DIFFERENTIABLE FUNCTIONS ON BANACH SPACES WITH LIPSCHITZ DERIVATIVES

JOHN C. WELLS

Introduction

In this paper we study those functions in $C^k(E, F)$, (i.e., functions from two Banach spaces E to F having k continuous Frechet derivatives), whose k-th derivative is Lipschitz with constant M. On R^n we construct C^1 functions whose derivatives are piecewise linear with Lipschitz constant M. From this we obtain a Whitney type extension theorem for real-valued differentiable functions on Hilbert space, and show that every Hilbert space has C^1 partitions of unity. We examine the existence of "nontrivial" C^k functions with Lipschitz derivatives on separable Banach space and show that c_0 has no "nontrivial" C^1 function with Lipschitz derivative. We show that the Whitney extension theorem fails for separable Hilbert space by exhibiting a C^3 function on a closed subset of l^2 having no C^3 extension.

We make the definitions:

 $B_{M}^{k}(E,F) = \{ f | f \in C^{k}(E,F) \text{ and } \|D^{k}f(y) - D^{k}f(x)\| \le M \|x - y\| \text{ for all } x, y \},\$ $B^{k}(E,F) = \{ f | f \in B_{M}^{k}(E,F) \text{ for some } M \}.$

As in Bonic and Frampton [2] a Banach space E is said to be B^k smooth if there is a function $f \in B^k(E, R)$ with $f(0) \neq 0$ and support (f) bounded. Then B^{k+1} smoothness implies B^k smoothness, and E is said to be B^{∞} smooth if E is B^k smooth for all k. We briefly summarize some results concerning C^k smoothness of separable Banach spaces. We refer to [2] and Eells [5] for more details.

1. Hilbert space is C^{∞} smooth with C^{∞} norm away from zero.

2. c_0 is C^{∞} smooth with equivalent C^{∞} norm away from zero. Kuiper.

3. A Lebesgue space \mathscr{L}^p is C^{∞} smooth for an even integer p, and C^{p-1} smooth but not D^p smooth for an odd integer p; Bonic and Frampton [2].

4. If E is separable, then E has a norm in $C^{1}(E - \{0\}, R)$ if and only if E^{*} is separable; Bonic and Reis [3].

5. Any C^k smooth separable Banach space has C^k partitions of unity; Bonic and Frampton [2].

In § 2 we prove some basic properties of $B_M^k(E, F)$, the most useful one being that $\{f |||f|| \le b$ on some open subset of $E\} \cap B_M^k(E, F)$ is closed in the

Communicated by J. Eells, Jr., February 11, 1972.

topology of pointwise convergence. We observe from [2] that an \mathscr{L}^p space is B^{∞} smooth for an even integer p and $B^{\lfloor p-1 \rfloor}$ smooth when p is not. We show that c_0 is not B^1 smooth and that every B^k smooth separable Banach space has B^k partitions of unity. These last two results were announced in Wells [10].

The distance function from a convex set is studied in § 3, and we show that if $||x||^2 \in B^1_M(E, R)$ then distance ${}^2(x, A) \in B^1_M(E, R)$ for closed and convex A.

In § 4 we make a cellular decomposition of R^n on which a B^1_M function is constructed with prescribed values and derivatives at a finite number of points. Using these functions we obtain a necessary and sufficient condition for a realvalued function defined on a closed subset of Hilbert space to have a B^1_M extension to all of Hilbert space. One of the properties of this extension implies that every closed subset of Hilbert space is the zero set of a $B^1(H, R)$ function. Thus a nonseparable Hilbert space has C^1 partitions of unity by an easy construction; this result was announced in Wells [11].

In § 5 we exhibit a closed convex subset in l^2 for which there exists no B^2 function satisfying f(A) = 0 and $f(\{x | || d(x, A) || \ge 1\}) \ge 1$. A corollary of this is that the Whitney extension theorem fails for C^3 functions on Hilbert space. We end the section with some open problems.

2. B^k functions and B^k smooth Banach spaces

If f has a j-th Frechet derivative at x, we will let $D^{j}f(x)[h]$ denote the j-multilinear map $D^{j}f(x)$ acting on (h, \dots, h) . A version of Taylor's theorem reads (refer to Abraham and Robbin [1] and Dieudonné [4]):

Taylor's theorem. If $f(x) \in C^k(E, F)$ where E and F are Banach spaces, then

$$f(x+h) - f(x) - \sum_{i=1}^{k} \frac{D^{i}f(x)[h]}{i!}$$

= $\int_{0}^{1} \frac{(1-t)^{k-1}}{(k-1)!} (D^{k}f(x+th) - D^{k}f(x))[h]dt$.

Proposition 1. If $f \in B_M^k(E, F)$, then

(1)
$$\left\| f(x+h) - f(x) - \sum_{j=1}^{k} D^{j} f(x)[h]/j! \right\| \leq M \|h\|^{k+1}/(k+1)!$$

Proof. Immediate from Taylor's theorem.

Proposition 2. $B_M^k(E, F) = \{f \mid 1\} f$ is bounded on some open set, 2) for every finite dimensional linear subspace H, $f|_H(x)$ is continuous, 3) letting $\Delta_h f(x) = f(x+h) - f(x), ||\Delta_h^{k+1}f(x)|| \le M ||h||^{k+1}$ for all x and h in E}.

Proof. Suppose $f \in B_M^k(E, F)$. By the mean value theorem, we have

(2)
$$\begin{aligned} \mathcal{\Delta}_{h}^{k+1}f(x) &= \mathcal{\Delta}_{h}\mathcal{\Delta}_{h}^{k}f(x) = \mathcal{\Delta}_{h}^{k}Df(x+c_{1}h)[h] \\ &= \cdots = \mathcal{\Delta}_{h}D^{k}f(x+c_{1}h+\cdots+c_{k}h)[h] \end{aligned}$$

for some $0 < c_i < 1$. So $||\Delta_h^{k+1}f(x)|| \le M ||h||^{k+1}$.

Suppose that f(x) satisfies the conditions on the right side of (2). For any finite dimensional linear subspace H, find a measure μ_H on H and a $\varphi_{H,n} \in C^{\infty}(H, R)$ with $\int \varphi_{H,n} d_{\mu_H} = 1$, $\varphi_{H,n} \ge 0$ and $||y|| > 1/n \Rightarrow y \notin$ support $\varphi_{H,n}$. Define $f_{H,n}(x)$ by $f_{H,n}(x) = \int f(x + y)\varphi_{H,n}(y) d_{\mu_H}(y)$. Then

$$f_{H,n}(x+h) - f_{H,n}(x) = \int (x+y)(D\varphi_{H,n}(y)[-h] + o(||h||))d_{\mu_H}(y),$$

so

$$\|f_{H,n}(x+h) - f_{H,n}(x) - \int f(x+y) D\varphi_{H,n}(y) [-h] d_{\mu_H}(y) \| = o(\|h\|),$$

and $Df_{H,n}(x)[h] = \int f(x+y)D\varphi_{H,n}(y)[-h]d_{\mu_H}(y)$. Repeating this argument gives $f_{H,n} \in C^{\infty}(H, F)$. Now $\lim_{n} f_{H,n}(x) = f(x)$ for $x \in H$, and

$$\|\mathcal{\Delta}_{h}^{k+1}f_{H,n}(x)\| = \left\|\int \mathcal{\Delta}_{h}^{k+1}f(x+y)\varphi_{H,n}(y)d_{\mu}(y)\right\| \le M\|h\|^{k+1}$$

So by (2) we have $\sup_{x} ||D^{k+1}f_{H,n}(x)|| \le M$ and $f_{H,n} \in B^{k}_{M}(H,F)$, and $D^{i}f_{H,n}(x)$ is uniformly equicontinuous on bounded sets in H for $i \le k$. By the Ascoli-Arzela theorem, there are a subsequence m of n and a $d^{i}_{H}f(x) \in L^{k}_{s}(H,F)$ with $\lim_{m} D^{i}f_{H,m}(x) = d^{i}_{H}f(x)$. Using Proposition 1 and taking $m \to \infty$ we obtain $||f(x + h) - f(x) - \sum_{i=1}^{k} d^{i}_{H}f(x)[h]/i!|| \le M ||h||^{k+1}/(k+1)!$.

