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SURFACES OF CONSTANT MEAN CURVATURE IN
MANIFOLDS OF CONSTANT CURVATURE

DAVID A. HOFFMAN

0. Introduction

An immersed surface in a three-dimensional Euclidean space E* has constant
(scalar) mean curvature if the length of the mean curvature vector H is con-
stant. An arbitrary isometric immersion M” =—» M"** of Riemannian mani-
folds is said to have constant mean curvature if H is parallel in the normal
bundle of the immersion (for definitions see § 1). This condition is stronger
than the requirement |H| = constant c. In the case of immersions of surfaces
into manifolds of constant curvature we generalize many known facts and
theorems about surfaces of constant (scalar) mean curvature in E®. The main
theorems of this paper were announced in Hoffman [7], and we refer the reader
there for a more lengthy introduction and statement of results. What follows
is a brief sketch of the principal results.

To a surface of constant mean curvature given in conformal coordinates we
associate an analytic function ¢ constructed out of the second fundamental form
in the mean curvature direction (Lemma 2.1). This was first done for surfaces
in E* by Heinz Hopf [8]. Under certain additional assumptions, the same
procedure works for other normal directions. These functions have direct
geometrical meaning which is discussed in § 2. In particular they are used to
prove Theorem 2.2(b): The only genus zero surfaces of constant mean curva-
ture in E* or the standard 4-sphere S* are the standard 2-spheres.

Theorem 3.1 gives a local characterization of constant (nonzero) mean
curvature immersions which have constant Gauss curvature; they are shown
to be pieces of 2-spheres or products of 1-spheres, S'(r) X S'(p), 0 <r < oo,
0 < p < oo. Theorem 4.1 classifies complete surfaces of constant mean curva-
ture in E* and S*, whose Gauss curvature does not change sign; they must be
minimal surfaces, 2-spheres or S'(r) X $(p), 0 <r < 00,0 < p < oo.

In §5 we use the analytic functions of Lemma 2.1 to construct local ex-
amples of surfaces of constant mean curvature in 4-dimensional manifolds of
constant curvature (Theorem 5.1). In these examples for the case of immersions
into E* or S*, the surfaces do not lie minimally in hyperspheres of E* or S*
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(Corollary 5.2). Except for products of circles S'(r) X S'(0), r # p, these are
the first known examples of such surfaces.

1. Preliminaries

Let M* —> Mn** be an isometric immersion of Riemannian manifolds of
dimension n and n + k respectively. If ¢, denotes the metric tensor on
TM™+*, then that of TM" is given by i* ({, >). We identify M™ with i(M™) and
TM" with i (TM™) C TM"**, deleting reference to i and its induced maps
wherever possible. We consider TM"** restricted to the base space M”. A
vector field X on M, i.e., a member of I'(TM"), the space of smooth sections
of TM™, is also a section of TM"**. Let [ ]7 denote projection in TM"** onto
TM. Then the normal bundle NM" is the bundle whose fibre at p is NM? =
{X e TM™**|[X]” = 0}. We let [ ]* denote projection onto NM™,

In the following, let X,Y,Z ¢ I'(TM™). The Riemannian connection F of
M is related to the Riemannian connection 7 of M (we suppress superscripts
n and n 4 k unless we wish to emphasize dimension) by

(1.1) FxY] =7gY .

Definition. B(X,Y) = [FzY]". B is called the second fundamental form
of the immersion and is a section of I'(TM ® TM, NM), the bundle of bilinear
mappings form TM to NM. Let N e I'(NM).

Definition. A is a section of I'(NM ® TM, TM) defined by

(1.2) (AN, X),Y> = —(B(X,Y),N> .

NM inherits a metric from TM and is a Riemannian vector bundle over M.
Its Riemannian connection D is the connection defined on NM by

DxN = [FxNI¥, Xel'(TM), Ne I'(NM) .

D is easily seen to be compatible with the metric of NM. Putting together the
above decompositions, we have

Given Riemanniann vector bundles E;, i = 1, - - ., m + 1, with connections

D? the bundle # (X7, E;, Epnyy) d;f% of fibre linear maps has a natural

Riemannian structure I/ defined as follows.
Definition. If B is a section of 5, and X ¢ I'(TM), then V xB is the section
of s given by

(14)  PxB(,++, ) =DF(B(, ) — 3 B(, -, D= ) .
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The curvature associated with 7,7 and D are denoted R, R and R respec-
tively. For example R is given by

1.5) R(X,Y)N = DyDyN — DyDxN — Diy yiN .

