regular surface parallel to Γ9 and the function r{λ + Δλ) is regular when \Δλ\
is small. According to (1), \r\λ)\ < 1. Let us put p(Δλ) = r(λ + Δλ) — r(λ).
Obviously, \ρ(Δλ)\ is the distance from the point γ(λ + Δλ) to the surface
Γ(r(λ)), r'{λ) = ^(0) and r"(λ) = ^"(0). Now from (2.3) and the relation k(0)

(Λ) it follows

(3.9) r " < V l - r'* χ(λ) - ( I - r'*)K ,

and (3.7) holds since χ(Λ) < χ and K> Kq> κr (see Lemma 4).
Let us prove (3), for example, for r'+. Let Xt —• ^, ^^ > λ, λte [0, L]\Φ. We

introduce the following notation:
ξt is the angle between the shortest path γiλJZt of length r(λi), Zi e Γ, and

the (directed) shortest path Xγ{λt) at the point γ(λi).
7]t is the angle between γiλ^Zi and the vector f(λi).
ζt is the angle between γ{λι) and the (directed) shortest path Xγ(λt).
Since the directions of the shortest paths Xγ(λi) converge to the direction of

the vector f(λ), by Lemma 2 there exists a limit φQ = l im^^ ξt and φ0 < φj.
We can suppose that the shortest paths γiλ^Zi converge to some shortest path
XY € {XYj} forming the angle φQ with f(λ), so that φQ e [φ3).

Since | ^ — ηt\ < ζt -> 0, there exists a limit l im^^ ηt = φ0 < φjm But
—cos rji = τ\λi). Therefore there exists

r'+(λ) = l i m r ^ ) = - c o s φQ < - c o s φs .
i-»oo

Since the last inequality applies for any and φ0 e {φj}, we have

r'+(λ) = —cos ί min ^ J .

Let us prove (4) for r'+. Since r(λ) is absolutely continuous,

Δr = r(λ + Δλ) - r(λ) = Γ " ^(ί)Λ .

According to (3) for any e > 0 there is a number δ > 0 such that |r'+(Λ) — r'(t)\

< ε when 0 < t - λ < Δλ < δ, t $ Φ. Then

J" (/.GO - ε)dt < Δr

whence |/+U) - Δr/Δλ\ < ε when Δλ < δ.

Now we prove (5). Let us put p — γiλ^, q = γ(λ2). Then
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W - r'GO < r'_(λ2) - < t t ) = -cos^2 + cos^1 ,

where φ2 (resp. φι) is the maximum (resp. minimum) angle between the vector
f(λ2) (resp. γ(λx)) and the shortest paths from the set set {qΓ} (resp. {pΓ}). Let
this maximum (resp. minimum) take place for a shortest path qΓ e {qΓ} (resp.
pΓ € {pΓ}). We denote by β (resp. a) the angle between qΓ (resp. pΓ) and
the directed shortest path pq at the point q (resp. /?).

Using the compactness argument it is easy to prove the existence of a con-
stant C > 0 depending only on the region T and the number χ such that the
angle between (any) shortest path pq and the vector f(Xx) is less than CΔ
where Δ = λ2 - λ,. Then \φ2 - β\ < CΔ, \φλ - a\< CΔ, and if J is suf-

ficiently small

r\λ2) - f\λλ) < -cos (β + CΔ) + cos (a - CΔ)

< (cos a — cos β) cos CΔ + 2CΔ .

We take as μ the constant m from Lemma 3. Then pq < Δ < A/? and by
Lemma 3, cos a — cos .5 < C-pq < C J . Consequently

r\λ2) - r ' U ) < CJ + 2C'J = (C + 2C ;)J .

The number (C + 2C) depends only on Γ, δ̂, and χ.
Remark. It follows from the proof that inequality (3.7) of Theorem 2 can

be replaced by (3.9). On the other hand, if γ is a geodesic (χ = χ = 0), then
we can replace inequality (3.7) with the stronger inequality r" < 0. Thus it
can be proved that Theorem 2 means that for a geodesic "of general position"
(i.e., when measure of the set Φ is zero) the function r{λ) is convex. Since one
can approximate an arbitrary geodesic with geodesies "of general position",
r(λ) is a convex function for any geodesic. This fact, proved under the additional
condition that ks > 0 and M is a noncompact complete manifold (but with
admission of degenerate region Γ), is a statement of Theorem 1.10 in [3].