For any other finite dimensional H', $d_{H'}^i f(x)[h] = d_H^i f(x)[h]$ if $x, x', h \in H \cap$ H', so we have maps $d^i f(x)$ *i*-multilinear from E to F at each x with

$$\left\|f(x+h) - f(x) - \sum_{i=1}^{k} d^{i}f(x)[h]/i!\right\| \le M \|h\|^{k+1}/(k+1)!$$

Suppose that f is bounded near x_0 . Find δ such that $||f(y)|| \le B$ when $||y - x_0|| \le \delta$. Then for ||h|| = 1 we have

$$\left\|f\left(x_{0}+\frac{\delta hi}{k}\right)-f(x_{0})-\sum_{j=1}^{k}\frac{d^{j}f(x)}{j!}\left[\frac{\delta hi}{k}\right]\right\|$$

$$\leq \frac{1}{(k+1)!}M\left(\frac{\delta i}{k}\right)^{k+1}\leq \frac{M\delta^{k+1}}{(k+1)!},$$

so $\|\sum_{j=1}^{k} (i/k)^{j} d^{j} f(x)[\delta h]/j! \| \leq 2B + M\delta^{k+1}/(k+1)!$. Since the $k \times k$ matrix $A_{ij} = (i/k)^{i}/j!$ is invertible, $\|d^{j} f(x)[h]\| \leq k \|A^{-1}\|(2B + M\delta^{k+1}/(k+1)!)/\delta^{j}$, and so $d^{i} f(x_{0})$ is bounded at x_{0} for $i = 1, \dots, k$. Now $f_{H,m} \in B_{M}^{k}(E, F)$, so $\|D^{k} f_{H,m}(x+h)[h'] - D^{k} f_{H,m}(x)[h']\| \leq M \|h\| \|h'\|^{k+1}$ for $x, h, h' \in H$. Using the fact that $d^{k} f(x_{0})$ is bounded at x_{0} and taking limits over m give

 $d^{k}f(x) \in B_{M}^{0}(E, L_{s}^{k}(E, F)).$ Now $d^{i}f(x + h) - d^{i}f(x) = \lim_{m} D^{i}f_{H,m}(x + h) - D^{i}f_{H,m}(x) = \lim_{m} \int_{0}^{1} D^{j+1}f_{H,m}(x + th)[h]dt.$ By the uniform convergence of $D^{j+1}f_{H,m}(x + th)$ on $0 \le t \le 1$, this is equal to $\int_{0}^{1} d^{j+1}f(x + th)[h]dt.$ Thus $d^{j}f(x + h) - d^{j}f(x) = \int d^{j+1}f(x + th)[h]dt$, and by taking $j = k - 1, k - 2, \dots, 0$ we have $Dd^{j}f(x) = d^{j+1}f(x)$ and $f(x) \in B_{M}^{k}(E, F)$ with $D^{j}f = d^{j}f.$

Proposition 3. Suppose $f_p \in B_M^k(E, F)$ and $\lim_p f_p(x) = f(x)$ for all x in E. If f_p are uniformly bounded on some open set, then $f \in B_M^k(E, F)$ and $D^j f(x)[h] = \lim_p D^j f_p(x)[h]$.

Proof. The $f_p|_H(x)$ are uniformly equicontinuous on bounded sets in a finite dimensional linear subspace H of E, so $f|_H(x)$ is continuous. Also

$$\|\mathcal{\Delta}_{h}^{k+1}f(x)\| = \|\lim_{p} \mathcal{\Delta}_{h}^{k+1}f_{p}(x)\| \le M \cdot \|h\|^{k+1}$$

By Proposition 2, $f \in B_M^k(E, F)$. Using (2) we have $D^j f(x)[h] = \lim_{t \to 0} \Delta_{ih}^j f(x)/t^j$ = $\lim_{t \to 0} \lim_p \Delta_{ih}^j f_p(x)/t^j = \lim_p \lim_{t \to 0} \Delta_{ih}^j f_p(x)/t^j = \lim_p D^j f_p(x)[h]$ by the uniform convergence of $\lim_{t \to 0} \Delta_{ih}^j f_p(x)/t^j$ in p.

Proposition 4 (Inverse Taylor's theorem). Suppose $f: E \to F$ is bounded on some open set, and for all x there are maps $d^{j}f(x)$: j-multilinear from E to F satisfying

(3)
$$\left\| f(x+h) - f(x) - \sum_{j=1}^{k} d^{j} f(x)[h]/j! \right\| \leq M \cdot \|h\|^{k+1}/(k+1)!$$

Then $f \in B_M^k(E, F)$ and $D^j f(x) = d^j f(x)$.

Proof. For any x and h, $||f(x + ph) - f(x) - \sum_{j=1}^{k} p^{j} d^{j} f(x)[h]/j!|| \le M \cdot p^{k+1} ||h||^{k+1}$. Also $\sum_{p=0}^{k+1} (-1)^{p} {k+1 \choose p} p^{j} = 0$ for $0 \le j \le k$, so multiplying the first equations by $(-1)^{p} {k+1 \choose p}$ and adding from $p = 0, \dots, k+1$ give $||\mathcal{A}_{h}^{k+1}f(x)|| = \left\| \sum_{p=0}^{k+1} (-1)^{p} {k+1 \choose p} f(x + ph) \right\| \le M \sum_{p=0}^{k+1} {k+1 \choose p} p^{k+1} ||h||^{k+1}$. Hence by Proposition 2, $f \in B^{k}(E, F)$ and $D^{j}f(x) = d^{j}f(x)$. Suppose $x, h, h' \in a$ finite dimensional linear subspace H, and let $f_{H,n} = \int f(x + y)\varphi_{H,n}(y)d_{\mu_{H}}(y)$ as in Proposition 2. Then $f_{H,n}$ satisfies (3) with $D^{j}f_{H,n} = \int D^{j}f(x + y)\varphi_{H,n}(y)d_{\mu_{H}}(y)$ and so $||D^{k+1}f_{H,n}|| \le M$. Thus $f_{H,n} \in B_{M}^{k}(H, F)$, and $||D^{k}f(x + h)[h'] - D^{k}f(x)[h']|| = \lim_{n} ||D^{k}f_{H,n}(x + h)[h'] - D^{k}f_{H,n}(x)[h']|| \le M ||h|| \cdot ||h'||^{k}$. So $f \in B_{M}^{k}(E, F)$. q.e.d.

BANACH SPACES

By proposition 2 we can characterize $B_{M}^{k}(E, F)$ without mentioning the derivatives.

Even though at every x, $f(x) = \lim_{p} f_p(x)$ in norm, $D^j f_p(x)$ need not approach $D^j f(x)$ in norm as the example $f_n(x) = \langle e_n, x \rangle$ where e_n is an orthonormal basis in l^2 and f(x) = 0 shows.

Corollary 1. For any real number b and open U in $E, X = B_M^k(E, F) \cap \{f ||| f(x) || \le b \text{ for } x \in U\}$ is compact in the topology of pointwise convergence on E to the weak topology on F.

Proof. Let $b(x) = \sup_{f \in X} ||f(x)||$. Then by Proposition 3, $B_M^k(E, F) \cap \{f| ||f(x)|| \le b$ for $x \in U$ is closed in the compact $\prod_{x \in E} b(x) \subset F^E$.

Corollary 2. $B^1_M(E, F) = \{f | f(x) \in C^0(E, F) \text{ and } \| f(x+h) + f(x-h) - 2f(x) \| \le M \|h\|^2 \}.$

Remarks. The class $B^k(E, F)$ may be extended to a class $U^k(E, F) = \{f | f \in C^k(E, F) \text{ and for every } x \text{ in } E \text{ there are a neighborhood } U \text{ of } x \text{ and a } M \text{ such that } f|_U \in B^k_{\mathcal{M}}(U, F)\}$. Then $C^{k+1}(E, F) \subset U^k(E, F) \subset C^k(E, F)$, and Propositions $1, \dots, 4$ have obvious generalizations to $U^k(E, F)$.

Theorem 1. Suppose that E is a B^p smooth separable Banach space, and $\{U_{\alpha}\}$ is an open cover. Then there exists a partition $\{f_i\}$ of unity refining $\{U_{\alpha}\}$ with $f_i \in B^p(E, R)$ for each i.

Proof. We find two countable locally finite open covers $\{V_i\}, \{V_i\}$ refining $\{U_a\}$ and maps $g_i \in B^p(E, R)$ such that $\overline{V}_i^1 \subset V_i^2, 0 \leq g_i(x) \leq 1, g_i(\overline{V}_i^1) = 1$ and $g_i(CV_i^2) = 0$. For every $x \in E$ find a $\varphi_x \in B^p(E, R)$ such that $0 \le \varphi_x \le 1$, $\varphi_x(x) = 1$ and that support φ_x is contained in some U_a . Let $A_x = \{y | \varphi_x(y) > y \}$ 1/2. Then $\{A_x\}$ covers E and, since E is Lindelof, we can extract a countable subset $\{A_{x_i}\}$ of $\{A_x\}$ which also covers E. Now let $B_j = \{t_j \ge 1/2, t_i \le 1/2 + 1/2\}$ 1/j, i < j, $C_j = \{t_j \le 1/2 - 1/j, \text{ or } t_i \ge 1/2 + 2/j, \text{ for some } i < j\}$ in R^j . Then distance $(B_j, C_j) > 0$, and we can find $\eta_j \in B^p(R^j, R)$, with $\eta_j(t_1, \dots, t_j) = 1$ for $(t_1, \dots, t_j) \in B_j$ and $\eta(t_1, \dots, t_j) = 0$ for $(t_1, \dots, t_j) \in C_j$. Let $\psi_1(x) = \varphi_{x_1}$ and $\psi_j(x) = \eta_j(\varphi_{x_1}(x), \dots, \varphi_{x_j}(x))$ for $j \ge 2$. Define $V_i^1 = \{x | \psi_i(x) > 1/2\},$ $V_i^2 = \{x | \psi_i(x) > 0\}$. Since $V_i^2 \subset$ support $\varphi_{x_1}, \{V_i^2\}$ refines $\{U_a\}$. To show that $\{V_i^1\}$ covers E, suppose that $x \in E$ and that i(x) is the first integer for which $\varphi_i(x) \ge 1/2$. Such an integer exists because the A_i 's cover E. Then $\psi_{i(x)} = 1$, and hence $x \in V_{i(x)}^1$, so $\{V_i^1\}$ covers E. Now again suppose that $x \in E$ and find an integer n(x) such that $\varphi_{n(x)}(x) > 1/2$. Then there exist, by the continuity of $\varphi_{n(x)}$, a neighborhood N_x of x and an $a_x > 1/2$ such that $\inf_{y \in N_x} \varphi_{n(x)}(y) \ge a_x$. Pick k large enough so that k > n(x) and $2/k < a_x - 1/2$. Then for $j \ge k$, $\varphi_{n(x)}(y) > 1/2 + 2/j$ for $y \in N_x$, and hence $\psi_j(y) = 0$ for $y \in N_x$. Therefore $N_x \cap V_i^2 = \emptyset$ for $j \ge k$ so that $\{V_i^2\}$ is locally finite. Finally take some $h \in B^{p}(R, R)$ with h(t) = 1 for $t \le 0$ and h(t) = 0 for $t \ge 1/2, 0 \le h \le 1$. Defining $g_i(x) = h(\psi_i(x))$ we have that $g_i \in B^p(E, R)$ and $0 \le g \le 1$, $g_i(\overline{V}_i^1) = 1$ $g_i(CV_i^2) = 0$. Now let $f_1(x) = g_1(x)$ and $f_i(x) = g_i(x)(1 - g_1(x)) \cdots (1 - g_{i-1}(x))$ for $i \geq 2$. Then $f_i \in B^p(E, R)$ and support $f_i \subset$ support $g_i \subset V_i^2$, hence every