The curvatures are related to B and 4 by the Gauss and Codazzi-Mainardi
equations

(i) [RX,Y)Z]" =R(X,Y)Z + AB(Y,Z),X) — AB(X,2),Y),
(i) [R(X,Y)NI¥ = R(X,Y)N + B(AN,Y),X) — BAWN, X), Y),
(i) [RX,Y)ZI¥ =VxB(Y,Z) — VyB(X, 2),
(iv) [R(X,Y)NI" =VzAN,Y) — VyAN, X),

(1.6)

where X,Y,Z e I'(TM), N ¢ F(iVM).
Proposition 1.1. Let M — M be an isometric immersion. For fixed X,
Y e I'(TM), R(X,Y) leaves TM invariant & VZ € I'(TM),

VyB(Y,Z) =VyB(X,Z) &5 YN e I'(NM),
VFyAN,Y) = VyAN,X) & R(X,Y) leaves NM invariant.

Proof. The first and third equivalences follow from (1.6) (iii) and (iv).
The second equivalence follows from the fact that the adjoint of R(X,Y) is
—R(X,Y). Hence the first and fourth statements are equivalent. More directly,
the second equivalence follows from the easily verified equality <V yB(Y, Z), N>
= FxAWN,Y), Z).

If M has constant sectional curvature ¢, then R(X, Y)Z = c¢(KY,Z>X —
{X,Z>Y). In this case, the first and hence all the conditions of Proposition 1.1
are satisfied, and we may rewrite (1.6) as

-

) KY,Z>X — (X,Z>Y)
=RX,Y)Z + AB(Y,Z2),X) — A(B(X,2),Y),
(1.7) i) [R(X,Y)N]¥ = R(X,Y)N + B(A(N,Y),X) — B(ANN, X), Y),
iii) VxB(Y,Z) = VyB(X, Z), or equivalently
iv) FxANN,Y) =V AN, X).

Let F = {e,, - - -, €,,} be an orthonormal framing of TM defined in a neigh-

borhood of p e M. F is said to be adapted to M if {e,, - - -, e,} frames TM.

Given coordinates (¢, - - -, u™) on M with coordinate vector fields U; = a/ou?,

we shall also consider adapted coordinate framings of TM given by

{U,---,0,} U{e}, n + 1< a<n+ k, where {e,} is an orthonormal fram--

ing or NM. In this and what follows 1 <i<n,n+ 1 <a<n + k.
Definition. For an adapted framing of TM,
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1.8) U = <B(ei, ej) > = —<A(€a, e;), ej> .
Similarly, for an adapted coordinate framing,
(1.9) Ly, ¥ (B, Uy, e> = —(Ale, U, U,> .

For fixed @, the matrices (13;) and (Lg,;) are the second fundamental forms in
the e, direction. In the case where e, is parallel in NM, i.e., Dye, =0,
VX e I'(TM), equations (1.7) take on decidedly classical appearance :

Proposition 1.2. Let M?=—> M"*¥(c) be an isometric immersion, where
Mn+%(c) denotes an (n + k)-manifold of constant curvature c. If {U,, - - -, U,}
U{e.} is a coordinate adapted framing such that one of the e,, say e, is
parallel, then

(1.10) (Li); — (L), Z I, Ly — 'Ly,
and
(1.11) Zi gITLsLy — gLy, =0

foralli,j,k=1,---,n, f=n+1,-.-,n+ k, where I'}; are the Christoffel
symbols, and VUin N ERY

Proof. For (1.10) use (1 7) (iv) with X =U;, Y =Uj, N = e,,. The
fact that e,, is parallel implies

VUiA(e%, UJ) = VUi(A(e“o’ Uj)) - A(eao9 VUiU.i) .

Substitution of (1.9) will complete the proof. Equation (1.11) follows in a
similar fashion from (1.7) (iii) using the fact that e, parallel implies
R(U,;, Uj)eaa = 0.

Remark. (1.10) is a generalization of the classical Codazzi equation for

surfaces.
Definition. For an isometric immersion M® = M™*®_ the mean curvature

vector field H Y Tr B /n. In terms of adapted or coordinate framings,

=i2 :l}"_‘ g¥Le, , n+l1<a<n+k.
n i ni

i,

Definition. M =—> M is said to have constant mean curvature if H is
parallel, i.e., if DyH = 0, vX e I'(TM). Since D is a Riemannian connection,
we must have X |H[P = 2{DyH, H). This equality (all but) proves the follow-
ing observations:

1. H is parallel = |H| is constant.

2. If H+ 0, H is parallel & |H| is constant and H/|H| is parallel.
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3. If codimension k = 1, H is parallel & |H]| is constant.

We remark briefly that constant mean curvature may be expressed in terms
of Cartan forms as follows. If {e;} U {e,} is an adapted framing with e,,, =
H/|H| and {0’} are the dual 1-forms on M, then de, = wle, + wfe, where
{0}, 1 <i, k < n are the connection forms and of = 50", 1 <i<n, n +
1 <a<n+ k. Similarly, de, = —wke, + wfe; where {0f}, n + 1 <o, B <
n + k, are the torsion forms of the immersion. By observation 2 above, H is
parallel & > 7, 2% is constant and 0%, =0, n + 1 << n + k.