4. Proof of Theorem 1

It is enough to consider only the case when XY < Ro. If XY = Ro, then
the theorem can be proved by varying the curve γ to include it in a regular
family of curves γσ: [0, L] -> T such that ^(0) € XY\X and γ.(λ) -> γ{λ) as σ-+
0, Λ e [0, L]. Applying the theorem to γa and passing to limit as σ->0 we
obtain the theorem for f.

Similarly we can consider only the case when f[0, L]€intT, 0 < φ < a < jπ
and the curvature of the curve γ is strictly less than χ > 0 (one can take χ + ε,
ε > 0 instead of χ, apply the theorem and pass to limit as ε —> 0).

Finally, we can suppose that the set Φ = {λ: λ € [0, L], -(Λ) 6 the cut locus F
from the boundary Γ) has measure zero. In fact, otherwise we can include the
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curve γ in an (n — l)-parameter family of curves which make up some non-
zero volume in the manifold M. Among these curves there is a curve f for
which f Π F has linear measure zero or else by the Fubini theorem F has non-
zero measure, and this is contrary to Lemma 8 of [4]. Applying the theorem
to γ' and passing to the limit as γ' —* γ we obtain the theorem for γ.

The proof is based on the integration of the differential inequality (3.7). We
consider the differential equation

(4.1) /" = Vl -t'2χ-(l -tn)ιctr

where κt is given by formula (3.1) so that the right side of (4.1) is defined when
0 < t < R0(κ, ks) and \t'\ < 1. We study the solution of (4.1) noncontinuable in
the open region Ω: λ <= (— oo, oo), t e (0, Ro), \t'\ < 1 with the initial data:
t(Q) = XY, t'(0) = -cos a. The point a = (0, t(0), f(0)) ef i so that this
solution exists and is unique.

The function τ(λ) (see § 1) is a solution of (4.1) with the initial data: r(0)
= XY, τ'(0) = —cos a. This can be checked by calculation or can be seen
from the remark after Lemma 4, § 3 and Remark 2 after Lemma 1, § 2. (When
T = To and γ = γ09 equality holds in (2.3) and in the estimate of Lemma 4,
from which follows (3.7)).

(A) Let us show that τ'(X) < 0 when λ > 0. It is obvious for sufficiently
small λ. In fact, if r'(0) < 0 then τ'(λ) < 0 by continuity, and if ^(0) = 0
then τ\λ) < 0 because

τ"(0) - χ - * r ( 0 ) < χ - *0 = χ - * < 0 , "

(see (4.1) and the remark after Lemma 4). Let us suppose to the contrary that

τf(λι) > 0 for some λλ> 0. Let λ2 be the minimum root of the equation τ'(λ)

= 0 on the set (0, ΛJ. Then τ/;(Λ2) > 0 which is impossible since τ"{λ >) =

X - * r ( i a ) < X - K < 0.

(B) It is easy to see that | r 'U) | < 1 for λ β [0,L0]. The case | r 'U) | > 1
is impossible by a metric reasoning. The case \τ'(λ)\ = 1 means that the curve
γ0 is tangent to a radius at the point γQ(X) and that is also impossible by the
geometry of the £s-plane (remember that a > 0).

(C) Let us consider the curve f: t = τ(λ), t' — τ\λ), λ € [0, Lo] in the space
of the parameters λ, t, t'. It follows from (A) that τU) < r(0) = XY. Accord-
ing to (B), \τ'\ < 1. Therefore f\ί0tLo) lies in the region Ω. Since l i m ^ ^ τ(λ) =
τ(L0) = 0, the curve γ reaches the boundary of the region Ω.

Let us return now to the given curve γ: [0, L] —> T, and consider on the
plane of the variables λ and t the graphs ^(r) and Ξ(r) of the functions t =
rGO, ^ € [0, Lo] and ί = r(ί), ^ e [0, L]. We remark that r(0) = r(0) = XY
and, according to Theorem 2 (4),



114 B. V. DEKSTER

r'+(0) = —cos f in ing) < —cosφ < — cos

so that if λ > 0 is sufficiently small, then

(4.2) r(λ) < τ(X)

(see Fig. 2).

= r'(0) ,

Lo

We remark also that the function τc(X) = τ{λ — C) for an arbitrary C is a
solution of (4.1) with the initial data: τc(C) = XY, τ[(C) = - c o s α . (The
graph Ξ(τc) is a result of translating Ξ(τ) a distance C along the Λ-axis.)