JOHN C. WELLS

point of *E* has a neighborhood on all but a finite number of f_i 's vanish. Since $\{x | g_i(x) = 1\} \supset V_i^2$, $\prod_{i=1}^n (1 - g_i(x)) = 0$ for every *x* and some *n*. Also $\sum_{i=1}^n f_i(x) = 1 - \prod_{i=1}^n (1 - g_i(x))$, so $\sum_{i=1}^n f_i(x) \equiv 1$ and $\{f_i\}$ is a partition of unity refining $\{U_{\alpha}\}$ with $f_i \in B^p$ for each *i*. q.e.d.

For the \mathscr{L}^p spaces it can be shown that for p an even integer $D^{p+1}||x||^p = 0$ and that for p not an even integer $||D^k||x + h||^p - D^k||x||^p|| \le (p!/k!)||h||^{p-k}$ (see Bonic and Frampton [2]). So \mathscr{L}^p is B^{∞} smooth for p an even integer and \mathscr{L}^p is $B^{\lfloor p-1 \rfloor}$ smooth for p not an even integer. Not every C^1 smooth space is B^1 smooth as the following corollary shows (see also Wells [10]).

Theorem 2. If $n = 2^N$, endow n-dimensional Euclidean space E^n with the norm $||x|| = \sup_{i=1,\dots,n} |x_i|$. Suppose $f \in B^1_M(E^n, R)$ with f(0) = 0 and $f(x) \ge 1$ when $||x|| \ge 1$. Then $M \ge 2N$.

Proof. Assume M < 2N, and let $A = \{x | x_i = \pm 1/N \text{ for } i = 1, \dots, n \text{ except for at most one } i_0 \text{ where } |x_{i_0}| \leq 1/N\}$. Then A is radially symmetric and connected, so there is an $h_1 \in A$ with $Df(0)[h_1] = 0$. h_1 has at least 2^{N-1} components = 1/N. Likewise there is an $h_2 \in A$ with $Df(h_1)[h_2] = 0$, and we can choose $\sigma_2 = \pm 1$ so that $h_1 + \sigma_2 h_2$ has at least 2^{N-2} components equal to 2/N. Inductively choose $h_k \in A$ and $\sigma_k, k = 3, \dots, N$, such that $Df(h_1 + \sigma_2 h_2 + \dots + \sigma_{k-1} h_{k-1})[h_k] = 0$ and that $h_1 + \sigma_2 h_2 + \dots + \sigma_k h_k$ has 2^{N-k} components equal to k/N. Then $||h_1 + \dots + \sigma_N h_N|| = 1$ so by Proposition 1,

$$\begin{aligned} |1-0| &= |f(h_1 + \sigma_2 h_2 + \cdots + \sigma_N h_N) - f(0)| \\ &= \sum_{k=1}^N |f(h_1 + \sigma_2 h_2 + \cdots + \sigma_k h_k) - f(h_1 + \sigma_2 h_2 + \cdots + \sigma_{k-1} h_{k-1})| \\ &\leq N \cdot \frac{1}{2} M N^{-2} < 1 , \end{aligned}$$

a contradiction.

Corollary 3. c_0 is not B^1 smooth.

Proof. Assume $f \in B^1_M(c_0, R)$ with f(0) = 0 and $f(1) \ge 1$ when $||x|| \ge 1$, and restrict f to $\{x | x_i = 0, i \ge 2^{(M+1)/2}\}$ to get a contradiction to the theorem.

Remark. In this theorem we have only used the uniform continuity of Df.

3. Convex sets and B_M^1 functions

If A is a subset of a Banach space E, let $d(x, A) = \inf_{y \in A} ||y - x||$. Then $d(x, A) \in B_1^0(E, R)$. If A is convex, d(x, A) shares many of the properties of ||x||. The first proposition is well-known. See Restrepo [8] or Phelps [7].

Proposition 5. Let A be a closed convex subset of a Banach space with norm differentiable away from zero. Suppose that d(x, A) = ||x - p(x)|| for every x in E and some p(x) in A. Then $d(x, A) \in D(E - A, R)$ and Dd(x, A) = D|| ||(x - p(x))|.

Proof. Let $D \| \| (x)$ denote the derivative of $\| \| \|$ at x. Then for $x \in A$, $\| x + h - p(x) \| = \| x - p(x) \| + D \| \| (x - p(x))[h] + o(\|h\|)$, and for any h

with $p(x) + h \in A$, $||x - (p(x) + h)|| \ge ||x - p(x)||$ which implies $D|| ||(x - p(x))[h] \le 0$. Thus the hyperplane $L = \{y|D|| ||(x - p(x))[y - p(x)] = 0\}$ is a supporting hyperplane for A at p(x), and $d(x + h, L) \le d(x + h, A) \le d(x + h, p(x))$ so that

$$||x - p(x)|| + D|| ||(x - p(x))[h]| \le d(x + h, A) \le ||x - p(x)|| + D|| ||(x - p(x))[h]| + o(||h||).$$

Hence $0 \le d(x + h, A) - d(x, A) - D || || (x - p(x))[h] \le o(||h||)$, and so d(x, A) is differentiable at x and Dd(x, A) = D || || (x - p(x)).

Proposition 6. If A is closed and convex and $||x|| \in B^1_{M/\alpha}(\{x|||x|| > \alpha\}, R)$, then $d(x, A) \in B^1_{M/\alpha}(\{x|d(x, A) > \alpha\}, R)$.

Proof. Suppose that every point x in E has a closest point p(x) in A. By Proposition 1, if d(x, p(x)), $d(x + h, p(x)) > \alpha$, then $|d(x + h, p(x)) - d(x, p(x)) - D|| || (x - p(x))[h]| \le \frac{1}{2}M||h||^2/\alpha$, and we have

$$0 \le d(x+h,A) - d(x,A) - D \| \| (x-p(x))[h] \le \frac{1}{2}M \|h\|^2 / \alpha$$

by arguing as in Proposition 5, and therefore $d(x, A) \in B^{1}_{M/\alpha}(\{x | d(x, A) > \alpha\}, R)$ by Proposition 4. Now suppose that A is arbitrary. If H is a finite dimensional linear subspace, then every point in E has a closest point in $A \cap H$. Hence $d(x, A \cap H) \in B^{1}_{M/\alpha}(\{x | d(x, A) > \alpha\}, R)$. With the finite dimensional linear subspaces ordered by inclusion, $d(x, A) = \lim_{H} d(x, A \cap H) \in B^{1}_{M/\alpha}(\{x | d(x, A) > \alpha\}, R)$ $> (\alpha\}, R)$ by Proposition 3.

Proposition 7. Suppose that A is a closed convex subset of E and that $||x||^2 \in B^1_M(E, R)$. Then $d^2(x, A) \in B^1_M(E, R)$.

Proof. Suppose every point x of E has a closest point p(x) of A. Then

$$d^{2}(x + h, A) \leq ||x + h - p(x)||^{2}$$

$$\leq ||x - p(x)||^{2} + D|| \, ||^{2}(x - p(x))[h] + \frac{1}{2}M||h||^{2}.$$

Defining $L = \{y | D \| \| (x - p(x))[y - p(x)] = 0\}$ gives

$$d^{2}(x + h, A) \geq d^{2}(x + h, L) = (||x - p(x)|| + D|| ||(x - p(x))[h])^{2}$$

$$\geq ||x - p(x)||^{2} + 2D|| ||(x - p(x))[h](||x - p(x)||)$$

$$= ||x - p(x)||^{2} + D|| ||^{2}(x - p(x))[h],$$

so $|d^2(x + h, A) - d^2(x, A) - D|| ||^2(x - p(x))[h]| \le \frac{1}{2}M||h||^2$. Thus $d^2(x, A) \in B^1_M(E, R)$ by Proposition 4. Taking limits of $d^2(x, A \cap H)$ over finite dimensional linear spaces H gives as above $d^2(x, A) \in B^1_M(E, R)$ for arbitrary A.

Remarks. If E happens to be uniformly convex, then every point x has a closest point p(x) in a closed convex A and p(x) is continuous. So, if $||x|| \in C^1(E - \{0\}, R)$, then $d(x, A) \in C^1(E - A, R)$. The question of whether $||x|| \in C^1(E - \{0\}, R)$ implies $d(x, A) \in C^1(E - A, R)$ in general remains open.

