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A GENERALIZED ALLENDOERFFER-WEIL FORMULA AND
AN INEQUALITY OF THE COHN-VOSSEN TYPE

ROLF WALTER

1. Introduction

In this paper we present a version of the Gauss-Bonnet-Chern formula which
applies to arbitrary compact locally convex subsets C of a riemannian manifold
M. The classical counterpart is the Allendoerfϊer-Weil formula for riemannian
polyhedra [1]. But while the singularities of a polyhedron are separated along
submanifolds, we do not have to restrict the set of singularities, in particular,
this set can be dense in the boundary of C.

An important role is played in our formula by the set Jίc of outer vectors
of C, which is a locally lipschitz submanifold of TλM. In fact, the boundary
terms appear as integrals over Jfc of an almost everywhere defined differential
form, in which enter curvature quantities of M along dC and a generalized
second fundamental form of dC which is symmetric and positive semidefinite
almost everywhere.

In the case of a positive semidefinite curvature operator along dC, the
boundary terms can be estimated thus giving a sort of Cohn-Vossen inequality
for such sets C. For dimensions not exceeding 6, the assumption on the curva-
ture operator can be replaced by K > 0 along dC. Several corollaries apply to
the existence of, and bounds for, the total curvature of complete manifolds of
nonnegative curvature.

2. Preliminaries

Let (M, <( , )) always be a smooth oriented and connected riemannian mani-
fold of dimension m > 2. In any case, all manifolds are supposed to be Haus-
dorff and paracompact. The general notation for M is the same as in [18].

2.1. If /: N —> M is smooth, by a form A of bidegree (r, s) along f we mean
an alternating form on N of degree r with values in f\sf*TM [2, § 8.3]. For
such forms there are the usual algebraic operations + , Λ and, by the given
orientation of M, every form Q of bidegree (r, m) corresponds to a form [Q]
of bidegree (r, 0), i.e., to a real r-form on N. If g: Nλ—>N is smooth, then
for every given A there is defined a form g*A of the same bidegree along fog.
The operation g* is homomorphic with respect to + , Λ, [ ], and for another
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smooth map h: N2—>Λ^ we have (goh)*A = h*(g*A). Observe that an r-
multilinear alternating map from (TqN)r into /\ s Tf{q)M is associated with the
given A at every q e N.

2.1.1. The connection on /*TM, induced by the Levi-Civita connection V
on M, gives rise to the covariant differential operator D transforming smooth
forms of bidegree (r, s) along / into such forms of bidegree (r + l9s). For s =
m, D commutes with [ ].

2.1.2. If the manifolds N, N19 iV2 are of class ^\ and /, g, /* are only con-
tinuous, then according to the last remark in §2.1 the statements of §2.1 have
a pointwise meaning at those points where the entering maps are differentiable.
If, e.g., g is differentiable at qλ e N19 then gfxA is well defined.

2.1.2.1. If N is of class <βι

9 and f:N—>M is continuous, then a form of
bidegree (0, 1) along / is simply a map F: N —> TM with πoF = f (π is the
projection of TM onto M), i.e., a vector field along /. If F is continuous every-
where and differentiable at q e N, then the covariant differential (DF)q is well
defined as a linear map TqN —> Tf{q)M by requiring: (a) additivity, (b) the
product rule for continuous coefficient functions which are differentiable at q,
and

(2.1) (c): (D/*X)βιι = Vf^uX, u e TqN

for smooth vector fields X on M.
If g = gfai), and g is differentiable at q19 then g*F = F o g is differentiable

at qλ and φ(g*F))qi = gt(DF)q.
2.1.3. In the case where N = M and / = id, one is led to the calculus

of Flanders [8]. In particular, if X19... ,Xm form a smooth positive ortho-
normal base field with dual forms σ19 . . . , σm, then

(2.2) DXt = Σ ωjiχj > dωij = Ωij - Σ o>ik Λ ωkj ,
3 k

where ωij9 Ωij are the connection and curvature forms. An example of a form
of bidegree (2, 2) is the curvature operator

(2.3) «: = 1 ΣΩtjXtAXj .
2 *,i

For even m = 2(Λ + 1 ) the Gauss-Bonnet-Chern form γ on M is expressible

by Sί\

r : =
(2τr)Λ Λ!