For closed hypersurfaces M™ in E"*!, constant mean curvature is equivalent
to requiring the n-dimensional ‘““area” of M™ to be stationary with respect to
variations which leave fixed the (n 4+ 1)-volume of the part of E**! enclosed
by M™. This condition for hypersurfaces can also be stated in a local manner
(see Hopf [8, p. 83]). For immersions with arbitrary codimension in E"*F,
Ruh and Vilms [15] have shown that constant mean curvature is equivalent to

the requirement that the Gauss map into G(n, n + k) be harmonic in the sense
of Eells and Sampson [4].

2. Surfaces with constant mean curvature

We shall now consider a surface M? isometrically immersed in M?**¥(c), a
(2 + k)-manifold with constant sectional cuavature ¢. Without loss of generality
we many assume that the immersion is given locally in conformal coordinates
(u', u?), so that ds* = E[(du')* + (du?)?], (.e., <U;, U;> = E§;;). Let z = u*
+ iu*. To the coordinate framing {U,, U,} there is a naturally associated adapted
framing {e; = U?/ v F}. For a unit normal section e, € I'(NM),.

oge def .

Definition. 0(2) = (Ly — Lg) — iLg,

(or equivalently ¢, = E(3(4f, — 45,) — i25,) since by (1.9), Ly; = (B(U;, U, e,>
= E"(Ble;, ep, e,)).

Lemma 2.1. Let M?>=—> M***(c) be an isometric immersion given locally
in conformal coordinates (u*, u*) with conformal parameter E. Let e, be a unit
section of NM which is parallel.

(@) If ET'(Ly, + Lg) = (A5, + 23) is constant, then ¢* is an analytic func-
tion of z. In particular, i) if H # 0 is parallel and e;= H [|H|, then ¢, is analy-
tic; ii) if e, satisfies {e,,Hy = 0, then ¢, is analytic.

(b) If e; e I'(NM) is any other unit section and {e,, e,y = 0, then ¢, = 0
or ¢, = fo, where f is a smooth function of z with possible isolated poles.

(c) If e, and e, are parallel unit sections of NM both of which satisfy the
hypothesis of (a), then one is a (real) constant multiple of the other.

Proof. (a) In conformal coordinates g = §,;/E. Moreover the Christoffel
symbols are given by

(21) Fil"rﬂ:"F;ZZ%El/E; %2:F§1:_Ff1=%E2/E~
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Equation (1.10) becomes (for i = j=1, k =2andi =k =1, j = 2, resp.)

(2 2) (Lfl 2 (Lf2)1 == %EZ(Lfl + ng) )
(sz 1 (ng)z = %EI(LfI + ng .

Since (Lg; + Lg)/E is constant by assumption, (2.2) can be rewritten as

{%(Llul - ng)}z - (sz)z =0 P

(2.3)
By — Lyt + (Ly), =0

These are the Cauchy-Riemann equations for ¢,. Statement (i) follows from
observation 2 of § 1 and the fact that |[H| = }E-*(L}, + L3,). Statement (ii) is
true since A, + A5 = (tray) = {trB,e,> = (2H,e,> = 0.

(b) In conformal coordinates, equation (1.11) is

2
2.4) ( S Le L — L,‘;1L§2) / E=0.
k=1

If ¢, # O, then ¢y/0, = ¢;3./|¢.[. But

Im (94¢.) = (Re @,) Img;) — (Im &,) (Re ;)
= Z L;1L£2 — Ll =0 by 2.4 .

Therefore f = ¢,@./|¢.[ is real and smooth and has only isolated poles since
¢, is analytic.

() If ¢, = ¢, =0, there is nothing to prove. Without loss of generality,
assume ¢, % 0. Then by (b), ¢,/¢, is real with possible poles. But it is mero-
morphic since ¢, and ¢, are both analytic. Hence ¢,/¢, is a (real) constant.

Before using Lemma 2.1 to prove a generalization of Hopf’s theorem on
closed surfaces of constant mean curvature in E3, we make some remarks about
the functions ¢,. In this and what follows we assume that H = O and set e,
= H/|H|. _

Definition. M"™<=—> M"*k is pseudo-umbilical at p if (A%*') = 29;; at p.
M"* = M*** is totally umbilical if M" = M"™** is pseudo-umbilical and
25 =0, a>n 4+ 1. A point where ¢, is real is a point where (Lg;) and (15;)
are diagonalized. A zero of ¢, is a point where the eigenvalues are equal. If
e, = H/|H|, then zeros of ¢, are precisely the pseudo-umbilic points of the
immersion. Lemma 2.1 (a) (i) implies that an immersion with constant mean
curvature is either everywhere pseudo-umbilic or has isolated pseudo-umbilic
points. Part (b) implies that, away from pseudo-umbilic points, one can simul-
taneously diagonalize the second fundamental forms in every direction of a
normal framing {e,, - - -, €,,,}. Part (c) says that, under the added assumption
that e, is parallel, (2Z,) is completely determined by (23,).