JOHN C. WELLS

4. B^1 functions on Hilbert space

We will suppose that H is a real Hilbert space endowed with the usual norm, and we will identify H^* with H and write $\langle y, x \rangle = y \cdot x$ and $||x||^2 = x^2$.

We recall the Whitney extension theorem (see Abraham and Robbin [1]): Let $A \subset \mathbb{R}^n$ be a closed subset, and $f_i, i = 0, \dots, k: A \to L_s^i(\mathbb{R}^n, F)$, F another Banach space, and suppose

$$\lim_{x,y\to x_0;\ x,y,x_0\in A} ||f_j(y) - \sum_{i=j}^k f_i(x)[y-x]/(i-j)!||/||x-y||^{k-j} = 0.$$

Then f_0 has a C^k extension to R^n with $D^j f_0(x) = f_j(x)$ for $x \in A$.

In this section we prove a version of this for real-valued B^1 functions on Hilbert space, and show that C^1 partitions of unity exist on any non-separable Hilbert space.

Theorem 1. Let $A = \{p_1, \dots, p_m\}$ be a finite subset of \mathbb{R}^n endowed with the usual norm. Let $a_{p_i} \in \mathbb{R}$, $y_{p_i} \in \mathbb{R}^n$ for $i = 1, \dots, m$ satisfy

$$(4) \quad a_{p'} \leq a_p + \frac{1}{2}(y_p + y_{p'}) \cdot (p' - p) + \frac{1}{4}M(p' - p)^2 - \frac{1}{4}(y_{p'} - y_p)^2/M$$

for all p, p' in A. Then there exists an $f(x) \in B^1_M(\mathbb{R}^n, \mathbb{R})$ with $f(p) = a_p$, $Df(p) = y_p$ for p in A and $f(x) \ge \inf_{p \in A} [a_p - \frac{1}{2}y_p^2/M + \frac{1}{4}M(x - p + y_p/M)^2]$. Further, if $g(x) \in B^1_M(\mathbb{R}^n, \mathbb{R})$ with $g(p) = a_p$, $Dg(p) = y_p$ when $p \in A$, then $g(x) \le f(x)$ for all x.

Proof. We first construct a convex linear cell complex and a dual complex. From these a cellular decomposition of R^n is constructed on which f is defined. Df will turn out to be piecewise linear.

Definition. When $p \in A$ we define:

$$\widetilde{p} = p - y_p/M$$
, $\widetilde{p} = \{p' | \widetilde{p}' = \widetilde{p}, p' \in A\}$,
 $d_p(x) = a_p - \frac{1}{2}y_p^2/M + \frac{1}{4}M(x - \widetilde{p})^2$.

Definition. When $S \subset A$ we define:

$$\begin{split} d_{\mathcal{S}}(x) &= \inf_{p \in S} d_p(x) , \quad \tilde{S} = \{ \tilde{p} | p \in S \} , \\ S_H &= \text{smallest hyperplane containing } \tilde{S} , \\ S_E &= \{ x | d_p(x) = d_{p'}(x) \text{ for all } p, p' \in S \} , \\ S_* &= \{ x | d_p(x) = d_{p'}(x) \le d_{p''}(x) \text{ for all } p, p' \in S, p'' \in A \} , \\ K &= \{ S | S \subset A \text{ and for some } x \in S_*, d_S(x) < d_{A-S}(x) \} . \end{split}$$

So, if $p \in S \in K$ then $\overline{p} \subset S$.

Definition. $\hat{S} = \text{convex hull of } \tilde{S}$.

Lemma 1. $\{p, p'\}_E = R^n$ or an (n-1)-dimensional hyperplane, and $\tilde{p}' - \tilde{p} \perp \{p, p'\}_E$.

Proof. $d_p(x) - d_{p'}(x) = (a_p - \frac{1}{2}y_p^2/M) - (a_{p'} - \frac{1}{2}y_{p'}^2/M) + \tilde{p}^2 - \tilde{p}'^2 + \tilde{p}'$

 $2x \cdot (\tilde{p}' - \tilde{p})$. If $\tilde{p} \neq \tilde{p}'$, this immediately gives the lemma. If $\tilde{p} = \tilde{p}'$, then $p - p' = (y_p - y_{p'})/M$ and (4) gives $a_{p'} - \frac{1}{2}y_{p'}^2/M \le a_p - \frac{1}{2}y_p^2/M$. Reversing p and p' gives $d_p(x) = d_{p'}(x)$.

Lemma 2. S_* is closed and convex.

for all S.

Proof. By the definition and Lemma 1, S_* is the intersection of closed convex sets.

Definition. Let \hat{S}^b , S^b_* be the relative boundaries of \hat{S} , S_* if dim \hat{S} , dim $S_* \neq 0$, in which case let \hat{S}^i , S^i_* be the relative interiors; if dim \hat{S} , dim $S_* = 0$, let $\hat{S}^b = \emptyset$, $S^b_* = \emptyset$, $\hat{S}^i = \hat{S}$ and $S^i_* = S_*$.

Lemma 3. $S_H \perp S_E$, and if $S_E \neq \emptyset$, then dim $S_H + \dim S_E = n$.

Proof. $S_E = \bigcap_{p,p' \in S} \{p, p'\}_E$ together with Lemma 1 implies $S_H \perp S_E$. Assume $\dim S'_H + \dim S'_E = n$ for $S' = S - \overline{p}$, and $p' \in S - \overline{p}$. Then by Lemma 1 $\dim (p, p')_H + \dim (p, p')_E = n$, and $\dim S_E = \dim (\{p, p'\}_E \cap (S - \overline{p})_E) = n - \dim (\{p, p'\}_H \cup (S - \overline{p})_H) = n - \dim S_H$. By induction $\dim S_H + \dim S_E = n$

Lemma 4. If $S \subset S'$, then $S'_* \subset S_*$. If $S, S' \in K$, then $S \subseteq S'$ if and only if $S'_* \subseteq S_*$, and S = S' if and only if $S_* = S'_*$.

Proof. The first statement follows from the definition of S_* . If $S \subseteq S'$ and $S, S' \in K$, find $z \in S_*$ with $d_S(z) < d_{S'-S}(z)$ so that $S_* \neq S'_*$ and $S'_* \subseteq S_*$. If $S'_* \subset S_*$, find $z \in S'_*$ with $d_{S'}(z) < d_{A-S'}(z)$. So, if $p \in S$, then $d_{S'}(z) = d_p(z)$, so $p \notin A - S'$, and hence $S \subset S'$.

Lemma 5. If $S \in K$, then $S_*^i = \{x | x \in S_E, d_S(x) < d_{A-S}(x)\}$.

Proof. If $S \in K$, then clearly $\{x | x \in S_E, d_S(x) < d_{A-S}(x)\} \subset S_*^i$. Suppose $x \in S_*^i$ and $p \in S$, $p' \in A$ with $d_p(x) = d_{p'}(x)$. Then the hyperplane $d_p(x) = d_{p'}(x)$ must contain all of S_* , so $p' \in S$. Therefore $d_S(x) < d_{A-S}(x)$.

Lemma 6. $d_{p'}(y') - d_p(y') = d_{p'}(y) - d_p(y) + 2(y' - y) \cdot (\tilde{p} - \tilde{p}')$. *Proof.* Immediate from the definition.

Lemma 7. $\hat{S} \perp S_*$. For $S \in K$, dim $\hat{S} + \dim S_* = n$.

Proof. $S_H \perp S_E$ implies the first part. Suppose $S \in K$ and find $z \in S_*$ with $d_S(z) < d_{A-S}(z)$. But then for some ε , open ball center z radius $\varepsilon \cap S_E \subset S_*$ so dim $S_* = \dim S_E$ and dim $\hat{S} + \dim S_* = n$.

Definition. If $S_* \neq \emptyset$, let $\overline{\overline{S}} = \{p | p \in A, d_p(z) = d_s(z) \text{ for all } z \in S_*\}.$

Lemma 8. If $S_* \neq \emptyset$, then $\overline{\overline{S}} \in K$ and $\overline{\overline{S}}_* = S_*$.

Proof. Immediate from the definitions.

Lemma 9. (a) If $S, S' \in K$ and $S \cap S' \neq \emptyset$, then $S \cap S' \in K$ and $\hat{S} \cap \hat{S}' = S \cap S'$.

(b) If $S, S' \in K$ and $S_* \cap S'_* \neq \emptyset$, then $S_* \cap S'_* = (\overline{S \cup S'})_*$.

Proof. (a) Assume $S \not\subset S'$ and $S' \not\subset S$, and find $y \in S_*$, $y' \in S'_*$ with $d_S(y) < d_{A-S}(y), d_{S'}(y') < d_{A-S'}(y')$. Then $L = \text{cohull } \{y, y'\} \subset (S \cap S')_E$. For any $p' \in A - (S \cup S')$ and $p \in S \cap S'$, the half space $d_p(x) \ge d_{p'}(x)$ does not contain y or y', so it does not contain L. For $p \in S \cap S'$ and $p' \in (S - S') \cup$

(S' - S), the half space $d_p(x) \ge d_{p'}(x)$ does not contain both y and y'. Since $d_{p'}(y) = d_p(y)$ or $d_{p'}(y') = d_p(y')$, the half space $d_p(x) \ge d_{p'}(x)$ can not intersect L^i . Picking $z \in L^i$ we have $d_{S \cap S'}(z) < d_{A-S \cap S}(z)$, so $S \cap S' \in K$. $\hat{S} \cap \hat{S}'$ $= \hat{S} \cap \hat{S}'$ is obvious.