(2.4)
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For m odd, one puts γ: = 0.
2.2. The integration theory, appropriate for our purpose, can be found in

Krickeberg [12]. We only presuppose it for forms defined on manifolds of
class #*, and the measurability of a form shall include here its local bounded-
ness, so that every measurable π-form ω on an oriented ^-manifold N has a

finite integral ω over any compact subset Δ of N. Relevant notions of the
J Δ

category of locally lipschitz manifolds, which is used in [12], are also given in
[19]. We make some further statements as follows.

2.2.1. Let N,N be ^-manifolds, N oriented, and g:N->N locally
lipschitz (by Rademacher's theorem [11, 11.1.3.1], g is then differentiate
almost everywhere in N). For any continuous n-ίoτm ω on N, the n-ίoτm g*ω
is measurable. At the points q e N where g is not differentiate, we set (g*ω)q
= 0.

2.2.2. If N, N are both compact and oriented and of the same dimension
n, and g: N —» N is a locally bilipschitz homeomorphism preserving orien-
tation, then g*ω is again measurable for any measurable fz-form ω on N, and
we have the transformation rule

(2.5) f S*ω= f -
J N J N

For the local case cf. [11, 11.2.3.3].
2.2.3. Let S C N be a compact oriented locally lipschitz submanifold of

dimension ή. Assume that S can be parametrized by a ^-manifold, i.e., that
there are an oriented ^-manifold N of dimension n and a locally bilipschitz
orientation-preserving homeomorphism /: N-+S. Then for any n-ίoτm ω on

N of class ^° the integral /*ω is independent of the parametrization (/, N)

by (2.5), and hence one can set

(2.6) ί ω:= f f*ω .
J S J N

It is in this sense that the integral in (3.17) will be understood.

3. The generalized Allendoerffer-Weil formula

3.1. For the riemannian manifold M the extended exterior calculus im-
mediately leads to the infinitesimal version of the Gauss-Bonnet theorem, i.e.,
the Chern equation in TλM [8]: Consider the inclusion / : ΊγM Q TM as a
smooth vector field along the projection πx: TXM —»M, set 2&ι: = π\*2/ί, and
define differential forms Ak on TλM by

(3.1) Ak: = [^fΛ/ΛίD/)™-2*-1] , 0 < k < [\{m - 1)] .
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Then the Chern equation can be stated in the form

(3.2) ft : = π*γ = ~dΠ with Π: =

where

h:= [ J ( m - 1 ) ] ,

(3.3) ί[(2;τ)Λ+1 Λ! l 3 (m - 2k - I ) ] " 1 for m even ,
fl*'= {[2.(2τr)Λ Λ! .2 .4 (m - 2k - I ) ] " 1 for m odd .

For any map F: N —> TM we put (in the complement of the zeros of F) F°: =

3.2. Lemma. Let Y be a locally lipschitz vector field on M.
(i) If J (Z M is a compact ^-piece [2] containing no zeros of Y, then

(3.4) ί γ = - ί (Y°\dJ)*Π .
J Δ J dΔ

(ii) // Y is of class °̂° around a regular zero p0, then

(3.5) lim J (Y°|aΓ)*77 = indPo Y e {-1, 1}

/or tf00-pieces Γ contracting to p0.
Proof, (i) follows by applying Krickeberg's version of the Stokes' theorem

[12, §9] to the equation γ = —Y**dΠ which holds by (3.2) almost every-
where in a neighborhood of Δ. (ii) is well known [5].

3.3. Lemma. Let Γ C M be a compact ^"-piece. Then the integral

(3.6) ί F°*77
JdΓ

has the same value for any locally lipschitz vector field V: dΓ —> TM which is
exterior to Γ.

Proof. Construct a sequence of compact ^"-pieces Γj C Γ° such that

(3.7) d(Γ\Γ°j) = dΓU dΓj , vol (Γ\Γ°) -> 0 ,

and that a field vj of outer normal vectors along dΓj and F can be continued
to a locally lipschitz vector field Y which has no zeros in a neighorhood of
Γ\Γ°j [15, 5.9]. Then by Lemma 3.2 (i) we have

(3.8) ί γ=-[ V°*Π + f vfΠ .
J Γ\Γ°j JdΓ JdΓj

Here the terms depending on / converge with limits independent of V.
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3.4. Lemma. Let Δ c M be a compact ^-piece, and Y a continuous
vector field on M, exterior to Δ along dΔ. Then there exists a compact W3-piece
Γ (ZM such that

(i) ΓcJ°,
(ii) Y is exterior to Γ along dΓ,
(iii) Δ\Γ° contains no zeros of Y,
(iv) Δ and Γ are ̂ -diffeomorphic.
Proof. Let λ = U1? λ2) be a ^-difϊeomorphism of a neighborhood W of dΔ

onto dΔ X ] — 1, 1[ transforming W f) Δ onto dΔ X ] —1,0]; see [15, 5.9].
Consider the continuous vector field A on W associated with djdt on dΔ X
] — 1 , 1[. One can assume Y Φ 0, and

(3.9) Ψ i : = f

(3.10) ^ 2 : " f

on W. Put ψ: = min {ψ15 ψ2}. Choose t191[ with — 1 < tγ < t[ < 0 and,
according to [15, 4.2], a smooth function μonW such that

(3.11) |j" - i l < K ί - *i) ,

(3.12) |grad/i - grad^2| < tan2 (iψ) |grad ^ | .

Then

(3.13) Γ:= Δ\{p e ^ |^(p) > \{t[ + t,)}

will satisfy the assertions. (Observe that (3.12) implies <£(gradμ, gradΛ2) < Ψ?
and that t ^μoλ'^p, t) is strictly increasing for every pedΔ, assuming the
value \{t[ + tλ) exactly once.)

3.5. Proposition. Let Δ C M be a compact ̂ -piece, and V an exterior
locally lipschitz vector field on dΔ. Then

(3.14) f r = — f V*Π
J Δ J dΔ

where χ denotes the Euler-Poincare characteristic.
Proof. Let Y be a locally lipschitz continuation of V onto M. Choose Γ

according to § 3.4. Denoting the exterior unit normal vector field along dΓ by
v, we have

(3.15) ί γ = - f v*Π + χ(Γ) .
J Γ JBΔ
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This is the Allendoerfϊer-Weil formula particularly for the smooth polyhedron
Γ. (We can also obtain an independent proof (3.15) by using a smooth Morse
function, whose gradient is exterior to Γ along 3Γ, and applying § 3.2 and the
smooth version of the Hopf (or Morse) index theorem.) Now by (3.15), and
Lemmas 3.2 (i), 3.3 and 3.4 we have

J i J r r
J\ro

(3.16) = - f v*Π + χ(Γ) ~ ί V«*Π + f (Y°\dΓ)*Π
J d Γ J dJ J d Γ

= - [ V*Π + χd) .

3.6.1. Let C always be a compact locally convex subset of M. The follow-
ing statements are necessary for the following main formula they are based
on the results of [18]. In a suitable open neighborhood U of C we have a well-
defined metric projection / onto C (previously denoted by *) which is locally
lipschitz. For every q € U\C we denote by F(q) the unit initial vector of the
geodesic normal f(q)q. F is a locally lipschitz vector field along /. Both maps
are occasionally restricted to a fixed outer parallel hypersurface dCr. These hy-
persurfaces are of class tf1 for small r. The images of / and F are respectively the
set theoretic boundary 3C of C and the set Jίc of unit outer vectors along dC.
JίG is a compact locally lipschitz submanifold of ΊλM of dimension m — 1
which is ^-parametrized by F\dCr (§ 2.2.3).

3.6.2. Theorem. For any compact locally convex subset C of an oriented
riemannian manifold M we have

(3.17) f γ = - Σ <*Λ WΪΛIΛ (Z)/)™-""1] + χ(C) ,
JC k = 0 JJίc

where χ(C) is the Euler-Poίncarέ characteristic of C, and all quantities exist
and are finite. Each integral on the right hand side can be written as

(3.18) ί
J dCr

for any sufficiently small r > 0.
Proof. Since C is a strong deformation retract of each outer parallel set C r ,

(3.19) χ(C) = χ(σ)

for small r. Consider the distance function pc from C which is of class ^ ι in
U\C; its gradient Vc is of norm 1 and again locally lipschitz. First applying
Proposition 3.5 to Cr and Vc and using (3.19) we obtain
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(3.20) f r = —f (vc\dσrπ + χ(c).
J Cr JdCr

Then take the limit as r [ 0. Of course, the left hand side converges to f r
J c

(which vanishes if C has ra-measure 0). For handling the second term in (3.20)
we have to transform it to a fixed domain of integration. Let ht, 0 < t < 1,
be the dilatations with center C defined in U, i.e., for q e U, ht(q) is the unique
point on qf(q) with p(q, ht(q)) = (1 — t) p(q, /(<?)), where each ht is a locally
bilipschitz homeomorphism onto some open neighborhood of C for details see
[19]. Put Ht: = Vc o ht. In the terms of [18]:

(3.21) ht(q) = exp(t.φ(Kq),q)),

(3.22) Ht(q) = —L- Ω(Φ(f(q), q), t) ,

(3.23)

Denote, for a fixed r0 and r with 0 < r < r0, by /r, Fr respectively the restric-
tions of hr/ro,Hr/ro onto dCro. Likewise, consider /, F only on dC r o. One can
prove that the locally bilipschitz homeomorphism fr: 3Cro —• 3Cr preserves
orientation [19], so by § 2.2.2 we have

f (yc i dσyπ = f f*(yc \ eσrπ
(3.24) r r°

= f (vc\dσofr)*π=[ F*Π .

Now (3.22), (3.23) show that

(3.25) lim (F r)# β iι = F^.w , u e ,

for any q e 3Cro, where / is difϊerentiable, i.e., up to a set of (m — l)-measure
0 in dCr\ Thus Lebesgue's pointwise convergence theorem gives, in con-
sequence of (3.24),

(3.26) lim ί {Vc \ dCψΠ = f F*77 ,
rioJdCr J dCro

since the uniform boundedness condition is also fullfilled by the local lipschitz
property of / and the compactness of 3Cro.

A pointwise calculation shows

F*77 = Σ akF*[&ϊ AIA (D/)™"2*"1]
(3.27)

= Σ ak\ί*9tk AFA (DF)m~2k~ι]



174 ROLF WALTER

almost everywhere on dCro. Thus the assertion follows from (2.6), (3.20), (3.26)
and § 2.2.3. (The orientation of Jίc is the one induced by F\3Cro, and does
not depend on the choice of rQ.)

3.7.1. For applications it is useful to represent the boundary terms of
(3.18) more explicitely in an adapted base. In particular, the resulting formula
will contain the coefficients of the generalized second fundamental form II of
dC [19]. The form II is denned almost everywhere by

(3.28) II = <d/<g> DF> ,

where /, F can either be considered on U\C or on any fixed parallel hypersur-
face dCr (r small). In any case, II is symmetric and positive semidefinite
almost everywhere.

3.7.2. Again, restrict /, F on 3Cro, and let them be difϊerentiable at qQ.
Choose a smooth positive orthonormal base field Xl9 , Xm in a neighbor-
hood of p0: = f(qQ) such that

v- I rp I

* i IPO> * * * > X* Ipβ s P a n (df)qJTqo(dC«>)) ,

d(=dqo) being the rank of / at q0 (in general, dqo is not continuously
dependent on q0). We fix the following ranges of indices:

1 <a,β, . . . < d , d + 1 < ^ , 5 , . . . < m ,

1 < /, 7, < m .

Then

(3.31) (df)qo - Σ (f*σa)qJCa |β0 , (/*σj,o - 0 .

(Z)F)ΪO decomposes according to

(3.32) (£>F)9o = Σ *« X« Ip. + Σ ^ ' ^ Ip. = = G + H ,
a A

where the πt are linear forms on Tqo(dCro) and

(3.33) πm = 0 ,

since <T, F ) = 1. The second fundamental form is

(3.34) Πβ 0 = <W/),0 (8) (DZ0βo> = Σ (f**a\0 ® ^ ,

and since it is symmetric there is a symmetric matrix (baβ) such that

(3.35) πa=Σ baβ(ί*aβ)qo .
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Note

(3.36) (f*O)Q0 = i Σ σ*fl*Λo(^i A Xj)Po ,

where

(3.37) ΩtJ =

This gives

(3.38)
= Σ [m~lK !

The indices A,B, can now be restricted to d + I, • • , m — 1. Use of
(3.29), (3.32), (3.36) yields

KP#*) β 0 Λ F |ί0 Λ G™-"-1-" Λ #*]

V x / ^ Z_l Oίl ' i2k0ί2k+l Όίm-μ~lAm-μ"Άm-i

(3 3 9) ' RiiUβiβ»(Pθ) * * Ri*t-ii*tβΛ-iβi*(Pθ)

' "«2k+lβ2k + l ' ' ' Dam-μ-χβm-μ-X

• (J*σfι Λ Λ f*σβm_μ_χo A πΛm^ Λ Λ * . , „ _ , ,

the sums being taken over all repeated indices. Here all terms with m — μ — 1
Φ d will vanish, so

7 o7 Ί K/^% Λ F L Λ G*-2* Λ
d — 2k I

_4-k/m-2k-l\

( 3 4 0 ) \ d-2* /

where ίP\ = 0 for <? < 0, and

(3.41) ^ d : = (-1)™"1 (/*<?! Λ ••• Af*σd)qoAπd+1A"Άπm^ .

Finally, the /1? , /2fc must be < d, say ι\ = α t, . . . , /2fc = a2k, and then the
sign factors in (3.40) collapse to eβl...βJf ei8l...i8<l, so that (3.40) reduces to
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ϋ*^k AF A(DF)m-2k-1]qo

= 4.k (m - 2k - 1\ y

(3.42) \ d - 2 Λ / ' eai'"a&*'"β*

The coefficient of μώ has the same form as in Allendoerffer-Weil's formula.

4. A Cohn-Vossen inequality for geodesically convex sets

4.1.1. If the curvature satisfies positivity conditions, then the boundary
terms in Theorem 3.6.2 can be estimated. But first we have the following
lemma on the form μd given by (3.41) which is intrinsically defined because it
agrees for two positive othonormal bases satisfying (3.29). Observe that μd is
not, as one could expect, the volume form of the metric induced from the
bundle metric of TλM by F.

4.1.2. Lemma. // the metric projection f is diβerentiable at q0 e dCro,
and (df)qo has rank d, then μd given by (3.41) is positive in the canonical
orientation of 3Cr°.

Proof. μdφQ follows from (3.31), (3.35) and the fact that F: dCro -> TM
is of rank m — 1, [19]. To show μd>0 let u19 , um_λ be a positive basis
of Tqo(dCro) such that the uA span ker/*^. Since fr:dCro->dCr preserves
orientation for any 0 < r < r0,

(4.1) WiΛ ΛWm-i>°

in Tfr(qQ)(dCr). Let fr be the geodesic dilatation of ratio r/r0 with center po: =
f(q0), i.e., let

(4.2) fr(q) = exp ί—Φ(p09 q)) .
\ r0 I

On TqQ(SrQ(p0)) we have

(4.3) lim l L , 0 = (z>(!φ(p0, id))) .
rlO r \ \r0 //qo

Now from f*QouA = 0 follow

(4.4) fr*qo

UA = Jr*qoUA 9

(4.5) (D(—Φ(P09 id))) uA = (DF)qouA .
\ \rQ //qo
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This implies, in consequence of (4.1),

(4.6) {df)qQuλ A Λ (df)qoud A (DF)Qoud+ί A Λ (DF)Qoum^ > 0

in (Fqoy c TqoM. Substituting (3.31), (3.32) for df,DF in (4.6) shows that μd

has nonnegative value on ux, , um_λ.
4.2.1. The curvature operator 0ίp given by (2.3), p e M , defines a linear

map of /\2TPM into itself by requiring &p(xAy) = &p(x,y) for all de-
composable x Ay € / \ 2 ΓpM. If (( , }p denotes the natural scalar product on
/\2 TPM, then £%p corresponds to the bilinear form

(4.7) RP(X, Y): = ((mpX, Y))p , K,Yε A2 TPM .

In an orthonormal base,

(4.8) Rp(Xt A Xj, Xk A Xd = Rίjkl(p)

The positive semidefiniteness of 0lp means that Rp is nonnegative on the
diagonal of (/\2TPM) x (/\2TPM), while nonnegativity of the sectional
curvature Kp means that Rp is nonnegative on the diagonal of the subset of
decomposable elements. The former implies the latter, but the converse is
questionable for m > 4. B. Konstant proved (unpublished) that the positive
semidefiniteness of &p implies, in all even dimensions m = 2(h + 1)> that the
Gauss-Bonnet-Chern form (i.e., [^+ 1]) is nonnegative (communicated by A.
Weinstein). More generally, we have the following purely algebraic lemma (the
notions are clear from above).

4.2.1.1. Lemma. Let (F, <( , )>) be an oriented euclidean vector space of
dimension d, let L: V —> V be linear, symmetric, and positive semidefinite
with respect to < , ) , and let &: f\2V-+ f\2V be linear, symmetric, and
positive semidefinite with respect to ( ( , )) . Then, for k,l > 0 with 2k + / = d,
\0tk A Lι] is a nonnegative d-form on V.