Let us suppose now that Theorem 1 is not true, i.e., one of the following
possibilites occurs:

(a) L>L0.
(b) L<L0 but r(λ) > τ(λ) for some λ € [0, L].
(c) L < Lo, r(λ) < τ(X) for all λ e [0,L] but there exist (described in

Theorem 1 (3)) λ19 λ2 and ct, c2 such that (fiλ^, Cj(O)) > (fo(λ2), c2(0)) where

( , •) denotes an angle.
It is easy to see that in any of these three cases there exists D 6 (— oo, oo)

and λ* € (0, L) such that r(λ*) = τD{λ^) and

(4.3) τD(X)<r(λ)

in some neighborhood \λ — λ%\ < δ of the point /l̂ . (In other words during the
translation of B(τ) along Λ-axis there is a moment D such that the translated
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graph Ξ(τD) is "tangent from the left" to the graph B(r) at its interior point
U*,^)).)

We consider, for example, the case (c) (see Fig. 2). Let f(λ) be the restric-
tion of the function r(λ) to the set [0, λj c [0, L]. Let us show that one can
take as D the minimum number C for which 3{τc) Π Ξ(r) ψ 0 and can take
as λ* a root of the equation r(λ^) = τD(λ%).

On the strength of (4.2) and the fact that v(λ) is strictly decreasing (see (A)),
the number D < 0 and λ* Φ 0. Let a number E be such that S(τE) a (λ19 riλj)
(see Fig. 2). Then

= -cos (max &) > -cos(f(ίDi(0)) > - cos (f0

= τ\λ2) =

From this and the fact that τE(λ) is strictly decreasing (see (A)) the number
D < E and λ* Φ λ,. Thus λ* € (0, ^ ) C (0, L). Now (4.3) follows from strict
decrease of τD(λ) and the minimality of D.

In view of the minimality of D we have r'_ < τ'Ώ and r'+ > τ'D at the point Λ*.
According to Theorem 2 (4), r'+ < r l and therefore

(4.4) r l = rr

+ = τ'D (when ^ •= λ^ .

In order to get a contradiction it will be enough to establish that for some
δ > 0, / < τf

D on the set (λ*, λ* + δ]\Φ. In this case, the absolute continuity
of the function r(λ) (see Theorem 2 (1)) yields

r(X) = r(^) + Γ r\u)du < τD(λJ + Γ ri(n)dw = τD{λ) ,

and this is contrary to (4.3).
Let us denote by FχQ, ί,Y) the right side of (4.1). The function Fz(λ, t, t')

is defined for any χ (and, in reality, does not depend on X). Let χ be the max-
imum curvature of the curve γ, so that χ < χ. Since \τ'D\ < 1, the point α*
= U * , ^ ^ ) , ^ ^ ) ) € β and F z = F χ - ξ, f > 0, at this point. If points
ax,a2eQ are sufficiently close to a*, then /^(fli) < Fx(a2) — |f. Obviously,
W, tz>00, τiOO) —> α* as ^-^^^. In view of the continuity of the function
r(λ) and also in consequence of Theorem 2 (3) and equality (4.4) we have
(λ, r(λ), r'iλ)) -^a^dis λ-+λ*, λ$Φ. Now, for the values of λ t Φ such that
U — Λ*|<0> (3.7) implies

(4.5) r"G0 < Fχ-U, rU), r'W)) < FZU, τ^α), τi(fl) - | f = r^U) - # .

Let us put / = [k*, λ* + δ], Ψ = / Π Φ. Since the cut locus F is closed (see
[4, Lemma 8]), Φ and ^ are also closed. Set η(X) — τD(λ) — r'+(X), λzl. Since

is regular, the function η{λ) is subject to the following conditions:
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1. η(λ) is regular on I\W, where Ψ is closed and has measure zero.
2. ηiλ*) = 0 on the basis of (4.4).
3. On the set I\Ψ, according to (4.5), η\λ) > $ξ > 0.
According to (3.8), when λ19 λ2 € / , λ2 > Λ1? are sufficiently small we have

27(̂ 2) — 27(̂ 1) > C{λ2 — yli). (Maybe C < 0.) Let us show that, under this con-
dition, η(X) > 0 when λzl\λχ. The set f Π [^, X] can be covered by a finite
number of segments whose total tength is smaller than any ε > 0. On these
segments the function η can decrease but not by more than \C\ ε. On the other
part of the segment [Λ*, λ] it increases not by less than %(λ* — λ — ε)ξ. Taking
ε sufficiently small we see that η(λ) > 0. So, r' = r'+ < τf

D when λ e I\(Ψ U λ*).
Proof of the corollary. Let b: [0, A] —> T be a normal curve mentioned in

the corollary. As in the proof of Theorem 1 we can suppose that b[0, A] C int Γ.
According to Remark 6 after Theorem 1, it is enough to prove that A < 2L0(^π).