(b) Observe $(S \cup S')_* = S_* \cap S'_*$ and use Lemma 8.

Lemma 10. If
$$S \in K$$
, then $\hat{S}^b = \bigcup_{a \neq c} \hat{S}^c$.

Proof. Suppose $x \in \hat{S}^b$. Then $x \in \hat{S}' \notin S$ for some $S' \subset S$ with $\hat{S}' \subset \hat{S}^b$. Find an (n-1)-dimensional hyperplane M containing \hat{S}' , supporting the convex set \hat{S} but not containing \hat{S} . Find $y \in S_*$ with $d_s(y) < d_{A-s}(y)$, and find $y' \neq y$ with $y - y' \perp M$, with \hat{S} on the side of M in direction y' to y and $d_{S'}(y') < d_{A-S}(y')$. Then $y' - y \perp (S \cap M)_H$ which implies $y' \in S'_E$. For all $p' \in S'$ and $p \in S$, $(\tilde{p}'-\tilde{p})\cdot(y-y')\geq 0$. Thus $d_p(y')\geq d_{p'}(y')$ by Lemma 6 so that $d_{S'}(y')\leq d_{p'}(y')$ $d_{S}(y')$. Also $(\tilde{p} - \tilde{p}') \cdot (y - y') > 0$ for some $p \in S - M$ and all $p' \in S'$, so by Lemma 6, $d_p(y') > d_{p'}(y')$; hence $d_{S'}(y') < d_p(y')$. Thus $y' \in S'_*$ and $y' \notin S_*$.

So $\overline{S'_*} = S'_* \supseteq S_*$, and $x \in \hat{S'} \subset \hat{\overline{S'}} \subseteq \hat{S}$ with $\overline{S'} \in K$ by Lemmas 8 and 4. Suppose on the other hand that $S' \subseteq S$, $S \in K$. Then $S'_* \supseteq S_*$ by Lemma 4, so we can find $y' \in S_*'^i - S_*$ and $y \in S_*$. Take some $p' \in S'$, and let M = $\{x | (y - y') \cdot (x - \tilde{p}') = 0\}$. Then $y, y' \in S'_H$, and $S'_H \subset M$ by Lemma 2 and so $\hat{S}' \subset M$. Now if $p \in S - S'$, then $d_{p'}(y') < d_p(y')$. Since $d_{p'}(y) = d_p(y)$, $(y - y') \cdot (\tilde{p} - \tilde{p}') > 0$ by Lemma 6 and \tilde{p} lies on the side of M in direction y' to y. Hence M supports \hat{S} and $\hat{S}' \subset \hat{S}^b$.

Lemma 11. If $S \in K$, then $S^b_* = \bigcup_{S' \supseteq S, S' \in K} S'_*$.

Proof. By Lemma 5, $x \in S_*^b$ if and only if $x \in S'_*$ for some $S' \supseteq S$. But then

 $x \in \overline{S}'_*$ with $\overline{S}' \in K$ and $\overline{S}' \supset S' \supseteq S$. By Lemmas 9, 10, 11, $\bigcup_{S \in K} \hat{S}$ is a cell complex, and $\bigcup_{S \in K} S_*$ is a cell complex of $R^n \cup \infty$ dual to $\bigcup_{S \in K} \hat{S}$ by Lemma 4. We show that $\bigcup_{S \in K} \hat{S} = \text{cohull } \tilde{A}$. We can assume that dim $\tilde{A} = n$. Suppose $S \in K$ with dim $\hat{S} = n - 1$. From Lemma 6 we see that S_* extends infinitely in a half space determined by S_H if and only if there are no points of \tilde{A} in that open half space. Hence $\hat{S} \subset (\text{cohull } \tilde{A})^{\delta}$ if and only if S_* has only one boundary point if and only if \hat{S} does not lie on the boundary of two other \hat{S} 's in K by Lemma 11. Now there are members of K with dim $\hat{S} = n$, otherwise if dim $\hat{S}' = \max_{S \in K} \dim \hat{S} < n$ then $S'_* = S'_E$. However, $p' \in S'$ implies that $\{p', p''\}_E$ must intersect S'_E for some $p'' \in A$, otherwise dim A would be less than n. Thus $S'_E \neq S_*$, a contradiction. Hence $\emptyset \neq$ $\left(\bigcup_{\substack{S \in K, \dim S = n}} \hat{S}\right)^{\delta} \subset (\text{cohull } \tilde{A})^{\delta} \text{ so that } \bigcup_{S \in K} \hat{S} = \text{cohull } \tilde{A}.$

We also observe that for any x in \mathbb{R}^n if we let $S = \{p | d_p(x) = \inf_{p' \in A} d_{p'}(x)\}$ then $S \in K$ and $x \in S_*$. Hence $\bigcup_{n \in T} S_* = R^n$. Fig. 1 shows an example of these two cell complexes.

BANACH SPACES

We now perform another decomposition of \mathbb{R}^n .

Definition. For all $S \in K$ let $T_s = \{x | x = \frac{1}{2}(y + z) \text{ for some } y \in \hat{S} \text{ and } z \in S_*\}.$

Lemma 12. T_s is closed and convex with nonempty interior.

Proof. Immediate from Lemmas 2 and 3.

Lemma 13. The representation $x = \frac{1}{2}(y + z)$, $y \in \hat{S}$, $z \in S_*$ for $x \in T_s$ is unique.

Proof. Suppose $x = \frac{1}{2}(y' + z')$, $y' \in \hat{S}$, $z' \in S_*$ also. Then y - y' = -(z - z'), and $y - y' \perp z - z'$ by Lemma 3, so y = y' and z = z'.

Lemma 14. $T_s \cap T_{s'} = \{x | x = \frac{1}{2}(y + z), y \in \hat{S} \cap \hat{S}', z \in S_* \cap S'_*\}.$

Proof. Immediate from Lemma 13.

Lemma 15. (a) $(T_{S} \cap T_{S'})^{0} = \emptyset$ if $S \neq S'$, and (b) $T_{S}^{\delta} \subset \bigcup_{S, S' \in K, S' \cong S \text{ or } S' \subseteq S} T_{S'}$.

Proof. (a) $\hat{S} \cap \hat{S}' = S \cap \hat{S}'$, and $S \cap S' \in K$ by Lemma 9. If $S \neq S'$, then $\hat{S} \cap \hat{S}' \subset \hat{S}^b$ or \hat{S}'^b , so dim $(\hat{S} \cap \hat{S}') < \max(\dim \hat{S}, \dim \hat{S}') = n - \min(\dim S_*, \dim S'_*) \le n - \dim(S_* \cap S'_*)$. By Lemma 14, dim $(T_S \cap T_{S'}) < n$ and the interior of $T_S \cap T_{S'}$ is empty.

(b) If $x \in T_s^{\delta}$, then $x = \frac{1}{2}(y + z)$ where $y \in \hat{S}^{\delta}$ and/or $z \in S_*^{\delta}$. So $y \in \hat{S}'$ and/or $z \in S_*'$ for some $S' \subseteq S$ and $S'' \supseteq S$ by Lemmas 10 and 11. Hence $x \in T_{S'}$ and/or $T_{S''}$ with $S' \subseteq S$ and/or $S'' \supseteq S$.

Lemma 16. $T_s \cap T_{s'} = T_{s \cap s'} \cap T_{\overline{s \cup s'}}$.

Proof. $\hat{S} \cap \hat{S}' = S \cap S' \cap \overline{S \cup S'}$, and $S_* \cap S'_* = (S \cap S')_* \cap (\overline{S \cup S'})_*$ by Lemma 9, and Lemma 16 follows from Lemma 14.

Lemma 17. $\bigcup_{S \in K} T_S = R^n$.

Proof. Since the complement of a closed convex set is locally connected and $T_S^0 \cap T_{S'}^0 = \emptyset$ if $S \neq S'$, this lemma follows from the next proposition.

Proposition 8. Let $\{T_i\}$ be locally finite collection of nonempty closed subsets of a connected space E. Suppose that the T'_i s have disjoint interiors, $E - T_i$ is connected in some neighborhood of each point of E for each i, and $T^*_i \subset \bigcup_{j \neq i} T_j$.

Then $\bigcup_i T_i = E$.

Proof. $\bigcup T_i$ is closed since $\{T_i\}$ is locally finite. Suppose that whenever a point y of E is contained in k or less T_i 's then $y \in \left(\bigcup_i T_i\right)^0$. If $x \in T_{i_1}, \dots, T_{i_k}$ and no others, then we can find a neighborhood U about x which meets only T_{i_1}, \dots, T_{i_k} and such that $U - T_{i_1}$ is connected. Thus $T_{i_2} \cup \dots \cup T_{i_k}$ is open and closed in $U - T_{i_1}$ by assumption, and so contains all of $U - T_{i_1}$. This implies that $U \subset T_{i_1} \cup \dots \cup T_{i_k}$ so that $x \in \bigcup_i T_i^0$. The statement is true for k = 1, so by induction $x \in \bigcup_i T_i^0$ for all $x \in E$. Hence $\bigcup_i T_i$ is open, and $\bigcup T_i = E$ since is connected. q.e.d.

Fig. 2 illustrates the T's superimposed on the dual complexes of Fig. 1. **Definition.** $S_C = S_E \cap S_H$ for $S \in K$. S_C is a point by Lemma 3. We now construct f on \mathbb{R}^n .