Proof. We use similar symbols as above but without the subscript p πa

and baβ are now denned by

(4.9) L(X) = Σ πa{X)Xa , πa = Σ Kβσβ .
a β

Then we have

(A 10") 4 -[& AL] = Σ £ai 'ad£βl "βd^a1a2β1β2 * * ' Ra2k-1a2kβ2k-1β2k

'ba2k+lβ2k+1 badH-σι A Λ σd .

By the assumption on L there is a positive orthonormal base in which (baβ)
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diagonalizes to baβ = baδaβ with ba > 0. In this base, the coefficient of σx A
• Λ σd in (4.10) is of the form

(4-11) ZCra+l..,d-brit+1---brd

with

/Λ Λ

Thus it suffices to show that all Cΐ2k+l...rd > 0. For this, consider the symmetric
bilinear form R on /\2 V defined by (4.7). In a canonical way, R induces a
unique symmetric bilinear form Rk on the tensor product (/\2 F) ® . (g) (f\2 F)
(& factors) such that

(4.13) 7 U Z , ® ® £*, Σi <8> <8> Σ*) = Λ ( ^ , Σi)

for all Xk, Yk e Λ2 F. The positive semidefiniteness of R extends to Rk. Now
a calculation shows that (4.12) is just the value of Rk at (E, E) where

(4.14) E: = Σ eai...a2kr2k+1..,d(Xai A XJ ® ® (Zα 2 f c_x Λ 2T.J .

Hence the assertion.
4.2.1.1.1. Supplement. For k < 2, ί/ze assumption "01 positive semide-

finite" can be replaced by "0t positive semidefinίte on the decomposable
elements of f\2V".

Proof. It follows from Chern [6] by writing (4.12) explicitly.
From (3.42) and Corollary 4.2.1.1 we finally obtain, observing 0 < 2k <

d< m - 1:
4.2.2. Theorem. Let C be a compact locally convex subset of M. If

dim M < 6, and the sectional curvature of M is nonnegative over all points of
dC, then

(4.15) f γ<χ(C) .
Jc

For dimM > 7, (4.15) holds if the curvature operator of M is positive semi-
definite over all points of dC.

4.2.2.1. Remark. In the second case, the assumption on the curvature
operator could be replaced by what follows from it, namely, that the algebraic
Hopf conjecture holds for all powers of 0t along dC.

4.2.2.2. Corollary. For a 4-dimensional complete noncompact rieman-
nian manifold with nonnegative sectional curvature, the total curvature exists
and satisfies
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(4.16) 0< ί γ<χ(M) .
J M

This generalizes the well known result of Chern and Milnor [6] to the non-
compact case.

4.2.2.3. Corollary. For a complete noncompact riemannian manifold of
arbitrary dimension with positive semidefinite curvature operator, the total
curvature exists and satisfies (4.16).

The proofs of these corollaries follow by applying Theorem 4.2.2 to the sets
of an increasing filtration of M by totally convex (in particular, locally convex)
sets whose existence is a fundamental result of Cheeger and GromolΓs structure
theory [3]. Their results also imply the existence of χ(M) if M is complete and
has K > 0.

Corollaries 4.2.2.2 and 4.2.2.3 have been announced in a previous version
of this paper (1971). In the meanwhile, similar results have been obtained by
W. A. Poor [16] by using a globally defined geodesically convex function on
M (cf. [3]) and an approximation theorem of Greene and Wu [9]. However,
Theorem 4.2.2 cannot be deduced in this manner.

4.2.2.4. Corollary. Let M be isometricly immersed as a hypersurface in
a fiat manifold M. If M is complete and noncompact and has nonnegative
sectional curvature K>0, then

(4.17) 0< f γ<χ(M),
J M

including the existence of all quantities.
For the case M = Rm+\ see Wu [21]. The proof follows at once from the

Gauss equation

(4.18) R{X ΛY,WΛZ) = <£(X, W), B(Y, Z)> - <B(X, Z), B{Y, W)> ,

where B is the second fundamental form of M in M. By combining this with
Weinstein's result [20] we obtain, since χ(M) = 1 if K > 0 and M open [10],

4.2.2.5. Corollary. Let M be isometricly immersed with codimension 2
in a flat manifold M. If M is complete and noncompact and has strictly posi-
tive sectional curvature K > 0, then the total curvature exists and satisfies

(4.19) 0 < f γ<
J M

1
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