Let r(X) = p(b(λ), Γ) ( > 0), λ e [0, A]. Let a{: [0, r(λ)] -* T be a normal
shortest path: a{(0) = b(λ), a{(r(X)) € Γ. (Index j belongs to the index set Jλ

of such shortest paths when λ is fixed.) We denote by φj(λ) the angle between
the vectors ά{(ϋ) and b(Z). Obviously, there exist indices " + " and " —" € / 2

such that φ+(X) = max J € ^ φj(X) and φ~(X) = min j €^.^(Λ). (Possibly, /̂  consists
of only one index then a$ = aj, φ+(X) = φ~(λ) )

If ^"(0) < |τr, then the situation is described by the conditions of Theorem
1 (with shortest path 07 instead of XY). According to (1.4), A < L0Qπ)
and the corollary is proved.

Let 0-(O) > |7r, and put E = {λ: λ € [0, A], φ~(λ) > |τr}, λ* = supE. Let
us show that φ+(λ*) > ^π. If λ* € E, then it is true because φ+(λ^) > φ~{λ^
> \π. If yl̂  $ £̂ , then λ* Φ 0 and there exists a sequence >̂  —> λ^ such that
>l< < Λ*, ^~Uί) > i7r. We can suppose that the shortest paths aj. converge to
some shortest path fl£, / € / ^ Then φ+(λ*) > φj(λ*) > \π.

If λ* — A, then φ+(A) > \π, and changing the direction of the curve b we
again get the case considered above: 0~(O) < \π. Let λ^ e [0, A). Then there
exists a sequence λt —> >l+ such that λt > ϋ^, φ~(λι) < \π. We can suppose that
the shortest paths aj~t converge to some shortest path a{^ j € / ^ . Then ^"(>i^)

By assumption, φ~(0)> \π so that λ* Φ 0. Thus λ* e (0, A) and 0-W*) < %π
< φ+(λ*). Therefore one can apply Theorem 1 to the curves bί0M and bίuM.
According to (1.4), λ* < L0(%π), A — λ^ < L0(%π) whence A < 2L0(|/r).

Proof of Remarks 5 and!. Let us prove that Lo = L0(ks) is strictly decreas-
ing. L0(ks) is the first positive root of the equation τ(X) = 0, where τ(λ) is the
solution of (4.1) with initial data r(0) = XY, r'(0) = —cos a. We denote by
θ(λ) the solution of (4.1) with the same initial data under the condition that
the argument ks of the function κt(κ, ks) is replaced by ks -A- J , Δ > 0. We
should prove that the first positive root LQ(ks + Δ) of the equation Θ(X) — 0 is
less than L0(ks).

Let us assume the contrary so that L0(ks + Δ) > L0(ks). Since κt is striclty
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increasing in ks (see remark after Lemma 4) and — 1 < —cos a = r'(0) — 0'(O)
< 0, it follows from (4.1) that 0"(O) < r"(0). Thus θ(λ) < τ(λ) when λ > 0 is
sufficiently small. Let λ e (0, L0(ks)] be the minimum number for which θiλ)
= τφ.

According to (A) of § 4, τ'(X) < 0 and θ'(λ) < 0 when λ > 0. Let us put ψ(t)
= τ-ι(f) - Θ-KO, t e [τφ,XY]. Then ψ(r(3)) = ψ(XY) = 0 and ψ(ί) > 0
when t € (τ(λ), XY). At the point t* e (τφ,XY) where ψ(t) has a maximum

(4.7) ^ ( ί # ) = - ^ α * ) - - ^ - ( O ^ °

We define λλ and ^2 by the condition:

(4.8) θiλ,) = r t t ) = /# .

Using the formula for the derivative of an invese function and taking into con-
sideration (A) and (B) of § 4 we get, from (4.6),

(4.9) - 1

Similarly, it follows from (4.7) and (4.9) that

0"tti) > r"(J2)

But this is impossible since, on the basis of (4.1) and (4.9),

τ"{λ2) - ff\λd = (1 - τ'\λ2)) (κt(κ, ks + Δ) - ^(ic, Λ.)) > 0 .

Remark 7 for a curve f with the set f[0, L] Π F of measure zero follows
easily enough from Theorem 1 (3) and from Theorem 2. In the general case
Remark 7 can be proved by a limit argument.
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