Definition. $f_S(x) = d_S(S_C) + \frac{1}{2}Md^2(x, S_H) - \frac{1}{2}Md^2(x, S_E)$ for $S \in K$ and $x \in T_S$.

Lemma 18. $f_{\mathcal{S}}(x) = f_{\mathcal{S}'}(x)$ if $x \in T_{\mathcal{S}} \cap T_{\mathcal{S}'}$.

Proof. By Lemma 16 we can assume that $S \subset S'$. Now $x = \frac{1}{2}(y + z)$ with $y \in \hat{S} \subset \hat{S}'$, $z \in S'_* \subset S_*$ by Lemma 14, and $d(x, S_H) = \frac{1}{2}d(z, S_H) = \frac{1}{2}d(z, S_C)$ and $d(x, S_E) = \frac{1}{2}d(y, S_E) = \frac{1}{2}d(y, S_C)$ so that

$$f_S(x) = d_S(S_C) + \frac{1}{8}Md^2(S_C, z) - \frac{1}{8}Md^2(S_C, y)$$

Similarly,

$$f_{S'}(x) = d_{S'}(S'_C) + \frac{1}{8}Md^2(S'_C, z) - \frac{1}{8}Md^2(S'_C, y)$$

Now $z, S'_C \in S'_E$ and $S_C, S'_C \in S'_H$, and $d^2(z, S'_C) + d^2(S_C, S'_C) = d^2(z, S_C)$ since $S'_E \perp S'_H$. Also $y, S_C \in S_H$ and $S_C, S'_C \in S_E$ with $S_H \perp S_E$, so $d^2(y, S_C) + d^2(S_C, S'_C) = d^2(y, S'_C)$. Finally, $\tilde{p} - S_C \perp S_C - S'_C$ for $p \in S$, so $\frac{1}{4}Md^2(S_C, S'_C) + d_S(S_C) = d_S(S'_C) = d_{S'}(S'_C)$. Hence our lemma follows from these equations.

Lemma 19.
$$f_s \in C^{\infty}(T_s, R)$$
.

Proof. Observe that $d^2(x, S_E)$ and $d^2(x, S_H)$ are C^{∞} .

Lemma 20. $Df(x) = \frac{1}{2}M(z - y)$ where $x = \frac{1}{2}(y + z)$, $y \in \hat{S}$ and $z \in S_*$.

Proof. $Dd^2(x, S_H) = 2||x - P_{S_H}(x)||D||x - P_{S_H}(x)|| = 2(x - P_{S_H}(x))$ where $P_{S_H}(x)$ is the closest point of S_H to x by Proposition 5. Now $x - P_{S_H}(x) = \frac{1}{2}(z - S_C)$, so $D\frac{1}{2}Md^2(x, S_H) = \frac{1}{2}M(z - S_C)$. Likewise $Dd^2(x, S_E) = \frac{1}{2}M(x - P_{S_E}(x)) = \frac{1}{2}M(y - S_C)$ where $P_{S_E}(x)$ is the closest point of S_E to x. Hence $Df(x) = \frac{1}{2}M(z - y)$.

Lemma 21. $f_S(x) \in B^1_M(T_S, R)$.

Proof. Let $x, x' \in T$, $x = \frac{1}{2}(y + z)$ and $x' = \frac{1}{2}(y' + z')$ as usual. Then by Lemma 20,

$$(Df_{s}(x) - Df_{s}(x))^{2} = \frac{1}{4}M^{2}((z - z') + (y - y'))^{2} = M^{2}(x - x')^{2},$$

since $z - z' \perp y - y'$. Hence $||Df_s(x) - Df_s(x')|| = M||x - x'||$.

Lemma 22. $Df_{S}(x) = Df_{S'}(x)$ if $x \in T_{S} \cap T_{S'}$. *Proof.* If $x \in T_{S} \cap T_{S'}$, then $x = \frac{1}{2}(y+z)$ where $y \in \hat{S} \cap \hat{S}'$ and $z \in S_{*} \cap S'_{*}$

by Lemma 14. Thus $Df_{\mathcal{S}}(x) = \frac{1}{2}M(z - y) = Df_{\mathcal{S}'}(x)$ by Lemma 21.

Definition. $f(x) = f_s(x)$ if $x \in T_s$.

f is well defined on \mathbb{R}^n by Lemmas 17 and 18, and $f \in B^1_M(\mathbb{R}^n, \mathbb{R})$ by Lemmas 21 and 22.

Lemma 23. $f(p) = a_p$ and $Df(p) = y_p$ if $p \in A$.

Proof. By the definition and an assumption in the hypothesis of Theorem 1, for any $p' \in A$ we can easily obtain $d_p(p + y_p/M) = \frac{1}{2}y_p^2/M + a_p \leq \frac{1}{2}y_p^2/M + a'_p + \frac{1}{4}M(p - p')^2 + \frac{1}{2}(y_{p'} + y_p) \cdot (p - p') - \frac{1}{4}(y_p - y_{p'})^2/M = d_{p'}(p + y_p/M)$. Thus $p + y_p/M \in \overline{p}_*$ and $p = \frac{1}{2}(\tilde{p} + p + y_p/M) \in T_{\overline{p}}$. Hence $f(p) = f_{\overline{p}}(p) = d_{\overline{p}'}(p) + \frac{1}{2}M(p - (p - y_p/M))^2 = a_p$, $Df(p) = \frac{1}{2}M((p + y_p/M) - \tilde{p}) = y_p$ by Lemma 20.

Lemma 24. Suppose $g \in B^1_M(\mathbb{R}^n, \mathbb{R})$ and $g(p) = a_p$, $Dg(p) = y_p$ for $p \in A$. Then $g(x) \leq f(x)$. Proof. Suppose first that $x \in T_{\overline{p}}$. Then by Proposition 1, $g(x) \leq a_p + y_p(x-p) + \frac{1}{2}M(x-p)^2 = a_p - \frac{1}{2}y_p^2/M + \frac{1}{2}M(x-\tilde{p})^2 = f_{\overline{p}}(x) = f(x)$. Suppose next that for all $S \in K$ with $\mathbf{k}(\tilde{S}) \leq m$, $g(x) \leq f(x)$ for $x \in T_s$. If $\mathbf{k}(\tilde{S}) = m + 1$ and $x \in T_s$, then let $x = \frac{1}{2}(y+z)$, $y \in \hat{S}$, $z \in S_*$. Fix z, and define $e(w) = g(\frac{1}{2}(w+z)) - f(\frac{1}{2}(w+z))$ for $w \in \hat{S}$. Then $g(\frac{1}{2}(w+z)) \in B_{M/4}^1(\hat{S}, R)$ and $f(\frac{1}{2}(w+z)) = \text{const.} -\frac{1}{8}M(w-S_c)^2$ with $D_wf(\frac{1}{2}(w+z)) = -\frac{1}{4}M(w-S_c)$. For any h with $w + h \in \hat{S}$, $De(w + h)[h] - De(w)[h] = \frac{1}{4}Mh^2 + (Dg(\frac{1}{2}(w+h+z)) - Dg(\frac{1}{2}(w+z)))[h] \geq 0$. Thus, if e(w) is maximal at w, then $De(w) \neq 0$, so e(w) has its maximum on \hat{S}^b . Since $w \in \hat{S}^b$ implies $x \in \hat{S}'$ for some $S' \subseteq S$, $x = \frac{1}{2}(w+z) \in T_{S'}$ so that $e(w) \leq 0$ by the assumption. Hence $e(w) \leq 0$ on \hat{S} and $g(x) \leq f(x)$ on T_s . By induction $g(x) \leq f(x)$ everywhere.

Lemma 25. $f(x) \ge \inf_{p \in A} d_p(x)$.

Proof. Take p with $d_p(x) = \inf_{q \in A} d_q(x)$. Then $x \in \overline{p}_*$ so $\frac{1}{2}(\tilde{p} + x) \in T_{\overline{p}}$ and $f_{\overline{p}}(\frac{1}{2}(\tilde{p} + x)) = a_p - \frac{1}{2}y_p^2/M + \frac{1}{8}M(x - \tilde{p})^2$. Also $Df(\frac{1}{2}(\tilde{p} + x)) = \frac{1}{2}M(x - \tilde{p})$. So by Proposition 1, $f(x) \ge f(\frac{1}{2}(x + \tilde{p})) + Df(\frac{1}{2}(x + \tilde{p}))[\frac{1}{2}(x - \tilde{p})] - \frac{1}{2}M(\frac{1}{2}(x - \tilde{p}))^2 = d_p(x)$.

Lemmas 24 and 25 complete the proof of Theorem 1. We observe from Lemma 20 that Df is a piecewise linear map from $\bigcup_{S} T_{S}$ to \mathbb{R}^{n} , whose derivative in T_{S}^{0} is M·Identity $\oplus - M$ ·Identity on $S_{H} \oplus S_{E}$.

Lemma 26. Suppose p and $p - y_p/M \in L$ for all p in A where L is an affine linear subspace of \mathbb{R}^n . Then $f(x) = f_L(\pi_L(x)) + \frac{1}{2}Md^2(x, L)$, where f_L is the function obtained in Theorem 1 by taking L instead of \mathbb{R}^n as the underlying linear space, and π_L is the orthogonal projection of \mathbb{R}^n onto L.

Proof. Observe that $\tilde{p} \in L$ for all p in A and that K is the same taking R^n or L. Also T_S on $R^n = \pi_L^{-1}(T_S \text{ on } L)$, and $d^2(x, S_H) = d^2(\pi_L(x), S_H) + (x - \pi_L(x))^2$, $d^2(x, S_E) = d^2(\pi_L(x), S_E)$. This establishes the lemma.