Theorem 2.2. (a) A closed oriented surface M* of genus O immersed in
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M?*¥(c), ¢ > 0, with constant nonzero mean curvature is pseudo-umbilical
and lies minimally in a hypersphere of radius (H} + ¢)~%.

(b) If k = 2, then M? is a small 2-sphere of radius ((H}f 4 ¢)~*.

Proof. (a) In a neighborhood of each p ¢ M* we consider the immersion
to be given conformally. Let ¢; = H/|H|. By Lemma 2.1 (a), ¢, is analytic.
Since ¢, transforms quadratically, the differential @, which in local coordinates
is given by ¢,dz’ is well defined.

M? is a Riemann surface via the local conformal structure and the definition
of z. Since M? is of genus 0, @, = 0. Hence in local coordinates, ¢, = 0. By
the remarks preceding this theorem, this means the immersion is pseudo-
umbilical at each point. It is then straightforward to show that M*lies minimally
in some hypersphere of radius ((H + ¢)7%. In fact, an immersion M" =—>
Mr+2(c), ¢ > 0, with constant nonzero mean curvature is pseudo-umbilical
& M™ lies minimally in some hypersphere of M™**(c). (To make sense of
this in case ¢ > 0 we take as model for M***(c), S**¥(1/ v/ ¢) considered as
a hypersurface in E****!, Hyperspheres are then intersections of S”** with af-
fine (n 4+ k)-planes in E**%+1) This result is proved in [6]. The Euclidean case
of the theorem for surfaces occurs in Chen [2] and Ruh [14].

(b) In a neighborhood of each p ¢ M?, let e, be a smooth unit section of
NM? such that {e;, e,> = 0. Since |e,| = 1, D e, = w(X)e for some 1-form w.
But

0= X<e3> e4> = <Dze4’ e3> + <Dze4’ e3> + <Dxes, e4> = o(X) .

The second equality follows from the fact that D e, = 0. Hence D, e, = O,
i.e., e, is parallel. By Lemma 2.1 (a), ¢, is analytic. Repeating the argument
of (a) of this proof shows ¢, = 0. Since 23, + 23, = O (see proof of Lemma 2.1
(a) (i1)) we must have 2;, = 0, 1 <i, j < 2. Hence the immersion is totally
umbilic. It is well known that totally umbilic manifolds are pieces of spheres.
In our case we need only observe that by (a) of this theorem, M? lies in a 3-
sphere of radius (H[ + ¢)~* in such a way that e, is its unit normal in that
sphere. Because 4;; = 0, it is totally geodesic and must then be an equatorial
2-sphere of this 3-sphere.

Remarks. 1. Theorem 2.3 (b) is a natural case of a more general result
about surfaces in M?**(c) with constant nonzero mean curvature and normal
bundles which admit framings {e; = H/|H]|, e,, - - -, e,,} such that each of the
e, is parallel. The proof of Theorem 2.2 (b) shows that such a surface of genus
0 must be a standard 2-sphere. (See also Proposition (3.3).)

2. Minimal surfaces (more generally manifolds) in Euclidean spheres give
examples of surfaces (submanifolds) with constant mean curvature in Euclidean
space. The examples of Lawson [12] of compact minimal surfaces in S° of
every genus are also examples of surfaces of constant nonzero mean curvature
in E*. Thus there are compact surfaces of constant mean curvature of every
genus in E*.
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3. It is important to know that minimal surfaces in hyperspheres are not
the only examples of surfaces of constant mean curvature. In § 5 we prove the
existence of a large class of surfaces in E* and S$* which have constant mean
curvature but do not lie minimally in hyperspheres.

3. Surfaces with constant mean curvature and
constant Gauss curvature

In this section we classify immersions M?=—» M*(c), ¢ > 0, which have
constant nonzero mean curvature H and constant Gauss curvature K. For
¢ > 0 we take as a model for M*(c) the hypersurface

S1/vc) ={XeE||XF=1/c})CE".

By a standard product immersion of S'(p) X S'(r) in E* we mean the product of
of two Euclidean plane circles (of radii p and r respectively). p may take on the
value - oo, so this includes right circular cylinders. By a standard product im-
mersion in M‘(c) we mean an immersion M?=—> M‘(c) ~ S'(1/+/ ¢) C E*
which lies in some affine 4-plane /I C E° and as such is a standard product
immersion in the Euclidean sense. In particular, standard product immersions
into 4-spheres lie in great 3-spheres if // passes through the origin, and in small
3-spheres otherwise.

Theorem 3.1. Let M? =—> M*(c) be an isometric immersion with constant
nonzero mean curvature and constant Gauss curvature K. Then K = 0 or K =
|HE + c. If ¢ > 0, then M* is a piece of a product of circles (K = 0) or a piece
of a 2-sphere (K = |H}f + ¢).

Proof. The theorem follows from Propositions 3.3 and 3.4.

Lemma 3.2. Let M>=—> M***(c) be a conformal immersion with confor-
mal parameter E. Let K’ = K — c be the relative curvature of the immersion,
and {e,, - - -, e,,} an orthonormal framing of NM*. Then

(3.1 EXH} — K) = “gl%l2 q—gfv .

If |[Hf — K’ + 0, then

_ _ Alogly/(HP — K)]

3.2
G2 4p(HP — K)?

Proof. (3.1) follows from the Gauss equation (1.7) (i) and the definition of
K:

K = E"%XR(U,, U)U,, U,> .

Equation (3.2) follows from (3.1) and the intrinsic equation for K:



SURFACES OF CONSTANT MEAN CURVATURE 169

K= —{E'4logE .

Proposition 3.3. Let M?> =—> M***(c) be a conformal immersion with con-
stant nonzero mean curvature and K = constant. Suppose further that {e; =
H/|H|, e, - -,e,,;} is an orthonormal framing of NM? such that each e, is
parallel. Then either K=|Hf +c or K=0. If K=|H} +c and ¢ >0,
then M? is immersed as a piece of a standard 2-sphere.

In particular, if M? =—> M*(c), ¢ > 0, has constant nonzero mean curvature
and K = constant, then either K = |H[ + ¢ and M? is a piece of a sphere or
K=0.

Proof. 1If K=#|H} +c, then |[Hf —K’#£0 and by (3.1) =3 |¢,[#0.
Thus at least one ¢,, say ¢,,, is nonzero. By Lemma 2.1 (a) and (¢), ¢, = k.0,
where k, is a real constant. Hence y = (3], k2) |¢,, . Therefore logy is har-
monic since ¢,, is analytic. But (3.2) implies K = 0. If K = |H* -+ ¢, then by
(3.2) » = 0 and consequently each ¢, = 0. Therefore the immersion is totally
umbilic and hence a piece of a 2-sphere. q.e.d.

The special case M?=—s M*c), ¢ > 0, follows from the above and the
proof of Theorem 2.2 (b) where we have shown that if e, is a unit normal
section such that {e;, e,> = 0, then e, is parallel.

Proposition 3.4. Let M*=—> M*(c), c > 0, have constant nonzero mean
curvature, and assume K = 0. Then M? is a standard product immersion of
S'(r) X S'(p), where |H = pt 4 i ,

Proof. Since K = 0, M? is isometric to the plane, and we may choose con-
formal coordinates locally on M? with E = 1. As usual, let {e; = H/|H]|, e,}
be a normal framing.

Case A: ¢, = 0. Then the immersion is pseudo-umbilical, and by the proof
of Theorem 2.3 (a), M? lies minimally in some 3-sphere of radius 1/|H|. By a
result of Lawson [12] a minimal surface in $*(r) with K = 0 must be a piece
of the Clifford torus S'(v/ T/2) X S\W'r /2) in $(r). Hence the immersion is a
standard product immersion. One can also obtain this result by a method
similar to

Case B: ¢, = kp,. By (3.1), |Hf — K' = |H} + ¢ = (1 + k) |¢,f, and
|, is constant. Therefore ¢, is constant, and after a possible rotation of coordi-

nates ¢; may be assumed to be real. If ¢, def 7, then

— _ (Hl + 7 0 . |HP + ¢
3.3 By =@y = ), p=Mite,
(3.3) @) = Ly 0 H — 7 7 Sy
since 23, + 23, = 2|H|. Since A, + 4, =0,
k 0
3.4 P =(T )
(3.4) (13 0 _k

Now assume ¢ = 0 and therefore M* — E*.
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(i) If k=0, then 2{; = 0. If X e ['(TM?), then

Vye, = A(e,, X) + D,e, = D,e, by (1.8)
=0 since e, is parallel .

Therefore e, is a constant vector in E*. Let pe M?. If II, = {X ¢ E*|{x — p,e,>
= 0}, then it follows that M* lies in /7;. As a surface in this 3-dimensional
Euclidean space, its unit normal is e,. Furthermore (3.1) determines y as
+|H|. Therefore by (3.3),

3.5) () = (2"’ ' 0) :

0O O

and since E = 1 we have the familiar second fundamental form of a right
circular cylinder. By the uniqueness theorem for hypersurfaces, the immersion
must be a right circular cylinder S'(1/|H|) X S'(c0).

(ii) If k +# 0, the equations

a(H| + ) + bky =0,
—aky + b(H| — ) =0, a@+b=1,a>0

can be solved uniquely for a and b since |[Hf — 7* + k** = K by (3.1) and
K = 0 by assumption. Let (é,, €,) be a new framing defined by

(3.6) é, = ae, — be, , é, = be, + ae, .

Both &, and &, are parallel since e, and e, are, and their second fundamental
forms are given by
5 0 0 def (0 O
- = )
B =l aqui— i = o w,
) = (b(]H[ + Dk 0) def (W; 0) .
Y 0 0 0 0

3.7

It is now a straightforward matter to verify that the immersion is in fact a
product of circles. Toward that end we first notice that U, A\ &, is a constant
plane in E* since

0.

o (U,NE) =W,8,\N& + U,N(—W,U,) =0 .

Similarly U, A &, is a constant plane. These 2 planes are orthogonal. Futher-
more for fixed u? (resp. u'), the immersion is a circle of radius 1/ W4 (resp.
1/W,) in the plane U, A &, (resp. U, A\ &;). This clearly gives the immersion
as a product of circles.
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All that remains to complete the proof of this proposition is to study (i) and
(ii) for the case ¢ > 0. We do that by reducing the case to the Euclidean case
c=0.

Lemma 3.5. Let M?>=—> Sr) be an immersion with nonzero constant
mean curvature and K = 0. Then M? lies in some small 3-sphere of S*(r),
which is M* = S*(r) N II*, where II* is an affine 4-plane.

Proof. Equations (3.3) and (3.4) give (2;) and (2};) as constant, diago-
nalized matrices of a specific form. Let e; be a unit normal vector field to
S*(r) = E°. Restricted to M? = S*(r) = E®, e, is still a unit normal vector
field and 2}; = d;;/r, i,j = 1,2. We can find real constants a, b, ¢ such that

(3.8) a(23;) + b)) + c(2) =0, ad+b4+ct=1.

Let é = ae; + be, + ce;,. € is parallel since e, e,, ¢; are parallel and a, b and ¢
are constants. Equation (3.8) says that the second fundamental form in the &
direction is identically zero. This implies that & is a constant vector in E*. To
wit,

Vyé=—A@,U)+Dyé=0,

since 4;; =0 and & is parallel. For p e M?, let II*={X ¢ E*|{X —p, &> =0}.
Clearly M* C II*.

Remark. Proposition 3.4 also follows from Erbacher [S, Theorem 1].

4. Complete surfaces with constant mean curvature

In this section we prove a generalization of a theorem due to Klotz and
and Osserman [11] which states that a complete surface in E* with constant
mean curvature and Gauss curvature which does not change sign is a minimal
surface, a sphere or a right circular cylinder.

Theorem 4.1. A complete immersed surface M*=—s M*(c) with constant
mean curvature and Gauss curvature K which does not change sign must be
minimal (H = 0), a sphere of radius (HP + ¢)~* or a product of circles S'(r)
X SU(p), 0 < r < o, 0< p< o, with the standard product immersion.

Proof. By observation 1 of § 1, |H| is constant, so either H = 0 or H has
no zeros. Henceforth we assume H = 0 and choose a normal framing {e, =
H|/|H|, e}. In local conformal coordinates ds* = E[(du')* 4 (du?)*], the func-
tions ¢, and ¢, of Lemma 2.1 are analytic functions of z = u' 4 iu*. Covering
M:? by local conformal charts induces a Riemann surface structure of M.

Case 1: K < 0. In this case K’ = K — ¢ < 0. By (3.1) we have in each
local chart

“.1) 7=lp:f +lof = E(HF — K') >0 .

By Lemma 2.1 (c), either ¢, = ¢, = 0 or one is a constant multiple of the
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other. Therefore log E*(H[' — K’) = log is harmonic. Let d§* = v 7 [(dut)?
+ (du®?]. The Gauss curvature K of this new metric is given by

“4.2) K= —1yidlogy/y =0,

since logy is harmonic. Therefore d3? is a flat metric conformally equivalent
to ds*. By a standard argument the simply connected covering surface of M? is
conformally equivalent to the plane. On M? the function log(v/ 7 /E) is a
globally defined function, and is bounded below by log|H|> — o due to (4.1).
Moreover, it is superharmonic since

Adlog (W 5 JE) = dlog/ y — AlogVE
= —Alog/E by (4.2)
=EK<O0 since K <0 .

Lifting log (4/ 7 /E) to the simply connected covering space of M? we have a
superharmonic function bounded below on a surface which is conformally
equivalent to the plane (parabolic). Therefore log (v 7 /E) is constant. This
implies 5 = |H* — K’ and hence K are also constants. Using conformal
equivalence with the plane again, K must be identically zero. By Theorem 3.1,
M? must be immersed as the standard product of circles S'(r) X S'(p). This
completes the proof if K < 0.

Remark. By Proposition 3.4 and its proof, is the case where ¢; = 0 M? is
a product of circles with r = p (minimal Clifford torus in a hypersphere), while
in the case where ¢, # 0, ¢, = 0, M? is a right circular cylinder (r = o). If
neither ¢, nor ¢, are identically zero, M?is S'(r) X S'(p) with r #= pand r # oo.

Case 2: K> 0. By a theorem of Huber [9], a complete surface with
K >0 is either compact or parabolic. Suppose M? is compact. If K =0
we are done by Proposition 3.4. If not, M? must be of genus 0 by Gauss-
Bonnet, and is a sphere of radius (H|?> 4 ¢)~* by Theorem 2.3 (b). Suppose
M? is parabolic. We claim that M? must then be flat (K = 0). To see this,
observe that » = E*(H|' — K’) is not identically zero; for otherwise K = |HJ
+ ¢ >0, and then M? would carry a complete metric of constant positive
curvature, an impossibility since M? is parabolic. As in Case 1, logy is
harmonic. Therefore

0 = dlogy = 2[4logE + Alog (v 7 |E)]
= 2[—2KE + dlog (v 7 /E)]
<2(dlog(v/ 5 /E)  sinceK>0.
Thus log (v 7 /E) is subharmonic, and is further bounded above since

log (v 7 /E) = log (Hf — K")* > log (H + c)*. Therefore 4/ /E is constant
since M* is parabolic. By the definition of 7, K is also constant. As is Case 1,
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K = 0 since M? is parabolic. Hence Proposition 3.4 completes the proof.
Remark. The special case of pseudo-umbilical immersion in E* with con-
stant mean curvature has been treated by Itoh [10].

5. A local existence theorem for surfaces of constant
mean curvature in M*(c)

In the previous sections the only examples of surfaces with constant mean
curvature have been products of circles or minimal surfaces in hyperspheres.
The following theorem shows that there are indeed a good many more
examples.

Theorem 5.1. Let ¢ = 0 be an analytic function of z = u' + iu® defined
in a neighborhood of the origin in the (u*, u*) plane. Let h and « be real con-
stants with h > 0. Then there exist a neighborhood %, of the origin, a con-
formal metric E(u', u?) defined on %, and an isometric immersion (%, E) =—>
M?*(c) with the following properties:

The immersion has constant mean curvature. The mean curvature vector
field H has length |\H| = h. If {e, = H/h, e} is an orthonormal framing of
N%,, then ¢, = ¢ and ¢, = ap.

Proof. Suppose such a metric E and such an immersion existed. By (3.1)
we must have

.1 E'l(h* + o) — K] = (1 + a)|of ,

where K = —1E~'4logE. The existence of a positive E satisfying (5.1) is
equivalent to the existence of a positive E which is a solution of

(5.2) AlogE = 2{(l + a®) |pPE-* — (K + C)E} .

It is therefore a necessary condition (for the existence of an immersion as stated
in the theorem) that a solution of (5.2) exist.

Claim. There exists asolution of (5.2) defined in a neighborhood of the origin.

We proceed with the proof of the theorem modulo the claim. (A proof of
the claim follows at the end.) Let E be a solution of (7.3) in a neighbor-
hood %, of the origin. Consider %, with the conformal metric E. Let N = %,
X R?. We consider N as the total space of a vector bundle over (%,, E). With
the usual inner product on R? N is a Riemannian vector bundle endowed with
the usual connection on R* which we denote by D. Let {e;, ¢,} be an orthonor-
mal parallel framing of N. Such a parallel framing clearly exists since D is the
usual flat connection on R?. Let B be a section of #(T(%,, E)Q T(%,, E), N)
defined as follows. If U; = 9/du; are the coordinate vector fields on %,,

B(U,, U) = (h + Rege, + (@Reo)e, ,
(53) B(Uz, Uz) = (h - Re§0)€3 — (aRego)e4 ,
B(U,, U,) = (—Img)e, — (aImo)e, .
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By a theorem of Szczarba [18] there exists an immersion of (%,, E) into
M?*(c) with N as normal bundle and B as second fundamental form if and only
if E and B satisfy the Gauss and Codazzi equations (1.7). (These equations
are clearly necessary. Their sufficiency in the codimension-one case is the clas-
sical theorem on existence and rigidity of hypersurfaces.) The Gauss equation
(1.7) (i) reduces this case to

(5.4) cE* = KE* + E°[W* + (1 + &) o[l ,

which is an immediate consequence of (5.1). The Codazzi equation (1.7) (iii)
reduces to the Cauchy-Riemann equations for ¢ once one uses the fact that A
is constant and e, and e, are parallel. The second Gauss equation (1.7) (ii) is

R(U'is Uj)ea = B(Uj’ A(eas Uz)) - B(Um A(ea5 Uj)) .

The left-hand side is always zero since e, is parallel. The right-hand side is
seen to be (after a calculation exactly like that in Lemma 2.1 (b)) equal to
Im (x| = 0.

By the aformentioned theorem of Szczarba, there exists an immersion (%,, E)
=—> M*c) with N as normal bundle and B as second fundamental form. We
remark that it is also unique up to isometries of M*(c). Expressing this immer-
sion in terms of the coordinates (u!, u?) yields the conformal metric E. From
the definition of B in (5.3) it is immediate that H = he,; and ¢; = ¢, ¢, = ap.

Proof of claim. Let B=h + ¢, p= (1 + &d|pf and f = logE. By as-
sumption, B is a real constant and 7 is real analytic. We may write (5.2) as

(5.5) f/ou? = —d*f/ou? + 2(ne~/ — Be’) .
If we consider (5.5) with the initial values
(5.6) fO,u) =0, of |ou'(0,u®) =0,

we may assert the existence (and uniqueness) of an analytic solution to this
initial-value problem by the Cauchy-Kovalewski theorem [3, p. 39]. Then E
= e/ will be a solution to (5.2).

Corollary 5.2. Let (%,, E)=—> M*(c), ¢ > 0, be an immersion correspond-
ing to a specified ¢ = 0, a and h > 0 as in Theorem 5.1. Then each of the
following holds:

(i) The image of U, does not lie in any hypersphere of M*(c) as a mini-
mal surface.

(ii) The immersion is a piece of a standard product of circles & |¢/E| is
constant. In particular, if ¢ has zeros, (%,, E) is not immersed as a product of
circles.

(ii) o = 0& %, lies in a 3-dimensional hyperplane or hypersphere as a
surface of constant mean curvature.
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Proof. (i) ,lies minimally in a hypersphere & the immersion is pseudo-
umbilical & ¢, = ¢ = 0. This last condition is prohibited by hypothesis.

(ii) By equation (5.1), K is constant & |p/E| is constant. The immersion
must be a piece of standard 2-sphere or a product of circles by Theorem 3.1,
cannot be a piece of a standard 2-sphere by (i) of this corollary, and so is a
product of circles. In particular if ¢ has a zero, then |$/E| cannot be constant.

(iii) « = 0& B(U;, U)) is always a multiple of e, & the immersion lies in
a 3-dimensional hyperplane (in the case ¢ = 0) or hypersphere (¢ > 0). The
first equivalence follows from the definition of B in (5.3), and the second from

the following lemma by taking as model for M*(c) a hyperplane or hypersphere
in E°.

Lemma 5.3. Suppose M" i) E™** has an r-dimensional distribution 9
in NM™ such that (a) the range of B is in @ and (b) if V is a smooth section
of 9, then DV ¢ @ for all W ¢ I'(TM™). Then M" lies in an (n + r)-plane
II C Er*®,

Proof. Choose V, - .-, V,, differentiable vector fields which span 2. For
coordinates (v, - - -, u"), let X; = 9x/du; be coordinate vector fields, and set
W=XN--- ANX, ANV, A --- AV,. Then conditions (a) and (b) imply

ow |ou* = f W, k=1,.---,n.

For real-valued functions f;. This says that (n 4 r)-vector W spans a constant
(n + r)-plane II. Let p e M*. Clearly the affine (n + r)-plane /7 = IT + p
contains M”*.

Bibliography

[1]1 B.Y. Chen, Minimal surfaces in S® with Gauss curvature <0, Proc. Amer. Math.
Soc. 31 (1972) 235-238.
[2]

, Submanifolds in a Euclidean hypersphere, Proc. Amer. Math. Soc. 27 (1971)
627-629.

[3]1 R. Courant & D. Hilbert, Methods of mathematical physics, Vol. 2, Interscience,
New York, 1962.

[4]1 J. Eells, Jr. & J. H. Sampson, Harmonic mappings of Riemannian Manifolds,
Amer. J. Math. 86 (1964) 109-160.

[51 J. Erbacher, Isometric immersions of Riemannian manifolds into space forms,
Ph.D. thesis, Brown University, 1970.

[6]1 D. Hoffman, Surfaces with parallel mean curvature vector field, Ph.D. thesis, Stan-
ford University, 1971.

[71 , Surfaces in constant curvature manifolds with parallel mean curvature vector
field, Bull. Amer. Math. Soc. 78 (1972) 247-250.

[81 H. Hopf, Lectures on differential geometry in the large, Mimeographical notes,
Stanford University, 1956.

[91 A. Huber, On subharmonic functions and differential geometry in the large, Com-
ment. Math. Helv. 41 (1966-67) 13-72.

[10] T. Itoh, Complete surfaces in E* with constant mean curvature, Kodai Math. Sem.
Rep. 22 (1970) 150-158.

[11]1 T. Klotz & R. Osserman, Complete surfaces in E* with constant mean curvature,
Comment. Math. Helv. 41 (1966-67) 313-318.




176

[12]
[13]
[14]
[15]
[16]

[17]
(18]

DAVID A. HOFFMAN

H. B. Lawson, Jr., Complete minimal surfaces in S°, Ann. of Math. (2) 92 (1970)

335-374.

T. Otsuki, A theory of Riemannian submanifolds, K6dai Math. Sem. Rep. 20

(1968) 282-295.

E. A. Ruh, Minimal immersions of 2-spheres in S*, Proc. Amer. Math. Soc. 28

(1971) 219-222.

E. A. Ruh & J. Vilms, The tension field of the Gauss map, Trans. Amer. Math.

Soc. 149 (1970) 569-573.

J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (1) 88

(1968) 62-105.

B. Smyth, Submanifolds of constant mean curvature, to appear.
R. H.. Szczarba, On existence and rigidity of isometric immersions, Bull. Amer.

Math. Soc. 75 (1969) 783-787, 76 (1970) 425.

UNIVERSITY OF WARWICK
UNIVERSITY OF DURHAM