Theorem 2. Let A be a closed nonempty subset of any Hilbert space H endowed with the usual norm. Suppose that f_0 is a real-valued function on A. Then there exists an $f \in B^1_M(H, R)$ with $f|_A = f_0$ if and only there is a map $f_1: A \to H$ such that for all $x, y \in A$

(5)
$$f_0(y) \le f_0(x) + \frac{1}{2}(f_1(x) + f_1(y)) \cdot (y - x) + \frac{1}{4}M(y - x)^2 - \frac{1}{4}(f(y) - f(x))^2/M.$$

Further, f can be found such that $f(x) \ge \inf_{y \in A} d_y(x)$ where $d_y(x) = f_0(y) - \frac{1}{2}f_1^2(y)/M + \frac{1}{4}M(x - y + f_1(y)/M)^2$ and such that if $g(x) \in B^1_M(H, R)$ with $g(x) = f_0(x)$ and $Dg(x) = f_1(x)$ for $x \in A$, then $g(x) \le f(x)$ for all x.

Proof. If f_0 has an extension f in $B_M(H, R)$, let $f_1(x) = Df(x)$. Let $x_1, i = 0, 1$ be two points in H, set $a_i = f_0(x_i)$ and $y_i = f_1(x_i)$, and define $x_2 = \frac{1}{2}(x_0 + x_1) + \frac{1}{2}(y_1 - y_0)/M$. By Proposition 1 we have

$$\begin{split} f(x_2) &\leq f(x_0) + y_0 \cdot \left(\frac{1}{2}(x_1 - x_0) + \frac{1}{2}(y_1 - y_0)\right) + \frac{1}{2}M(\frac{1}{2}(x_1 - x_0) + \frac{1}{2}(y_1 - y_0))^2, \\ f(x_2) &\geq f(x_1) - y_1 \cdot \left(\frac{1}{2}(x_1 - x_0) - \frac{1}{2}(y_1 - y_0)\right) - \frac{1}{2}M(\frac{1}{2}(x_1 - x_0) - \frac{1}{2}(y_1 - y_0))^2, \end{split}$$

BANACH SPACES

so by the parallelogram law,

$$\begin{split} f(x_1) &\leq f(x_0) + \frac{1}{2}(y_0 + y_1) \cdot (x_1 - x_0) - \frac{1}{2}(y_1 - y_0)^2 \\ &+ \frac{1}{2}M[2(\frac{1}{2}(x_1 - x_0))^2 + 2(\frac{1}{2}(y_1 - y_0)/M)^2] \\ &= f(x_0) + \frac{1}{2}(y_0 + y_1) \cdot (x_1 - x_0) + \frac{1}{4}M(x_1 - x_0)^2 - \frac{1}{2}(y_1 - y_0)^2/M \,. \end{split}$$

To go the other way, choose for every finite subset *F* in *A*, a finite dimensional linear subspace H_F of *H* containing *p* and $p - f_1(p)/M$ for all *p* in *F*. By Theorem 1 construct $f'_F \in B^1_M(H_F, R)$ satisfying $f'_F(p) = f_0(p)$, $Df'_F(p) = f_1(p)$ for *p* in *F*, etc. Now define for $x \in H$, $f_F(x) = f'_F(\pi_{H_F}(x)) + \frac{1}{2}Md^2(x, H_F)$. Then $f_F \in B^1_M(H, R)$, $f_F(p) = f_0(p)$, $Df_F(p) = f_1(p)$ for $p \in A$, and f_F is independent of H_F by Lemma 26. So we have $f_F(x) \ge \inf_{y \in F} d_y(x)$, and $g(x) \le f(x)$ for all *x* in *H* if $g \in B^1_M(H, R)$ with $g(p) = f_0(p)$ and $Dg(p) = f_1(p)$ for $p \in A$.

Now order \mathscr{F} the set of all finite subsets of A by inclusion. Then $F' \supset F$ implies $f_{F'}(x) \leq f_F(x)$ for all x, so $\lim_{F \in \mathscr{F}} f_F(x) = f(x)$ exists for every x, and $f \in B^1_M(H, R)$ by Proposition 3. Also $f(p) = \lim_{F \in \mathscr{F}} f_F(p) = \lim_{F \in \mathscr{F}, p \in F} f_F(x) = f_0(p)$ for $p \in A$, and $Df(p) \cdot z = \lim_{F \in \mathscr{F}, p \in F} Df_F(p) \cdot z = f_1(p) \cdot z$ for all z in H and p in A, so $Df(p) = f_1(p)$. $f_F(x) \geq \inf_{y \in A} d_y(x)$ for all F gives $f(x) \geq \inf_{y \in A} d_y(x)$. Finally, $g \in B^1_M(H, R), g(p) = f_0(p)$, and $Dg(p) = f_1(p)$ for $p \in A$ implies $g(x) \leq f_F(x)$ for all F, so $g(x) \leq f(x)$.

Corollary 1. Let A be a closed subset of a Hilbert space H. Then there is an $f \in B^1_M(H, R)$ with $f(x) \ge \frac{1}{4}Md^2(x, A)$, and $g(x) \le f(x)$ if $g \in B^1_M(H, R)$ and g(A) = Dg(A) = 0.

Proof. Take $f_0 = f_1 = 0$ on A. Then $d_y(x) = \frac{1}{4}M(y - x)^2$, and the corollary follows.

Remark. If A is convex, then $\frac{1}{2}Md^2(x, A) \in B^1_M(H, R)$ by Proposition 7, and $f(x) \leq \frac{1}{2}Md^2(x, A)$ by Proposition 1. So $f(x) = \frac{1}{2}Md^2(x, A)$.

Corollary 2. Any locally finite open cover $\{V_i\}$ of a Hilbert space H is the supporting set for a C^1 partition of unity.

Proof. Find $f_i \in B_i^1(H, R)$ with $f_i(x) > d^2(x, H - V_i)$. Then $V_i = f_i^{-1}(R^+)$, and by defining $\varphi_i(x) = f_i(x) / \sum_j f_j(x)$ we have a C^1 partition $\{\varphi_i\}$ of unity with $V_i = \varphi_i^{-1}(R^+)$. Actually $\varphi_i \in U^1(H, R)$ in the sense of the remark following Corollary 2 of § 2.

Corollary 3. $C^{1}(H, F)$ is uniformly dense in $C^{0}(H, F)$ for a Hilbert space H and any Banach space F.

Corollary 4. Given A and B closed in a Hilbert space H with $d(A, B) = \delta > 0$, there is an $f \in B^1_{4/\delta^2}(H, R)$ with $0 \le f(x) \le 1$ and f(A) = 0 and f(B) = 1.

Proof. Let $B' = \{x | d(x, A) \ge \delta\}$. Let $f_0(A) = 0$, $f_0(B') = 1$, $f_1(A) = f_1(B^1) = 0$. Then (5) holds with $M = 4/\delta^2$, and we have $f \in \frac{1}{4/\delta^2}(H, R)$ with f(A) = 0, f(B') = 1.

Since $d(x, (A \cup B')) \le \delta$ for all $x, m = \sup f(x) \le \infty$. Suppose m > 1, and find a sequence x_n in H - B' with $f(x_n) \to m$ and a sequence $z_n \in A$ with

 $||x_n - z_n|| \le \delta$. Then $m \ge f(x_n + \delta(\frac{1}{4}Df(x_n))) \ge f(x_n) + \frac{1}{8}\delta^2 ||Df(x_n)||^2$ by Proposition 1. So $||Df(x_n)|| \to 0$. But then (5) implies $m = \lim_n |f(x_n) - f(z_n)| \le 1$, a contradiction, so $m \le 1$ and $0 \le f(x) \le 1$.

Corollary 5. Suppose A is closed in Hilbert space H, and $f_0: H \to R^n$ and $f_1: H \to L(H, R^n)$ with

$$\langle u, f(y) \rangle \leq \langle u, f(x) \rangle + \langle u, \frac{1}{2} (Df(x) + Df(y))[y - x] \rangle$$

+ $\frac{1}{4} M (x - y)^2 - \frac{1}{4} (\langle u, Df(y) - Df(x) \rangle)^2 / M$

for all $x, y \in H$ and $u \in \mathbb{R}^{n*}$, ||u|| = 1. Then there is an $f \in B^1_{M\sqrt{n}}(H, \mathbb{R}^n)$ such that $f(x) = f_0(x)$ and $Df(x) = f_1(x)$ for x in A.

Proof. Let e_1, \dots, e_n be an orthonormal basis for \mathbb{R}^n , extend $\langle f_0, e_i \rangle$ to f^1, \dots, f^n and set $f(x) = f^1(x)e_1 + \dots + f^n(x)e_n$.

Corollary 6. Given $g(x) \in B^0_M(H, R)$, a Hilbert space H and an $\varepsilon > 0$, there is an $f \in B^1_{M^2/\varepsilon}(H, R)$ with $|f(x) - g(x)| < \varepsilon$ for all x.

Proof. Let $A_n = g^{-1}(n\varepsilon)$, $n = 0, \pm 1, \pm 2, \cdots$. Then $d(A_n, A_{n+1}) \ge \varepsilon/M$, and by Corollary 4 we can find $f_n \in B^1_{M^2/\varepsilon}(H, R)$ with $f_n(A_n) = n\varepsilon$, $f_n(A_{n+1}) = (n + 1)\varepsilon$ and $n\varepsilon \le f_n \le (n + 1)\varepsilon$. Let $f(x) = n\varepsilon$ if $x \in A_n$, and $f(x) = f_n(x)$ if $n\varepsilon \le f(x) \le (n + 1)\varepsilon$.

Remark. This corollary is not true if R is replaced by l^{2} . Take $H = l^{2}$, and let $\sigma(x) = \sum_{i} |x_{i}| e_{i}$ where $\{e_{i}\}$ is an orthonormal basis. Then $\sigma \in B_{1}^{0}(l^{2}, l^{2})$, but $\sup_{\|x\|\leq 1} \|f(x) - \sigma(x)\| \geq 1$ for $f \in B^{1}(l^{2}, l^{2})$. This was proved in Wells [12].

5. B^2 functions and some open problems

The corollary of the next theorem shows that Corollary 4 of § 4 is not true if B^1 is replaced by B^2 even for A convex and bounded.

Theorem 1. Suppose $f \in B^2_M(\mathbb{R}^N, \mathbb{R})$, f(A) = 0, and $f(x) \ge 1$ when $d(x, A) \ge 1$ where $A = \{x | x_i \text{ (i-th coordinate of } x) \le 0, ||x|| \le 1\}$. Then $N < M^2 + 36M^4$.

Proof. Assume $f \in B_M^2(\mathbb{R}^n, \mathbb{R})$, f(A) = 0, $f(\{x | d(x, A) \ge 1\}) \ge 1$ and $N \ge M^2 + 36M^4$. Let $g(x) = \sum_{p \in S_N} f(p(x))/N!$ where S_N is the set of all permutations of the N coordinates of x. Then $g \in B_M^2(\mathbb{R}^n, \mathbb{R})$ with g(A) = 0 and $g(\{x | d(x, A) \ge 1\}) \ge 1$. Define points y^n for $n = 0, \dots, M^2$ with $y_i^n = 1/M$ for $i = 1, \dots, n, y_i^n = -1/M$ for $i = n + 1, \dots, M^2$, and $y_i^n = 0$ for $i = M^2 + 1, \dots, N$. Define z^n for $n = 1, \dots, M^2$ with $z_i^n = 1/M$ for $i = 1, \dots, n-1$, $z_n^n = 0, z_i^n = -1/M$ for $i = n + 1, \dots, M^2$, and $z_i^n = 0$ for $i = M^2 + 1, \dots, N$. By symmetry, $\frac{\partial g}{\partial x_n}(z^n) = \frac{\partial g}{\partial x_m}(z^n)$ for $m = M^2 + 1, \dots, N$. So

$$\left|\frac{\partial g}{\partial x_n}(z^n)\right|^2 \leq \frac{1}{36M^4} \sum_{m=M^2+1}^N \left|\frac{\partial g}{\partial x_m}(z^n)\right| \leq \frac{1}{36M^4} \|Dg(z^n)\|^2 \leq \frac{1}{36M^2},$$

or $\left|\frac{\partial g}{\partial x_n}(z^n)\right| \leq \frac{1}{6M}$. Now by Proposition 1,

$$egin{aligned} g(y^n) &\leq g(z^n) + rac{1}{M} rac{\partial g}{\partial x_n}(z^n) + rac{1}{2} rac{1}{M^2} rac{\partial^2 g}{\partial x_n^2}(z_n) + rac{M}{6} \Big(rac{1}{M}\Big)^2 \ &\leq g(z^n) + rac{1}{6M^2} + rac{1}{2} rac{1}{M^2} rac{\partial^2 g^n}{\partial x_n^2}(z^n) + rac{1}{6M^2} \,, \end{aligned}$$

$$g(y^{n-1}) \ge g(z^n) - \frac{1}{6M^2} + \frac{1}{2} \frac{\partial^2 g}{\partial x_n^2}(z_n) - \frac{1}{6M^2},$$

so $g(y^n) \le g(y^{n-1}) + \frac{2}{3}M^{-2}$. Summing up from $n = 1, \dots, M^2$ gives $g(y^{m^2}) \le g(y^0) + 2/3$. But $y^0 \in A$ with $g(y^0) = 0$, and $d(y^{M^2}, A) = 1$ with $g(y^{M^2}) \ge 1$, a contradiction. Hence $N < M^2 + 36M^4$.

Corollary 1. Let $A = \{x | x \in l^2, x_i \leq 0, ||x|| \leq 1\}$, and suppose $f \in C^2(l^2, R)$ with f(A) = 0 and $f(\{x | d(x, A) \geq 1\}) \geq 1$. Then $f \notin B^2(l^2, B)$.

Proof. Obvious from the theorem.

Corollary 2. There exist a closed subset of l^2 and functions $f_0, f_1, f_2, f_3: A \rightarrow R, L(l^2, R), L_s^2(l^2, R), L_s^3(l^2, R)$ satisfying the conditions of the Whitney extension theorem with the property that there is no C^3 or B^2 function agreeing with f_0 on the closed set.

Proof. Let $A = \{x | x_1 = 1, x_i \le 0 \text{ for } j = 2, 3, \dots, \text{ and } ||x - e_1|| \le 1\}$, and $B = \{x | x_1 = 1, d(x, A) \ge 1\}$. Let CA and CB be the cones formed on Aand B with the origin. Define $f_0(x) = x_1^8$, $f_1(x)[h] = 8x_1h_1$, $f_2(x)[h] = 56x_1^6h_1^s$, $f_3(x)[h] = 336x_1^5h_1^3$ for $x \in CA$, and $f_0(x) = f_1(x) = f_2(x) = f_3(x) = 0$ on CB. Then it is easy to see that these functions satisfy the hypotheses of the Whitney extension theorem. If $f \in C^3(l^2, R)$ or $B^2(l^2, R)$, and $f|_{CA\cup CB} = f_0(x)$, then in the first case $D^3f(x)$ is bounded near zero, and in either case $f|_{x_1=a} \in B^2(\{x | x_1 = a\}, R)$ for some a > 0. But this is impossible by Corollary 1. q.e.d.

We list some open problems:

(1) Does $||x|| \in C^1(E - \{0\}, R)$ imply $d(x, A) \in C^1(E - A, R)$ whenever A is convex and closed?

(2) Do nonseparable \mathscr{L}^p , p > 2, have C^1 partitions of unity?

(3) Does nonseparable Hilbert space have C^2 partitions of unity?

(4) Is Theorem 2 of § 4 true for Banach-valued functions on H or for functions on non-Hilbertian Banach spaces with an appropriate change in (1)?

Added in proof. Since the submission of this paper Henryk Taruńcyk has obtained in [9] results which settle questions 2 and 3. We summarize some of these results:

(i) A Banach space E admits C^p , $p = 1, 2, \dots; \infty$ partitions of unity if and only if there are a set A and a homeomorphic imbedding $u: E \to c_0(A)$ with $p_{\alpha} \circ u(x) \in C^p$ for all $\alpha \in A$ where p_{α} is the projection of $c_0(A)$ on its α -th coordinate. Thus Taruńcyk observes that any Hilbert space $\ell_2(B)$ has C^{∞} partitions of unity by taking $A = B \cup \{1\}$ and by defining u(x) by

$$p_{\alpha} \circ u(x) = ||x||^2 \quad \text{for } \alpha = 1$$

= $x_{\beta} \quad \text{for } \alpha = \beta, \ \beta \in B$.

(ii) If E is a reflexive Banach space with an equivalent locally uniformly convex norm of class C^p , then E admits C^p partitions of unity.

Thus \mathscr{L}^p has C^{∞} p.o.u. if p is an even integer, and C^{p-1} p.o.u. if p is an odd integer.

(iii) A Banach space E has C^p p.o.u. if and only if there is a σ -locally finite base of the topology of E consisting on nonzero sets of real valued functions of class C^p .

(iv) In a personal communication Taruńcyk has shown that E has B^p p.o.u. $p < \infty$ if there is a σ -discrete base of the topology of E consisting of nonzero subsets of real valued functions of class B^p . The author has proved the converse statement.

This generalizes Theorem 1. Also using Corollary 1 and the fact that every metric space has a σ -discrete base for the topology, it follows that every Hilbert space admits B^1 partitions of unity.

Bibliography

- [1] R. Abraham & J. Robbin, *Transversal mappings and flows*, Benjamin, New York, 1967.
- [2] R. Bonic & J. Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966) 877-898.
- [3] R. Bonic & F. Reis, A characterization of Hilbert space, An. Acad. Brasil. Ci. 38 (1966) 239-241.
- [4] J. Dieudonné, Foundations of modern analysis, Academic Press, New York, 1960.
- [5] J. Eells, Jr., A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966) 751– 807.
- [6] S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962.
- [7] R. Phelps, A representation for bounded convex sets, Proc. Amer. Math. Soc. 11 (1960) 976–983.
- [8] G. Restrepo, Differentiable norms in Banach spaces, Bull. Amer. Math. Soc. 70 (1964) 413–414.
- [9] H. Taruńcyk, Smooth partitions of unity on some non-separable Banach spaces, to appear in Studia Math.
- [10] J. Wells, Differentiable functions on c_0 , Bull. Amer. Math. Soc. 75 (1969) 117-118.
- [11] —, C¹ partitions of unity on non-separable Hilbert space, Bull. Amer. Soc. 77 (1971) 804–807.
- [12] —, Smooth Banach spaces and approximations, Thesis, California Institute of Technology, 1969.

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE