DIFFERENTIABLE FUNCTIONS ON BANACH SPACES WITH LIPSCHITZ DERIVATIVES

JOHN C. WELLS

Introduction

In this paper we study those functions in $C^{k}(E, F)$, (i.e., functions from two Banach spaces E to F having k continuous Frechet derivatives), whose k-th derivative is Lipschitz with constant M. On R^{n} we construct C^{1} functions whose derivatives are piecewise linear with Lipschitz constant M. From this we obtain a Whitney type extension theorem for real-valued differentiable functions on Hilbert space, and show that every Hilbert space has C^{1} partitions of unity. We examine the existence of "nontrivial" C^{k} functions with Lipschitz derivatives on separable Banach space and show that c_{0} has no "nontrivial" C^{1} function with Lipschitz derivative. We show that the Whitney extension theorem fails for separable Hilbert space by exhibiting a C^{3} function on a closed subset of l^{2} having no C^{3} extension.

We make the definitions:
$B_{M}^{k}(E, F)=\left\{f \mid f \in C^{k}(E, F)\right.$ and $\left\|D^{k} f(y)-D^{k} f(x)\right\| \leq M\|x-y\|$ for all $\left.x, y\right\}$, $B^{k}(E, F)=\left\{f \mid f \in B_{M}^{k}(E, F)\right.$ for some $\left.M\right\}$.

As in Bonic and Frampton [2] a Banach space E is said to be B^{k} smooth if there is a function $f \in B^{k}(E, R)$ with $f(0) \neq 0$ and support (f) bounded. Then B^{k+1} smoothness implies B^{k} smoothness, and E is said to be B^{∞} smooth if E is B^{k} smooth for all k. We briefly summarize some results concerning C^{k} smoothness of separable Banach spaces. We refer to [2] and Eells [5] for more details.

1. Hilbert space is C^{∞} smooth with C^{∞} norm away from zero.
2. c_{0} is C^{∞} smooth with equivalent C^{∞} norm away from zero. Kuiper.
3. A Lebesgue space \mathscr{L}^{p} is C^{∞} smooth for an even integer p, and C^{p-1} smooth but not D^{p} smooth for an odd integer p; Bonic and Frampton [2].
4. If E is separable, then E has a norm in $C^{1}(E-\{0\}, R)$ if and only if E^{*} is separable; Bonic and Reis [3].
5. Any C^{k} smooth separable Banach space has C^{k} partitions of unity; Bonic and Frampton [2].

In § 2 we prove some basic properties of $B_{M}^{k}(E, F)$, the most useful one being that $\left\{f\|\|f\| \leq b\right.$ on some open subset of $E\} \cap B_{M}^{k}(E, F)$ is closed in the

[^0]topology of pointwise convergence. We observe from [2] that an \mathscr{L}^{p} space is B^{∞} smooth for an even integer p and $B^{[p-1]}$ smooth when p is not. We show that c_{0} is not B^{1} smooth and that every B^{k} smooth separable Banach space has B^{k} partitions of unity. These last two results were announced in Wells [10].

The distance function from a convex set is studied in $\S 3$, and we show that if $\|x\|^{2} \in B_{M}^{1}(E, R)$ then distance ${ }^{2}(x, A) \in B_{M}^{1}(E, R)$ for closed and convex A.

In $\S 4$ we make a cellular decomposition of R^{n} on which a B_{M}^{1} function is constructed with prescribed values and derivatives at a finite number of points. Using these functions we obtain a necessary and sufficient condition for a realvalued function defined on a closed subset of Hilbert space to have a B_{M}^{1} extension to all of Hilbert space. One of the properties of this extension implies that every closed subset of Hilbert space is the zero set of a $B^{1}(H, R)$ function. Thus a nonseparable Hilbert space has C^{1} partitions of unity by an easy construction; this result was announced in Wells [11].

In $\S 5$ we exhibit a closed convex subset in l^{2} for which there exists no B^{2} function satisfying $f(A)=0$ and $f(\{x \mid\|d(x, A)\| \geq 1\}) \geq 1$. A corollary of this is that the Whitney extension theorem fails for C^{3} functions on Hilbert space. We end the section with some open problems.

2. B^{k} functions and B^{k} smooth Banach spaces

If f has a j-th Frechet derivative at x, we will let $D^{j} f(x)[h]$ denote the j-multilinear map $D^{j} f(x)$ acting on (h, \cdots, h). A version of Taylor's theorem reads (refer to Abraham and Robbin [1] and Dieudonné [4]):

Taylor's theorem. If $f(x) \in C^{k}(E, F)$ where E and F are Banach spaces, then

$$
\begin{aligned}
f(x+ & h)-f(x)-\sum_{i=1}^{k} \frac{D^{i} f(x)[h]}{i!} \\
& =\int_{0}^{1} \frac{(1-t)^{k-1}}{(k-1)!}\left(D^{k} f(x+t h)-D^{k} f(x)\right)[h] d t
\end{aligned}
$$

Proposition 1. If $f \in B_{M}^{k}(E, F)$, then

$$
\begin{equation*}
\left\|f(x+h)-f(x)-\sum_{j=1}^{k} D^{j} f(x)[h] / j!\right\| \leq M\|h\|^{k+1} /(k+1)! \tag{1}
\end{equation*}
$$

Proof. Immediate from Taylor's theorem.
Proposition 2. $B_{M}^{k}(E, F)=\{f \mid 1) f$ is bounded on some open set, 2) for every finite dimensional linear subspace $H,\left.f\right|_{H}(x)$ is continuous, 3) letting $\Delta_{h} f(x)=f(x+h)-f(x),\left\|\Delta_{h}^{k+1} f(x)\right\| \leq M\|h\|^{k+1}$ for all x and h in $\left.E\right\}$.

Proof. Suppose $f \in B_{M}^{k}(E, F)$. By the mean value theorem, we have

$$
\begin{align*}
\Delta_{h}^{k+1} f(x) & =\Delta_{h} \Delta_{h}^{k} f(x)=\Delta_{h}^{k} D f\left(x+c_{1} h\right)[h] \\
& =\cdots=\Delta_{h} D^{k} f\left(x+c_{1} h+\cdots+c_{k} h\right)[h] \tag{2}
\end{align*}
$$

for some $0<c_{i}<1$. So $\left\|\Delta_{h}^{k+1} f(x)\right\| \leq M\|h\|^{k+1}$.

Suppose that $f(x)$ satisfies the conditions on the right side of (2). For any finite dimensional linear subspace H, find a measure μ_{H} on H and a $\varphi_{H, n} \in C^{\infty}(H, R)$ with $\int \varphi_{H, n} d_{\mu_{H}}=1, \varphi_{H, n} \geq 0$ and $\|y\|>1 / n \Rightarrow y \notin$ support $\varphi_{H, n}$. Define $f_{H, n}(x)$ by $f_{H, n}(x)=\int f(x+y) \varphi_{H, n}(y) d_{\mu_{H}}(y)$. Then

$$
f_{H, n}(x+h)-f_{H, n}(x)=\int(x+y)\left(D \varphi_{H, n}(y)[-h]+o(\|h\|)\right) d_{\mu_{H}}(y),
$$

so

$$
\left\|f_{H, n}(x+h)-f_{H, n}(x)-\int f(x+y) D \varphi_{H, n}(y)[-h] d_{\mu_{H}}(y)\right\|=o(\|h\|),
$$

and $D f_{H, n}(x)[h]=\int f(x+y) D \varphi_{H, n}(y)[-h] d_{\mu_{H}}(y)$. Repeating this argument gives $f_{H, n} \in C^{\infty}(H, F)$. Now $\operatorname{Lim}_{n} f_{H, n}(x)=f(x)$ for $x \in H$, and

$$
\left\|\Delta_{h}^{k+1} f_{H, n}(x)\right\|=\left\|\int \Delta_{h}^{k+1} f(x+y) \varphi_{H, n}(y) d_{\mu}(y)\right\| \leq M\|h\|^{k+1} .
$$

So by (2) we have $\sup _{x}\left\|D^{k+1} f_{H, n}(x)\right\| \leq M$ and $f_{H, n} \in B_{M}^{k}(H, F)$, and $D^{i} f_{H, n}(x)$ is uniformly equicontinuous on bounded sets in H for $i \leq k$. By the AscoliArzela theorem, there are a subsequence m of n and a $d_{H}^{i} f(x) \in L_{s}^{k}(H, F)$ with $\lim _{m} D^{i} f_{H, m}(x)=d_{H}^{i} f(x)$. Using Proposition 1 and taking $m \rightarrow \infty$ we obtain $\left\|f(x+h)-f(x)-\sum_{i=1}^{k} d_{H}^{i} f(x)[h] / i!\right\| \leq M\|h\|^{k+1} /(k+1)!$.

For any other finite dimensional $H^{\prime}, d_{H^{i}}^{i} f(x)[h]=d_{H}^{i} f(x)[h]$ if $x, x^{\prime}, h \in H \cap$ H^{\prime}, so we have maps $d^{i} f(x) i$-multilinear from E to F at each x with

$$
\left\|f(x+h)-f(x)-\sum_{i=1}^{k} d^{i} f(x)[h] / i!\right\| \leq M\|h\|^{k+1} /(k+1)!
$$

Suppose that f is bounded near x_{0}. Find δ such that $\|f(y)\| \leq B$ when $\left\|y-x_{0}\right\|$ $\leq \delta$. Then for $\|h\|=1$ we have

$$
\begin{aligned}
& \left\|f\left(x_{0}+\frac{\delta h i}{k}\right)-f\left(x_{0}\right)-\sum_{j=1}^{k} \frac{d^{j} f(x)}{j!}\left[\frac{\delta h i}{k}\right]\right\| \\
& \quad \leq \frac{1}{(k+1)!} M\left(\frac{\delta i}{k}\right)^{k+1} \leq \frac{M \delta^{k+1}}{(k+1)!}
\end{aligned}
$$

so $\left\|\sum_{j=1}^{k}(i / k)^{j} d^{j} f(x)[\delta h] / j!\right\| \leq 2 B+M \delta^{k+1} /(k+1)!$. Since the $k \times k$ matrix $A_{i j}=(i / k)^{i} / j!$ is invertible, $\left\|d^{j} f(x)[h]\right\| \leq k\left\|A^{-1}\right\|\left(2 B+M \delta^{k+1} /(k+1)!\right) / \delta^{j}$, and so $d^{i} f\left(x_{0}\right)$ is bounded at x_{0} for $i=1, \cdots, k$. Now $f_{H, m} \in B_{M}^{k}(E, F)$, so $\left\|D^{k} f_{H, m}(x+h)\left[h^{\prime}\right]-D^{k} f_{H, m}(x)\left[h^{\prime}\right]\right\| \leq M\|h\|\left\|h^{\prime}\right\|^{k+1}$ for $x, h, h^{\prime} \in H$. Using the fact that $d^{k} f\left(x_{0}\right)$ is bounded at x_{0} and taking limits over m give
$d^{k} f(x) \in B_{M}^{0}\left(E, L_{s}^{k}(E, F)\right)$. Now $d^{i} f(x+h)-d^{i} f(x)=\operatorname{Lim}_{m} D^{i} f_{H, m}(x+h)-$ $D^{i} f_{H, m}(x)=\operatorname{Lim} \int_{0}^{1} D^{j+1} f_{H, m}(x+t h)[h] d t$. By the uniform convergence of $D^{j+1} f_{H, m}(x+t h)$ on $0 \leq t \leq 1$, this is equal to $\int_{0}^{1} d^{j+1} f(x+t h)[h] d t$. Thus $d^{j} f(x+h)-d^{j} f(x)=\int d^{j+1} f(x+t h)[h] d t$, and by taking $j=k-1, k-2$, $\cdots, 0$ we have $D d^{j} f(x)=d^{j+1} f(x)$ and $f(x) \in B_{M}^{k}(E, F)$ with $D^{j} f=d^{j} f$.
Proposition 3. Suppose $f_{p} \in B_{M}^{k}(E, F)$ and $\operatorname{Lim}_{p} f_{p}(x)=f(x)$ for all x in E. If f_{p} are uniformly bounded on some open set, then $f \in B_{M}^{k}(E, F)$ and $D^{j} f(x)[h]$ $=\operatorname{Lim}_{p} D^{j} f_{p}(x)[h]$.

Proof. The $\left.f_{p}\right|_{H}(x)$ are uniformly equicontinuous on bounded sets in a finite dimensional linear subspace H of E, so $\left.f\right|_{H}(x)$ is continuous. Also

$$
\left\|\Delta_{h}^{k+1} f(x)\right\|=\left\|\operatorname{Lim}_{p} \Delta_{h}^{k+1} f_{p}(x)\right\| \leq M \cdot\|h\|^{k+1}
$$

By Proposition 2, $f \in B_{M}^{k}(E, F)$. Using (2) we have $D^{j} f(x)[h]=\operatorname{Lim}_{t \rightarrow 0} \Delta_{t h}^{j} f(x) / t^{j}$ $=\operatorname{Lim}_{t \rightarrow 0} \operatorname{Lim}_{p} \Delta_{t h}^{j} f_{p}(x) / t^{j}=\operatorname{Lim}_{p} \operatorname{Lim}_{t \rightarrow 0} \Delta_{t h}^{j} f_{p}(x) / t^{j}=\operatorname{Lim}_{p} D^{j} f_{p}(x)[h]$ by the uniform convergence of $\operatorname{Lim}_{t \rightarrow 0} \Delta_{t h}^{j} f_{p}(x) / t^{j}$ in p.

Proposition 4 (Inverse Taylor's theorem). Suppose $f: E \rightarrow F$ is bounded on some open set, and for all x there are maps $d^{j} f(x): j$-multilinear from E to F satisfying

$$
\begin{equation*}
\left\|f(x+h)-f(x)-\sum_{j=1}^{k} d^{j} f(x)[h] / j!\right\| \leq M \cdot\|h\|^{k+1} /(k+1)! \tag{3}
\end{equation*}
$$

Then $f \in B_{M}^{k}(E, F)$ and $D^{j} f(x)=d^{j} f(x)$.
Proof. For any x and $h,\left\|f(x+p h)-f(x)-\sum_{j=1}^{k} p^{j} d^{j} f(x)[h] / j!\right\| \leq$ $M \cdot p^{k+1}\|h\|^{k+1}$. Also $\sum_{p=0}^{k+1}(-1)^{p}\binom{k+1}{p} p^{j}=0$ for $0 \leq j \leq k$, so multiplying the first equations by $(-1)^{p}\binom{k+1}{p}$ and adding from $p=0, \cdots, k+1$ give $\left\|\Delta_{h}^{k+1} f(x)\right\|=\left\|\sum_{p=0}^{k+1}(-1)^{p}\binom{k+1}{p} f(x+p h)\right\| \leq M \sum_{p=0}^{k+1}\binom{k+1}{p} p^{k+1}\|h\|^{k+1}$. Hence by Proposition 2, $f \in B^{k}(E, F)$ and $D^{j} f(x)=d^{j} f(x)$. Suppose $x, h, h^{\prime} \in \mathrm{a}$ finite dimensional linear subspace H, and let $f_{H, n}=\int f(x+y) \varphi_{H, n}(y) d_{\mu_{H}}(y)$ as in Proposition 2. Then $f_{H, n}$ satisfies (3) with $D^{j} f_{H, n}=\int D^{j} f(x+y) \varphi_{H, n}(y) d_{\mu_{H}}(y)$ and so $\left\|D^{k+1} f_{H, n}\right\| \leq M$. Thus $f_{H, n} \in B_{M}^{k}(H, F)$, and $\| D^{k} f(x+h)\left[h^{\prime}\right]-$ $D^{k} f(x)\left[h^{\prime}\right]\left\|=\operatorname{Lim}_{n}\right\| D^{k} f_{H, n}(x+h)\left[h^{\prime}\right]-D^{k} f_{H, n}(x)\left[h^{\prime}\right]\|\leq M\| h\|\cdot\| h^{\prime} \|^{k}$. So $f \in B_{M}^{k}(E, F)$. q.e.d.

By proposition 2 we can characterize $B_{M}^{k}(E, F)$ without mentioning the derivatives.

Even though at every $x, f(x)=\operatorname{Lim}_{p} f_{p}(x)$ in norm, $D^{j} f_{p}(x)$ need not approach $D^{j} f(x)$ in norm as the example $f_{n}(x) \stackrel{p}{=}\left\langle e_{n}, x\right\rangle$ where e_{n} is an orthonormal basis in l^{2} and $f(x)=0$ shows.

Corollary 1. For any real number b and open U in $E, X=B_{M}^{k}(E, F) \cap$ $\{f \mid\|f(x)\| \leq b$ for $x \in U\}$ is compact in the topology of pointwise convergence on E to the weak topology on F.

Proof. Let $b(x)=\sup _{f \in X}\|f(x)\|$. Then by Proposition 3, $B_{M}^{k}(E, F) \cap\{f \mid\|f(x)\|$ $\leq b$ for $x \in U\}$ is closed in the compact $\prod_{x \in E} b(x) \subset F^{E}$.

Corollary 2. $\quad B_{M}^{1}(E, F)=\left\{f \mid f(x) \in C^{0}(E, F)\right.$ and $\| f(x+h)+f(x-h)-$ $\left.2 f(x)\|\leq M\| h \|^{2}\right\}$.

Remarks. The class $B^{k}(E, F)$ may be extended to a class $U^{k}(E, F)=$ $\left\{f \mid f \in C^{k}(E, F)\right.$ and for every x in E there are a neighborhood U of x and a M such that $\left.\left.f\right|_{U} \in B_{M}^{k}(U, F)\right\}$. Then $C^{k+1}(E, F) \subset U^{k}(E, F) \subset C^{k}(E, F)$, and Propositions $1, \cdots, 4$ have obvious generalizations to $U^{k}(E, F)$.

Theorem 1. Suppose that E is a B^{p} smooth separable Banach space, and $\left\{U_{\alpha}\right\}$ is an open cover. Then there exists a partition $\left\{f_{i}\right\}$ of unity refining $\left\{U_{\alpha}\right\}$ with $f_{i} \in B^{p}(E, R)$ for each i.

Proof. We find two countable locally finite open covers $\left\{V_{i}^{1}\right\},\left\{V_{i}^{2}\right\}$ refining $\left\{U_{a}\right\}$ and maps $g_{i} \in B^{p}(E, R)$ such that $\bar{V}_{i}^{1} \subset V_{i}^{2}, 0 \leq g_{i}(x) \leq 1, g_{i}\left(\bar{V}_{i}^{1}\right)=1$ and $g_{i}\left(C V_{i}^{2}\right)=0$. For every $x \in E$ find a $\varphi_{x} \in B^{p}(E, R)$ such that $0 \leq \varphi_{x} \leq 1$, $\varphi_{x}(x)=1$ and that support φ_{x} is contained in some U_{α}. Let $A_{x}=\left\{y \mid \varphi_{x}(y)>\right.$ $1 / 2\}$. Then $\left\{A_{x}\right\}$ covers E and, since E is Lindelof, we can extract a countable subset $\left\{A_{x_{i}}\right\}$ of $\left\{A_{x}\right\}$ which also covers E. Now let $B_{j}=\left\{t_{j} \geq 1 / 2, t_{i} \leq 1 / 2+\right.$ $1 / j, i<j\}, C_{j}=\left\{t_{j} \leq 1 / 2-1 / j\right.$, or $t_{i} \geq 1 / 2+2 / j$, for some $\left.i<j\right\}$ in R^{j}. Then distance $\left(B_{j}, C_{j}\right)>0$, and we can find $\eta_{j} \in B^{p}\left(R^{j}, R\right)$, with $\eta_{j}\left(t_{1}, \cdots, t_{j}\right)=1$ for $\left(t_{1}, \cdots, t_{j}\right) \in B_{j}$ and $\eta\left(t_{1}, \cdots, t_{j}\right)=0$ for $\left(t_{1}, \cdots, t_{j}\right) \in C_{j}$. Let $\psi_{1}(x)=\varphi_{x_{1}}$ and $\psi_{j}(x)=\eta_{j}\left(\varphi_{x_{1}}(x), \cdots, \varphi_{x_{j}}(x)\right)$ for $j \geq 2$. Define $V_{i}^{1}=\left\{x \mid \psi_{i}(x)>1 / 2\right\}$, $V_{i}^{2}=\left\{x \mid \psi_{i}(x)>0\right\}$. Since $V_{i}^{2} \subset$ support $\varphi_{x_{1}},\left\{V_{i}^{2}\right\}$ refines $\left\{U_{\alpha}\right\}$. To show that $\left\{V_{i}^{1}\right\}$ covers E, suppose that $x \in E$ and that $i(x)$ is the first integer for which $\varphi_{i}(x) \geq 1 / 2$. Such an integer exists because the A_{i} 's cover E. Then $\psi_{i(x)}=1$, and hence $x \in V_{i(x)}^{1}$, so $\left\{V_{i}^{1}\right\}$ covers E. Now again suppose that $x \in E$ and find an integer $n(x)$ such that $\varphi_{n(x)}(x)>1 / 2$. Then there exist, by the continuity of $\varphi_{n(x)}$, a neighborhood N_{x} of x and an $a_{x}>1 / 2$ such that $\inf _{y \in N_{x}} \varphi_{n(x)}(y) \geq a_{x}$. Pick k large enough so that $k>n(x)$ and $2 / k<a_{x}-1 / 2$. Then for $j \geq k$, $\varphi_{n(x)}(y)>1 / 2+2 / j$ for $y \in N_{x}$, and hence $\psi_{j}(y)=0$ for $y \in N_{x}$. Therefore $N_{x} \cap V_{j}^{2}=\emptyset$ for $j \geq k$ so that $\left\{V_{i}^{2}\right\}$ is locally finite. Finally take some $h \in B^{p}(R, R)$ with $h(t)=1$ for $t \leq 0$ and $h(t)=0$ for $t \geq 1 / 2,0 \leq h \leq 1$. Defining $g_{i}(x)=h\left(\psi_{i}(x)\right)$ we have that $g_{i} \in B^{p}(E, R)$ and $0 \leq g \leq 1, g_{i}\left(\bar{V}_{i}^{1}\right)=1$ $g_{i}\left(C V_{i}^{2}\right)=0$. Now let $f_{1}(x)=g_{1}(x)$ and $f_{i}(x)=g_{i}(x)\left(1-g_{1}(x)\right) \cdots\left(1-g_{i-1}(x)\right)$ for $i \geq 2$. Then $f_{i} \in B^{p}(E, R)$ and support $f_{i} \subset$ support $g_{i} \subset V_{i}^{2}$, hence every
point of E has a neighborhood on all but a finite number of f_{i} 's vanish. Since $\left\{x \mid g_{i}(x)=1\right\} \supset V_{i}^{2}, \prod_{i=1}^{n}\left(1-g_{i}(x)\right)=0$ for every x and some n. Also $\sum_{i=1}^{n} f_{i}(x)=1-\prod_{i=1}^{n}\left(1-g_{i}(x)\right)$, so $\sum_{i=1}^{n} f_{i}(x) \equiv 1$ and $\left\{f_{i}\right\}$ is a partition of unity refining $\left\{U_{\alpha}\right\}$ with $f_{i} \in B^{p}$ for each i. q.e.d.

For the \mathscr{L}^{p} spaces it can be shown that for p an even integer $D^{p+1}\|x\|^{p}=0$ and that for p not an even integer $\left\|D^{k}\right\| x+h\left\|^{p}-D^{k}\right\| x\left\|^{p}\right\| \leq(p!/ k!)\|h\|^{p-k}$ (see Bonic and Frampton [2]). So \mathscr{L}^{p} is B^{∞} smooth for p an even integer and \mathscr{L}^{p} is $B^{[p-1]}$ smooth for p not an even integer. Not every C^{1} smooth space is B^{1} smooth as the following corollary shows (see also Wells [10]).

Theorem 2. If $n=2^{N}$, endow n-dimensional Euclidean space E^{n} with the norm $\|x\|=\sup _{i=1, \cdots, n}\left|x_{i}\right|$. Suppose $f \in B_{M}^{1}\left(E^{n}, R\right)$ with $f(0)=0$ and $f(x) \geq 1$ when $\|x\| \geq 1$. Then $M \geq 2 N$.

Proof. Assume $M<2 N$, and let $A=\left\{x \mid x_{i}= \pm 1 / N\right.$ for $i=1, \cdots, n$ except for at most one i_{0} where $\left.\left|x_{i_{0}}\right| \leq 1 / N\right\}$. Then A is radially symmetric and connected, so there is an $h_{1} \in A$ with $D f(0)\left[h_{1}\right]=0 . h_{1}$ has at least 2^{N-1} components $=1 / N$. Likewise there is an $h_{2} \in A$ with $D f\left(h_{1}\right)\left[h_{2}\right]=0$, and we can choose $\sigma_{2}= \pm 1$ so that $h_{1}+\sigma_{2} h_{2}$ has at least 2^{N-2} components equal to $2 / N$. Inductively choose $h_{k} \in A$ and $\sigma_{k}, k=3, \cdots, N$, such that $D f\left(h_{1}+\sigma_{2} h_{2}\right.$ $\left.+\cdots+\sigma_{k-1} h_{k-1}\right)\left[h_{k}\right]=0$ and that $h_{1}+\sigma_{2} h_{2}+\cdots+\sigma_{k} h_{k}$ has 2^{N-k} components equal to k / N. Then $\left\|h_{1}+\cdots+\sigma_{N} h_{N}\right\|=1$ so by Proposition 1 ,

$$
\begin{aligned}
|1-0| & =\left|f\left(h_{1}+\sigma_{2} h_{2}+\cdots+\sigma_{N} h_{N}\right)-f(0)\right| \\
& =\sum_{k=1}^{N}\left|f\left(h_{1}+\sigma_{2} h_{2}+\cdots+\sigma_{k} h_{k}\right)-f\left(h_{1}+\sigma_{2} h_{2}+\cdots+\sigma_{k-1} h_{k-1}\right)\right| \\
& \leq N \cdot \frac{1}{2} M N^{-2}<1
\end{aligned}
$$

a contradiction.
Corollary 3. c_{0} is not B^{1} smooth.
Proof. Assume $f \in B_{M}^{1}\left(c_{0}, R\right)$ with $f(0)=0$ and $f(1) \geq 1$ when $\|x\| \geq 1$, and restrict f to $\left\{x \mid x_{i}=0, i>2^{(M+1) / 2}\right\}$ to get a contradiction to the theorem.

Remark. In this theorem we have only used the uniform continuity of $D f$.

3. Convex sets and B_{M}^{1} functions

If A is a subset of a Banach space E, let $d(x, A)=\inf _{y \in A}\|y-x\|$. Then $d(x, A) \in B_{1}^{0}(E, R)$. If A is convex, $d(x, A)$ shares many of the properties of $\|x\|$. The first proposition is well-known. See Restrepo [8] or Phelps [7].

Proposition 5. Let A be a closed convex subset of a Banach space with norm differentiable away from zero. Suppose that $d(x, A)=\|x-p(x)\|$ for every x in E and some $p(x)$ in A. Then $d(x, A) \in D(E-A, R)$ and $D d(x, A)$ $=D\| \|(x-p(x))$.

Proof. Let $D\|\|(x)$ denote the derivative of $\| \|$ at x. Then for $x \in A$, $\|x+h-p(x)\|=\|x-p(x)\|+D\| \|(x-p(x))[h]+o(\|h\|)$, and for any h
with $p(x)+h \in A,\|x-(p(x)+h)\| \geq\|x-p(x)\|$ which implies $D\|\|(x-$ $p(x))[h] \leq 0$. Thus the hyperplane $L=\{y \mid D\| \|(x-p(x))[y-p(x)]=0\}$ is a supporting hyperplane for A at $p(x)$, and $d(x+h, L) \leq d(x+h, A) \leq$ $d(x+h, p(x))$ so that

$$
\begin{aligned}
& \|x-p(x)\|+D\| \|(x-p(x))[h] \\
& \quad \leq d(x+h, A) \leq\|x-p(x)\|+D\| \|(x-p(x))[h]+o(\|h\|) .
\end{aligned}
$$

Hence $0 \leq d(x+h, A)-d(x, A)-D\| \|(x-p(x))[h] \leq o(\|h\|)$, and so $d(x, A)$ is differentiable at x and $D d(x, A)=D\| \|(x-p(x))$.

Proposition 6. If A is closed and convex and $\|x\| \in B_{M / \alpha}^{1}(\{x \mid\|x\|>\alpha\}, R)$, then $d(x, A) \in B_{M / \alpha}^{1}(\{x \mid d(x, A)>\alpha\}, R)$.

Proof. Suppose that every point x in E has a closest point $p(x)$ in A. By Proposition 1, if $d(x, p(x)), d(x+h, p(x))>\alpha$, then $\mid d(x+h, p(x))-d(x, p(x))$ $-D\| \|(x-p(x))[h] \left\lvert\, \leq \frac{1}{2} M\|h\|^{2} / \alpha\right.$, and we have

$$
0 \leq d(x+h, A)-d(x, A)-D\| \|(x-p(x))[h] \leq \frac{1}{2} M\|h\|^{2} / \alpha
$$

by arguing as in Proposition 5, and therefore $d(x, A) \in B_{M / \alpha}^{1}(\{x \mid d(x, A)>\alpha\}, R)$ by Proposition 4. Now suppose that A is arbitrary. If H is a finite dimensional linear subspace, then every point in E has a closest point in $A \cap H$. Hence $d(x, A \cap H) \in B_{M / \alpha}^{1}(\{x \mid d(x, A)>\alpha\}, R)$. With the finite dimensional linear subspaces ordered by inclusion, $d(x, A)=\operatorname{Lim}_{H} d(x, A \cap H) \in B_{M / a}^{1}(\{x \mid d(x, A)$ $>(\alpha\}, R)$ by Proposition 3.

Proposition 7. Suppose that A is a closed convex subset of E and that $\|x\|^{2} \in B_{M}^{1}(E, R)$. Then $d^{2}(x, A) \in B_{M}^{1}(E, R)$.

Proof. Suppose every point x of E has a closest point $p(x)$ of A. Then

$$
\begin{aligned}
d^{2}(x+h, A) & \leq\|x+h-p(x)\|^{2} \\
& \leq\|x-p(x)\|^{2}+D\| \|^{2}(x-p(x))[h]+\frac{1}{2} M\|h\|^{2} .
\end{aligned}
$$

Defining $L=\{y \mid D\| \|(x-p(x))[y-p(x)]=0\}$ gives

$$
\begin{aligned}
d^{2}(x+h, A) & \geq d^{2}(x+h, L)=(\|x-p(x)\|+D\| \|(x-p(x))[h])^{2} \\
& \geq\|x-p(x)\|^{2}+2 D\| \|(x-p(x))[h](\|x-p(x)\|) \\
& =\|x-p(x)\|^{2}+D\| \|^{2}(x-p(x))[h]
\end{aligned}
$$

so $\left|d^{2}(x+h, A)-d^{2}(x, A)-D\| \|^{2}(x-p(x))[h]\right| \leq \frac{1}{2} M\|h\|^{2}$. Thus $d^{2}(x, A) \in$ $B_{M}^{1}(E, R)$ by Proposition 4. Taking limits of $d^{2}(x, A \cap H)$ over finite dimensional linear spaces H gives as above $d^{2}(x, A) \in B_{M}^{1}(E, R)$ for arbitrary A.

Remarks. If E happens to be uniformly convex, then every point x has a closest point $p(x)$ in a closed convex A and $p(x)$ is continuous. So, if $\|x\| \epsilon$ $C^{1}(E-\{0\}, R)$, then $d(x, A) \in C^{1}(E-A, R)$. The question of whether $\|x\| \epsilon$ $C^{1}(E-\{0\}, R)$ implies $d(x, A) \in C^{1}(E-A, R)$ in general remains open.

4. B^{1} functions on Hilbert space

We will suppose that H is a real Hilbert space endowed with the usual norm, and we will identify H^{*} with H and write $\langle y, x\rangle=y \cdot x$ and $\|x\|^{2}=x^{2}$.

We recall the Whitney extension theorem (see Abraham and Robbin [1]): Let $A \subset R^{n}$ be a closed subset, and $f_{i}, i=0, \cdots, k: A \rightarrow L_{s}^{i}\left(R^{n}, F\right), F$ another Banach space, and suppose

$$
\operatorname{Lim}_{x, y \rightarrow x_{0} ; x, y, x_{0} \in A}\left\|f_{j}(y)-\sum_{i=j}^{k} f_{i}(x)[y-x] /(i-j)!\right\| /\|x-y\|^{k-j}=0
$$

Then f_{0} has a C^{k} extension to R^{n} with $D^{j} f_{0}(x)=f_{j}(x)$ for $x \in A$.
In this section we prove a version of this for real-valued B^{1} functions on Hilbert space, and show that C^{1} partitions of unity exist on any non-separable Hilbert space.

Theorem 1. Let $A=\left\{p_{1}, \cdots, p_{m}\right\}$ be a finite subset of R^{n} endowed with the usual norm. Let $a_{p_{i}} \in R, y_{p_{i}} \in R^{n}$ for $i=1, \cdots, m$ satisfy

$$
\begin{equation*}
a_{p^{\prime}} \leq a_{p}+\frac{1}{2}\left(y_{p}+y_{p^{\prime}}\right) \cdot\left(p^{\prime}-p\right)+\frac{1}{4} M\left(p^{\prime}-p\right)^{2}-\frac{1}{4}\left(y_{p^{\prime}}-y_{p}\right)^{2} / M \tag{4}
\end{equation*}
$$

for all p, p^{\prime} in A. Then there exists an $f(x) \in B_{M}^{1}\left(R^{n}, R\right)$ with $f(p)=a_{p}, D f(p)=y_{p}$ for p in A and $f(x) \geq \inf _{p \in A}\left[a_{p}-\frac{1}{2} y_{p}^{2} / M+\frac{1}{4} M\left(x-p+y_{p} / M\right)^{2}\right]$. Further, if $g(x) \in B_{M}^{1}\left(R^{n}, R\right)$ with $g(p)=a_{p}, D g(p)=y_{p}$ when $p \in A$, then $g(x) \leq f(x)$ for all x.

Proof. We first construct a convex linear cell complex and a dual complex. From these a cellular decomposition of R^{n} is constructed on which f is defined. $D f$ will turn out to be piecewise linear.

Definition. When $p \in A$ we define:

$$
\begin{aligned}
& \tilde{p}=p-y_{p} / M, \quad \vec{p}=\left\{p^{\prime} \mid \tilde{p}^{\prime}=\tilde{p}, p^{\prime} \in A\right\} \\
& d_{p}(x)=a_{p}-\frac{1}{2} y_{p}^{2} / M+\frac{1}{4} M(x-\tilde{p})^{2}
\end{aligned}
$$

Definition. When $S \subset A$ we define:

$$
\begin{aligned}
d_{S}(x) & =\inf _{p \in S} d_{p}(x), \quad \tilde{S}=\{\tilde{p} \mid p \in S\} \\
S_{H} & =\text { smallest hyperplane containing } \tilde{S}, \\
S_{E} & =\left\{x \mid d_{p}(x)=d_{p^{\prime}}(x) \text { for all } p, p^{\prime} \in S\right\}, \\
S_{*} & =\left\{x \mid d_{p}(x)=d_{p^{\prime}}(x) \leq d_{p^{\prime \prime}}(x) \text { for all } p, p^{\prime} \in S, p^{\prime \prime} \in A\right\}, \\
K & =\left\{S \mid S \subset A \text { and for some } x \in S_{*}, d_{S}(x)<d_{A-S}(x)\right\} .
\end{aligned}
$$

So, if $p \in S \in K$ then $\vec{p} \subset S$.
Definition. $\hat{S}=$ convex hull of \tilde{S}.
Lemma 1. $\left\{p, p^{\prime}\right\}_{E}=R^{n}$ or an ($n-1$)-dimensional hyperplane, and $\tilde{p}^{\prime}-\tilde{p} \perp\left\{p, p^{\prime}\right\}_{E}$.

Proof. $\quad d_{p}(x)-d_{p^{\prime}}(x)=\left(a_{p}-\frac{1}{2} y_{p}^{2} / M\right)-\left(a_{p^{\prime}}-\frac{1}{2} y_{p^{\prime}}^{2} / M\right)+\tilde{p}^{2}-\tilde{p}^{\prime 2}+$
$2 x \cdot\left(\tilde{p}^{\prime}-\tilde{p}\right)$. If $\tilde{p} \neq \tilde{p}^{\prime}$, this immediately gives the lemma. If $\tilde{p}=\tilde{p}^{\prime}$, then $p-p^{\prime}=\left(y_{p}-y_{p^{\prime}}\right) / M$ and (4) gives $a_{p^{\prime}}-\frac{1}{2} y_{p^{\prime}}^{2} / M \leq a_{p}-\frac{1}{2} y_{p}^{2} / M$. Reversing p and p^{\prime} gives $d_{p}(x)=d_{p}(x)$.

Lemma 2. S_{*} is closed and convex.
Proof. By the definition and Lemma $1, S_{*}$ is the intersection of closed convex sets.

Definition. Let \hat{S}^{b}, S_{*}^{b} be the relative boundaries of \hat{S}, S_{*} if $\operatorname{dim} \hat{S}$, $\operatorname{dim} S_{*} \neq 0$, in which case let \hat{S}^{i}, S_{*}^{i} be the relative interiors; if $\operatorname{dim} \hat{S}$, $\operatorname{dim} S_{*}=0$, let $\hat{S}^{b}=\emptyset, S_{*}^{b}=\emptyset, \hat{S}^{i}=\hat{S}$ and $S_{*}^{i}=S_{*}$.

Lemma 3. $S_{H} \perp S_{E}$, and if $S_{E} \neq \emptyset$, then $\operatorname{dim} S_{H}+\operatorname{dim} S_{E}=n$.
Proof. $\quad S_{E}=\bigcap_{p, p^{\prime} \in S}\left\{p, p^{\prime}\right\}_{E}$ together with Lemma 1 implies $S_{H} \perp S_{E}$. Assume $\operatorname{dim} S_{H}^{\prime}+\operatorname{dim} S_{E}^{\prime}=n$ for $S^{\prime}=S-p$, and $p^{\prime} \in S-\bar{p}$. Then by Lemma 1 $\operatorname{dim}\left(p, p^{\prime}\right)_{H}+\operatorname{dim}\left(p, p^{\prime}\right)_{E}=n$, and $\operatorname{dim} S_{E}=\operatorname{dim}\left(\left\{p, p^{\prime}\right\}_{E} \cap(S-P)_{E}\right)=n$ $-\operatorname{dim}\left(\left\{p, p^{\prime}\right\}_{H} \cup(S-\bar{p})_{H}\right)=n-\operatorname{dim} S_{H}$. By induction $\operatorname{dim} S_{H}+\operatorname{dim} S_{E}=n$ for all S.

Lemma 4. If $S \subset S^{\prime}$, then $S_{*}^{\prime} \subset S_{*}$. If $S, S^{\prime} \in K$, then $S \subseteq S^{\prime}$ if and only if $S_{*}^{\prime} \subseteq S_{*}$, and $S=S^{\prime}$ if and only if $S_{*}=S_{*}^{\prime}$.

Proof. The first statement follows from the definition of S_{*}. If $S \sqsubseteq S^{\prime}$ and $S, S^{\prime} \in K$, find $z \in S_{*}$ with $d_{S}(z)<d_{S^{\prime}-S}(z)$ so that $S_{*} \neq S_{*}^{\prime}$ and $S_{*}^{\prime} \sqsubseteq S_{*}$. If $S_{*}^{\prime} \subset S_{*}$, find $z \in S_{*}^{\prime}$ with $d_{S^{\prime}}(z)<d_{A-s^{\prime}}(z)$. So, if $p \in S$, then $\mathrm{d}_{S^{\prime}}(z)=d_{p}(z)$, so $p \notin A-S^{\prime}$, and hence $S \subset S^{\prime}$.

Lemma 5. If $S \in K$, then $S_{*}^{i}=\left\{x \mid x \in S_{E}, d_{S}(x)<d_{A-S}(x)\right\}$.
Proof. If $S \in K$, then clearly $\left\{x \mid x \in S_{E}, d_{S}(x)<d_{A-S}(x)\right\} \subset S_{*}^{i}$. Suppose $x \in S_{*}^{i}$ and $p \in S, p^{\prime} \in A$ with $d_{p}(x)=d_{p^{\prime}}(x)$. Then the hyperplane $d_{p}(x)=d_{p^{\prime}}(x)$ must contain all of S_{*}, so $p^{\prime} \in S$. Therefore $d_{S}(x)<d_{A-S}(x)$.

Lemma 6. $\quad d_{p^{\prime}}\left(y^{\prime}\right)-d_{p}\left(y^{\prime}\right)=d_{p^{\prime}}(y)-d_{p}(y)+2\left(y^{\prime}-y\right) \cdot\left(\tilde{p}-\tilde{p}^{\prime}\right)$.
Proof. Immediate from the definition.
Lemma 7. $\hat{S} \perp S_{*}$. For $S \in K$, $\operatorname{dim} \hat{S}+\operatorname{dim} S_{*}=n$.
Proof. $\quad S_{H} \perp S_{E}$ implies the first part. Suppose $S \in K$ and find $z \in S_{*}$ with $d_{S}(z)<d_{A-S}(z)$. But then for some ε, open ball center z radius $\varepsilon \cap S_{E} \subset S_{*}$ so $\operatorname{dim} S_{*}=\operatorname{dim} S_{E}$ and $\operatorname{dim} \hat{S}+\operatorname{dim} S_{*}=n$.

Definition. If $S_{*} \neq \emptyset$, let $\overline{\bar{S}}=\left\{p \mid p \in A, d_{p}(z)=d_{S}(z)\right.$ for all $\left.z \in S_{*}\right\}$.
Lemma 8. If $S_{*} \neq \emptyset$, then $\overline{\bar{S}} \in K$ and $\overline{\bar{S}}_{*}=S_{*}$.
Proof. Immediate from the definitions.
Lemma 9. (a) If $S, S^{\prime} \in K$ and $S \cap S^{\prime} \neq \emptyset$, then $S \cap S^{\prime} \in K$ and $\hat{S} \cap \hat{S}^{\prime}$ $=\widehat{S \cap} S^{\prime}$.
(b) If $S, S^{\prime} \in K$ and $S_{*} \cap S_{*}^{\prime} \neq \emptyset$, then $S_{*} \cap S_{*}^{\prime}=\left(\overline{\overline{S \cup S^{\prime}}}\right)_{*}$.

Proof. (a) Assume $S \not \subset S^{\prime}$ and $S^{\prime} \not \subset S$, and find $y \in S_{*}, y^{\prime} \in S_{*}^{\prime}$ with $d_{S}(y)<d_{A-S}(y), d_{S^{\prime}}\left(y^{\prime}\right)<d_{A-S^{\prime}}\left(y^{\prime}\right)$. Then $L=$ cohull $\left\{y, y^{\prime}\right\} \subset\left(S \cap S^{\prime}\right)_{E}$. For any $p^{\prime} \in A-\left(S \cup S^{\prime}\right)$ and $p \in S \cap S^{\prime}$, the half space $d_{p}(x) \geq d_{p^{\prime}}(x)$ does not contain y or y^{\prime}, so it does not contain L. For $p \in S \cap S^{\prime}$ and $p^{\prime} \in\left(S-S^{\prime}\right) \cup$
($S^{\prime}-S$), the half space $d_{p}(x) \geq d_{p^{\prime}}(x)$ does not contain both y and y^{\prime}. Since $d_{p^{\prime}}(y)=d_{p}(y)$ or $d_{p^{\prime}}\left(y^{\prime}\right)=d_{p}\left(y^{\prime}\right)$, the half space $d_{p}(x) \geq d_{p^{\prime}}(x)$ can not intersect L^{i}. Picking $z \in L^{i}$ we have $d_{S \cap S^{\prime}}(z)<d_{A-S \cap S}(z)$, so $S \cap S^{\prime} \in K . \hat{S} \cap \hat{S}^{\prime}$ $=\widehat{S \cap S^{\prime}}$ is obvious.
(b) Observe $\left(S \cup S^{\prime}\right)_{*}=S_{*} \cap S_{*}^{\prime}$ and use Lemma 8.

Lemma 10. If $S \in K$, then $\hat{S}^{b}=\underset{S^{\prime} \neq S, S^{\prime} \in K}{ } \hat{S}^{\prime}$.
Proof. Suppose $x \in \hat{S}^{b}$. Then $x \in \hat{S}^{\prime}$ for some $S^{\prime} \subset S$ with $\hat{S}^{\prime} \subset \hat{S}^{b}$. Find an ($n-1$)-dimensional hyperplane M containing \hat{S}^{\prime}, supporting the convex set \hat{S} but not containing \hat{S}. Find $y \in S_{*}$ with $d_{S}(y)<d_{A-S}(y)$, and find $y^{\prime} \neq y$ with $y-y^{\prime} \perp M$, with \hat{S} on the side of M in direction y^{\prime} to y and $d_{S^{\prime}}\left(y^{\prime}\right)<d_{A-S}\left(y^{\prime}\right)$. Then $y^{\prime}-y \perp(S \cap M)_{H}$ which implies $y^{\prime} \in S_{E}^{\prime}$. For all $p^{\prime} \in S^{\prime}$ and $p \in S$, $\left(\tilde{p}^{\prime}-\tilde{p}\right) \cdot\left(y-y^{\prime}\right) \geq 0$. Thus $d_{p}\left(y^{\prime}\right) \geq d_{p^{\prime}}\left(y^{\prime}\right)$ by Lemma 6 so that $d_{S^{\prime}}\left(y^{\prime}\right) \leq$ $d_{S}\left(y^{\prime}\right)$. Also $\left(\tilde{p}-\tilde{p}^{\prime}\right) \cdot\left(y-y^{\prime}\right)>0$ for some $p \in S-M$ and all $p^{\prime} \in S^{\prime}$, so by Lemma 6, $d_{p}\left(y^{\prime}\right)>d_{p^{\prime}}\left(y^{\prime}\right)$; hence $d_{S^{\prime}}\left(y^{\prime}\right)<d_{p}\left(y^{\prime}\right)$. Thus $y^{\prime} \in S_{*}^{\prime}$ and $y^{\prime} \notin S_{*}$. So $\overline{\bar{S}_{*}^{\prime}}=S_{*}^{\prime} \supsetneq S_{*}$, and $x \in \hat{S}^{\prime} \subset \hat{\overline{\bar{J}^{\prime}}} \subseteq \hat{S}$ with $\overline{\bar{S}^{\prime}} \in K$ by Lemmas 8 and 4 .

Suppose on the other hand that $S^{\prime} \sqsubseteq S, S \in K$. Then $S_{*}^{\prime} \supseteq S_{*}$ by Lemma 4, so we can find $y^{\prime} \in S_{*}^{\prime i}-S_{*}$ and $y \in S_{*}$. Take some $p^{\prime} \in S^{\prime}$, and let $M=$ $\left\{x \mid\left(y-y^{\prime}\right) \cdot\left(x-\tilde{p}^{\prime}\right)=0\right\}$. Then $y, y^{\prime} \in S_{H}^{\prime}$, and $S_{H}^{\prime} \subset M$ by Lemma 2 and so $\hat{S}^{\prime} \subset M$. Now if $p \in S-S^{\prime}$, then $d_{p^{\prime}}\left(y^{\prime}\right)<d_{p}\left(y^{\prime}\right)$. Since $d_{p^{\prime}}(y)=d_{p}(y)$, $\left(y-y^{\prime}\right) \cdot\left(\tilde{p}-\tilde{p}^{\prime}\right)>0$ by Lemma 6 and \tilde{p} lies on the side of M in direction y^{\prime} to y. Hence M supports \hat{S} and $\hat{S}^{\prime} \subset \hat{S}^{b}$.

Lemma 11. If $S \in K$, then $S_{*}^{b}=\underset{S^{\prime} \nsupseteq S, s^{\prime} \in K}{ } S_{*}^{\prime}$.
Proof. By Lemma 5, $x \in S_{*}^{b}$ if and only if $x \in S_{*}^{\prime}$ for some $S^{\prime} \supsetneq S$. But then $x \in \overline{\bar{S}}_{*}^{\prime}$ with $\overline{\bar{S}}^{\prime} \in K$ and $\overline{\bar{S}}^{\prime} \supset S^{\prime} \supseteq S$.

By Lemmas $9,10,11, \bigcup_{S \in K} \hat{S}$ is a cell complex, and $\bigcup_{S \in K} S_{*}$ is a cell complex of $R^{n} \cup \infty$ dual to $\bigcup_{S \in K} \hat{S}$ by Lemma 4. We show that $\bigcup_{S \in K}^{S \in K} \hat{S}=$ cohull \tilde{A}. We can assume that $\operatorname{dim} \tilde{A} \in K=n$. Suppose $S \in K$ with $\operatorname{dim} \hat{S}=n-1$. From Lemma 6 we see that S_{*} extends infinitely in a half space determined by S_{H} if and only if there are no points of \tilde{A} in that open half space. Hence $\hat{S} \subset(\text { cohull } \tilde{A})^{d}$ if and only if S_{*} has only one boundary point if and only if \hat{S} does not lie on the boundary of two other \hat{S}^{\prime} 's in K by Lemma 11. Now there are members of K with $\operatorname{dim} \hat{S}=n$, otherwise if $\operatorname{dim} \hat{S}^{\prime}=\max _{S \in K} \operatorname{dim} \hat{S}<n$ then $S_{*}^{\prime}=S_{E}^{\prime}$. However, $p^{\prime} \in S^{\prime}$ implies that $\left\{p^{\prime}, p^{\prime \prime}\right\}_{E}$ must intersect S_{E}^{\prime} for some $p^{\prime \prime} \in A$, otherwise $\operatorname{dim} A$ would be less than n. Thus $S_{E}^{\prime} \neq S_{*}$, a contradiction. Hence $\emptyset \neq$ $\left(\bigcup_{S \in K, \mathrm{dim}} \hat{S}_{=n} \hat{S}\right)^{\delta} \subset(\text { cohull } \tilde{A})^{\delta}$ so that $\bigcup_{S \in K} \hat{S}=\operatorname{cohull} \tilde{A}$.

We also observe that for any x in R^{n} if we let $S=\left\{p \mid d_{p}(x)=\inf _{p^{\prime} \in A} d_{p^{\prime}}(x)\right\}$ then $S \in K$ and $x \in S_{*}$. Hence $\bigcup_{S \in K} S_{*}=R^{n}$. Fig. 1 shows an example of these two cell complexes.

Fig. 1
We now perform another decomposition of R^{n}.
Definition. For all $S \in K$ let $T_{S}=\left\{x \left\lvert\, x=\frac{1}{2}(y+z)\right.\right.$ for some $y \in \hat{S}$ and $\left.z \in S_{*}\right\}$.

Lemma 12. T_{S} is closed and convex with nonempty interior.
Proof. Immediate from Lemmas 2 and 3.
Lemma 13. The representation $x=\frac{1}{2}(y+z), y \in \hat{S}, z \in S_{*}$ for $x \in T_{S}$ is unique.

Proof. Suppose $x=\frac{1}{2}\left(y^{\prime}+z^{\prime}\right), y^{\prime} \in \hat{S}, z^{\prime} \in S_{*}$ also. Then $y-y^{\prime}=$ $-\left(z-z^{\prime}\right)$, and $y-y^{\prime} \perp z-z^{\prime}$ by Lemma 3, so $y=y^{\prime}$ and $z=z^{\prime}$.

Lemma 14. $T_{S} \cap T_{S^{\prime}}=\left\{x \left\lvert\, x=\frac{1}{2}(y+z)\right., y \in \hat{S} \cap \hat{S}^{\prime}, z \in S_{*} \cap S_{*}^{\prime}\right\}$.
Proof. Immediate from Lemma 13.
Lemma 15. (a) $\left(T_{S} \cap T_{S^{\prime}}\right)^{0}=\emptyset$ if $S \neq S^{\prime}$, and (b) $T_{S}^{\dot{s}} \subset \cup_{S, S^{\prime} \in K, S^{\prime} \text { きS or } S^{\prime} \text { 系S }} T_{S^{\prime}}$.
Proof. (a) $\hat{S} \cap \hat{S}^{\prime}=\widehat{S \cap S^{\prime}}$, and $S \cap S^{\prime} \in K$ by Lemma 9. If $S \neq S^{\prime}$, then $\hat{S} \cap \hat{S}^{\prime} \subset \hat{S}^{b}$ or $\hat{S}^{\prime b}$, so $\operatorname{dim}\left(\hat{S} \cap \hat{S}^{\prime}\right)<\max \left(\operatorname{dim} \hat{S}, \operatorname{dim} \hat{S}^{\prime}\right)=n-\min \left(\operatorname{dim} S_{*}\right.$, $\left.\operatorname{dim} S_{*}^{\prime}\right) \leq n-\operatorname{dim}\left(S_{*} \cap S_{*}^{\prime}\right)$. By Lemma 14, $\operatorname{dim}\left(T_{S} \cap T_{S^{\prime}}\right)<n$ and the interior of $T_{S} \cap T_{S^{\prime}}$ is empty.
(b) If $x \in T_{S}^{i}$, then $x=\frac{1}{2}(y+z)$ where $y \in \hat{S}^{b}$ and/or $z \in S_{*}^{b}$. So $y \in \hat{S}^{\prime}$ and/or $z \in S_{*}^{\prime \prime}$ for some $S^{\prime} \sqsubseteq S$ and $S^{\prime \prime} \supseteq S$ by Lemmas 10 and 11. Hence $x \in T_{S^{\prime}}$ and/or $T_{S^{\prime \prime}}$ with $S^{\prime} \sqsubseteq S$ and/or $S^{\prime \prime} \supsetneq S$.

Lemma 16. $\quad T_{S} \cap T_{S^{\prime}}=T_{S \cap S^{\prime}} \cap T_{\overline{\bar{S} \cup S^{\prime}}}$.
Proof. $\quad \hat{S} \cap \hat{S}^{\prime}=\widehat{S \cap S^{\prime}} \cap \widehat{\overline{S \cup S^{\prime}}}$, and $S_{*} \cap S_{*}^{\prime}=\left(S \cap S^{\prime}\right)_{*} \cap\left(\overline{\overline{S \cup S^{\prime}}}\right)_{*}$ by Lemma 9, and Lemma 16 follows from Lemma 14.

Lemma 17. $\bigcup_{S \in K} T_{S}=R^{n}$.
Proof. Since the complement of a closed convex set is locally connected and $T_{S}^{0} \cap T_{S^{\prime}}^{0}=\emptyset$ if $S \neq S^{\prime}$, this lemma follows from the next proposition.

Proposition 8. Let $\left\{T_{i}\right\}$ be locally finite collection of nonempty closed subsets of a connected space E. Suppose that the T_{i}^{\prime} s have disjoint interiors, $E-T_{i}$ is connected in some neighborhood of each point of E for each i, and $T_{i}^{i} \subset \underset{j \neq i}{\bigcup} T_{j}$. Then $\bigcup_{i} T_{i}=E$.

Proof. $\bigcup T_{i}$ is closed since $\left\{T_{i}\right\}$ is locally finite. Suppose that whenever a point y of E is contained in k or less T_{i} 's then $y \in\left(\bigcup_{i} T_{i}\right)^{0}$. If $x \in T_{i_{1}}, \ldots, T_{i_{k}}$ and no others, then we can find a neighborhood U about x which meets only $T_{i_{1}}, \cdots, T_{i_{k}}$ and such that $U-T_{i_{1}}$ is connected. Thus $T_{i_{2}} \cup \cdots \cup T_{i_{k}}$ is open and closed in $U-T_{i_{1}}$ by assumption, and so contains all of $U-T_{i_{1}}$. This implies that $U \subset T_{i_{1}} \cup \cdots \cup T_{i_{k}}$ so that $x \in \bigcup_{i} T_{i}^{0}$. The statement is true for $k=1$, so by induction $x \in \bigcup_{i} T_{i}^{0}$ for all $x \in E$. Hence $\bigcup_{i} T_{i}$ is open, and $\bigcup_{i} T_{i}=E$ since is connected. q.e.d.

Fig. 2 illustrates the T 's superimposed on the dual complexes of Fig. 1.
Definition. $\quad S_{C}=S_{E} \cap S_{H}$ for $S \in K . S_{C}$ is a point by Lemma 3 .
We now construct f on R^{n}.
Definition. $f_{S}(x)=d_{S}\left(S_{C}\right)+\frac{1}{2} M d^{2}\left(x, S_{H}\right)-\frac{1}{2} M d^{2}\left(x, S_{E}\right)$ for $S \in K$ and $x \in T_{s}$.

Fig. 2

Lemma 18. $f_{S}(x)=f_{S^{\prime}}(x)$ if $x \in T_{S} \cap T_{S^{\prime}}$.
Proof. By Lemma 16 we can assume that $S \subset S^{\prime}$. Now $x=\frac{1}{2}(y+z)$ with $y \in \hat{S} \subset \hat{S}^{\prime}, z \in S_{*}^{\prime} \subset S_{*}$ by Lemma 14, and $d\left(x, S_{H}\right)=\frac{1}{2} d\left(z, S_{H}\right)=\frac{1}{2} d\left(z, S_{C}\right)$ and $d\left(x, S_{E}\right)=\frac{1}{2} d\left(y, S_{E}\right)=\frac{1}{2} d\left(y, S_{C}\right)$ so that

$$
f_{S}(x)=d_{S}\left(S_{C}\right)+\frac{1}{8} M d^{2}\left(S_{C}, z\right)-\frac{1}{8} M d^{2}\left(S_{C}, y\right),
$$

Similarly,

$$
f_{S^{\prime}}(x)=d_{S^{\prime}}\left(S_{C}^{\prime}\right)+\frac{1}{8} M d^{2}\left(S_{C}^{\prime}, z\right)-\frac{1}{8} M d^{2}\left(S_{C}^{\prime}, y\right)
$$

Now $z, S_{C}^{\prime} \in S_{E}^{\prime}$ and $S_{C}, S_{C}^{\prime} \in S_{H}^{\prime}$, and $d^{2}\left(z, S_{C}^{\prime}\right)+d^{2}\left(S_{C}, S_{C}^{\prime}\right)=d^{2}\left(z, S_{C}\right)$ since $S_{E}^{\prime} \perp S_{H}^{\prime}$. Also $y, S_{C} \in S_{H}$ and $S_{C}, S_{C}^{\prime} \in S_{E}$ with $S_{H} \perp S_{E}$, so $d^{2}\left(y, S_{C}\right)+d^{2}\left(S_{C}, S_{C}^{\prime}\right)$ $=d^{2}\left(y, S_{C}^{\prime}\right)$. Finally, $\tilde{p}-S_{C} \perp S_{C}-S_{c}^{\prime}$ for $p \in S$, so $\frac{1}{4} M d^{2}\left(S_{C}, S_{C}^{\prime}\right)+d_{S}\left(S_{C}\right)$ $=d_{S}\left(S_{C}^{\prime}\right)=d_{S^{\prime}}\left(S_{C}^{\prime}\right)$. Hence our lemma follows from these equations.

Lemma 19. $f_{S} \in C^{\infty}\left(T_{S}, R\right)$.
Proof. Observe that $d^{2}\left(x, S_{E}\right)$ and $d^{2}\left(x, S_{H}\right)$ are C^{∞}.
Lemma 20. $D f(x)=\frac{1}{2} M(z-y)$ where $x=\frac{1}{2}(y+z), y \in \hat{S}$ and $z \in S_{*}$.
Proof. $\quad D d^{2}\left(x, S_{H}\right)=2\left\|x-P_{S_{H}}(x)\right\| D\left\|x-P_{S_{H}}(x)\right\|=2\left(x-P_{S_{H}}(x)\right)$ where $P_{S_{H}}(x)$ is the closest point of S_{H} to x by Proposition 5. Now $x-P_{S_{H}}(x)=$ $\frac{1}{2}\left(z-S_{C}\right)$, so $D \frac{1}{2} M d^{2}\left(x, S_{H}\right)=\frac{1}{2} M\left(z-S_{C}\right)$. Likewise $D d^{2}\left(x, S_{E}\right)=\frac{1}{2} M(x-$ $\left.P_{S_{E}}(x)\right)=\frac{1}{2} M\left(y-S_{C}\right)$ where $P_{S_{E}}(x)$ is the closest point of S_{E} to x. Hence $D f(x)=\frac{1}{2} M(z-y)$.

Lemma 21. $f_{S}(x) \in B_{M}^{1}\left(T_{S}, R\right)$.
Proof. Let $x, x^{\prime} \in T, x=\frac{1}{2}(y+z)$ and $x^{\prime}=\frac{1}{2}\left(y^{\prime}+z^{\prime}\right)$ as usual. Then by Lemma 20,

$$
\left(D f_{S}(x)-D f_{S}(x)\right)^{2}=\frac{1}{4} M^{2}\left(\left(z-z^{\prime}\right)+\left(y-y^{\prime}\right)\right)^{2}=M^{2}\left(x-x^{\prime}\right)^{2},
$$

since $z-z^{\prime} \perp y-y^{\prime}$. Hence $\left\|D f_{S}(x)-D f_{S}\left(x^{\prime}\right)\right\|=M\left\|x-x^{\prime}\right\|$.
Lemma 22. $D f_{S}(x)=D f_{S^{\prime}}(x)$ if $x \in T_{S} \cap T_{S^{\prime}}$.
Proof. If $x \in T_{S} \cap T_{S^{\prime}}$, then $x=\frac{1}{2}(y+z)$ where $y \in \hat{S} \cap \hat{S}^{\prime}$ and $z \in S_{*} \cap S_{*}^{\prime}$ by Lemma 14. Thus $D f_{S}(x)=\frac{1}{2} M(z-y)=D f_{S^{\prime}}(x)$ by Lemma 21.

Definition. $f(x)=f_{S}(x)$ if $x \in T_{S}$.
f is well defined on R^{n} by Lemmas 17 and 18 , and $f \in B_{M}^{1}\left(R^{n}, R\right)$ by Lemmas 21 and 22.

Lemma 23. $f(p)=a_{p}$ and $D f(p)=y_{p}$ if $p \in A$.
Proof. By the definition and an assumption in the hypothesis of Theorem 1 , for any $p^{\prime} \in A$ we can easily obtain $d_{p}\left(p+y_{p} / M\right)=\frac{1}{2} y_{p}^{2} / M+a_{p} \leq \frac{1}{2} y_{p}^{2} / M+$ $a_{p}^{\prime}+\frac{1}{4} M\left(p-p^{\prime}\right)^{2}+\frac{1}{2}\left(y_{p^{\prime}}+y_{p}\right) \cdot\left(p-p^{\prime}\right)-\frac{1}{4}\left(y_{p}-y_{p^{\prime}}\right)^{2} / M=d_{p^{\prime}}\left(p+y_{p} / M\right)$. Thus $p+y_{p} / M \in \vec{p}_{*}$ and $p=\frac{1}{2}\left(\tilde{p}+p+y_{p} / M\right) \in T_{\bar{p}}$. Hence $f(p)=f_{\bar{p}}(p)=$ $d_{p}(p)+\frac{1}{2} M\left(p-\left(p-y_{p} / M\right)\right)^{2}=a_{p}, \quad D f(p)=\frac{1}{2} M\left(\left(p+y_{p} / M\right)-\tilde{p}\right)=y_{p}$ by Lemma 20.

Lemma 24. Suppose $g \in B_{M}^{1}\left(R^{n}, R\right)$ and $g(p)=a_{p}, \operatorname{Dg}(p)=y_{p}$ for $p \in A$. Then $g(x) \leq f(x)$.

Proof. Suppose first that $x \in T_{\bar{p}}$. Then by Proposition 1, $g(x) \leq a_{p}+$ $y_{p}(x-p)+\frac{1}{2} M(x-p)^{2}=a_{p}-\frac{1}{2} y_{p}^{2} / M+\frac{1}{2} M(x-\tilde{p})^{2}=f_{p}(x)=f(x)$. Suppose next that for all $S \in K$ with $\boldsymbol{\mathcal { S }}(\tilde{\boldsymbol{S}}) \leq m, g(x) \leq f(x)$ for $x \in T_{S}$. If $\boldsymbol{\mathcal { S }}(\tilde{\boldsymbol{S}})$ $=m+1$ and $x \in T_{S}$, then let $x=\frac{1}{2}(y+z), y \in \hat{S}, z \in S_{*}$. Fix z, and define $e(w)=g\left(\frac{1}{2}(w+z)\right)-f\left(\frac{1}{2}(w+z)\right)$ for $w \in \hat{S}$. Then $g\left(\frac{1}{2}(w+z)\right) \in B_{M / 4}^{1}(\hat{S}, R)$ and $f\left(\frac{1}{2}(w+z)\right)=$ const. $-\frac{1}{8} M\left(w-S_{C}\right)^{2}$ with $D_{w} f\left(\frac{1}{2}(w+z)\right)=-\frac{1}{4} M(w$ $\left.-S_{C}\right)$. For any h with $w+h \in \hat{S}, D e(w+h)[h]-D e(w)[h]=\frac{1}{4} M h^{2}+$ $\left(D g\left(\frac{1}{2}(w+h+z)\right)-D g\left(\frac{1}{2}(w+z)\right)\right)[h] \geq 0$. Thus, if $e(w)$ is maximal at w, then $D e(w) \neq 0$, so $e(w)$ has its maximum on \hat{S}^{b}. Since $w \in \hat{S}^{b}$ implies $x \in \hat{S}^{\prime}$ for some $S^{\prime} \subsetneq S, x=\frac{1}{2}(w+z) \in T_{S^{\prime}}$, so that $e(w) \leq 0$ by the assumption. Hence $e(w) \leq 0$ on \hat{S} and $g(x) \leq f(x)$ on T_{S}. By induction $g(x) \leq f(x)$ everywhere.

Lemma 25. $f(x) \geq \inf _{p \in A} d_{p}(x)$.
Proof. Take p with $d_{p}(x)=\inf _{q \in A} d_{q}(x)$. Then $x \in \bar{p}_{*}$ so $\frac{1}{2}(\tilde{p}+x) \in T_{\tilde{p}}$ and $f_{\vec{p}}\left(\frac{1}{2}(\tilde{p}+x)\right)=a_{p}-\frac{1}{2} y_{p}^{2} / M+\frac{1}{8} M(x-\tilde{p})^{2}$. Also $D f\left(\frac{1}{2}(\tilde{p}+x)\right)=\frac{1}{2} M(x-$ $\tilde{p})$. So by Proposition 1, $f(x) \geq f\left(\frac{1}{2}(x+\tilde{p})\right)+D f\left(\frac{1}{2}(x+\tilde{p})\right)\left[\frac{1}{2}(x-\tilde{p})\right]-$ $\frac{1}{2} M\left(\frac{1}{2}(x-\tilde{p})\right)^{2}=d_{p}(x)$.

Lemmas 24 and 25 complete the proof of Theorem 1. We observe from Lemma 20 that $D f$ is a piecewise linear map from $\bigcup_{S} T_{S}$ to R^{n}, whose derivative in T_{S}^{0} is $M \cdot$ Identity $\oplus-M \cdot$ Identity on $S_{H} \oplus S_{E}$.

Lemma 26. Suppose p and $p-y_{p} / M \in L$ for all p in A where L is an affine linear subspace of R^{n}. Then $f(x)=f_{L}\left(\pi_{L}(x)\right)+\frac{1}{2} M d^{2}(x, L)$, where f_{L} is the function obtained in Theorem 1 by taking L instead of R^{n} as the underlying linear space, and π_{L} is the orthogonal projection of R^{n} onto L.

Proof. Observe that $\tilde{p} \in L$ for all p in A and that K is the same taking R^{n} or L. Also T_{S} on $R^{n}=\pi_{L}^{-1}\left(T_{S}\right.$ on L), and $d^{2}\left(x, S_{H}\right)=d^{2}\left(\pi_{L}(x), S_{H}\right)+$ $\left(x-\pi_{L}(x)\right)^{2}, d^{2}\left(x, S_{E}\right)=d^{2}\left(\pi_{L}(x), S_{E}\right)$. This establishes the lemma.
Theorem 2. Let A be a closed nonempty subset of any Hilbert space H endowed with the usual norm. Suppose that f_{0} is a real-valued function on A. Then there exists an $f \in B_{M}^{1}(H, R)$ with $\left.f\right|_{A}=f_{0}$ if and only there is a map $f_{1}: A \rightarrow H$ such that for all $x, y \in A$

$$
\begin{align*}
f_{0}(y) \leq & f_{0}(x)+\frac{1}{2}\left(f_{1}(x)+f_{1}(y)\right) \cdot(y-x) \tag{5}\\
& +\frac{1}{4} M(y-x)^{2}-\frac{1}{4}(f(y)-f(x))^{2} / M .
\end{align*}
$$

Further, f can be found such that $f(x) \geq \inf _{y \in A} d_{y}(x)$ where $d_{y}(x)=f_{0}(y)-$ $\frac{1}{2} f_{1}^{2}(y) / M+\frac{1}{4} M\left(x-y+f_{1}(y) / M\right)^{2}$ and such that if $g(x) \in B_{M}^{1}(H, R)$ with $g(x)=f_{0}(x)$ and $D g(x)=f_{1}(x)$ for $x \in A$, then $g(x) \leq f(x)$ for all x.

Proof. If f_{0} has an extension f in $B_{M}(H, R)$, let $f_{1}(x)=D f(x)$. Let $x_{1}, i=0,1$ be two points in H, set $a_{i}=f_{0}\left(x_{i}\right)$ and $y_{i}=f_{1}\left(x_{i}\right)$, and define $x_{2}=\frac{1}{2}\left(x_{0}+x_{1}\right)$ $+\frac{1}{2}\left(y_{1}-y_{0}\right) / M$. By Proposition 1 we have
$f\left(x_{2}\right) \leq f\left(x_{0}\right)+y_{0} \cdot\left(\frac{1}{2}\left(x_{1}-x_{0}\right)+\frac{1}{2}\left(y_{1}-y_{0}\right)\right)+\frac{1}{2} M\left(\frac{1}{2}\left(x_{1}-x_{0}\right)+\frac{1}{2}\left(y_{1}-y_{0}\right)\right)^{2}$,
$f\left(x_{2}\right) \geq f\left(x_{1}\right)-y_{1} \cdot\left(\frac{1}{2}\left(x_{1}-x_{0}\right)-\frac{1}{2}\left(y_{1}-y_{0}\right)\right)-\frac{1}{2} M\left(\frac{1}{2}\left(x_{1}-x_{0}\right)-\frac{1}{2}\left(y_{1}-y_{0}\right)\right)^{2}$,
so by the parallelogram law,

$$
\begin{aligned}
f\left(x_{1}\right) \leq & f\left(x_{0}\right)+\frac{1}{2}\left(y_{0}+y_{1}\right) \cdot\left(x_{1}-x_{0}\right)-\frac{1}{2}\left(y_{1}-y_{0}\right)^{2} \\
& +\frac{1}{2} M\left[2\left(\frac{1}{2}\left(x_{1}-x_{0}\right)\right)^{2}+2\left(\frac{1}{2}\left(y_{1}-y_{0}\right) / M\right)^{2}\right] \\
= & f\left(x_{0}\right)+\frac{1}{2}\left(y_{0}+y_{1}\right) \cdot\left(x_{1}-x_{0}\right)+\frac{1}{4} M\left(x_{1}-x_{0}\right)^{2}-\frac{1}{2}\left(y_{1}-y_{0}\right)^{2} / M .
\end{aligned}
$$

To go the other way, choose for every finite subset F in A, a finite dimensional linear subspace H_{F} of H containing p and $p-f_{1}(p) / M$ for all p in F. By Theorem 1 construct $f_{F}^{\prime} \in B_{M}^{1}\left(H_{F}, R\right)$ satisfying $f_{F}^{\prime}(p)=f_{0}(p), D f_{F}^{\prime}(p)=f_{1}(p)$ for p in F, etc. Now define for $x \in H, f_{F}(x)=f_{F}^{\prime}\left(\pi_{H_{F}}(x)\right)+\frac{1}{2} M d^{2}\left(x, H_{F}\right)$. Then $f_{F} \in B_{M}^{1}(H, R), f_{F}(p)=f_{0}(p), D f_{F}(p)=f_{1}(p)$ for $p \in A$, and f_{F} is independent of H_{F} by Lemma 26. So we have $f_{F}(x) \geq \inf _{y \in F} d_{y}(x)$, and $g(x) \leq f(x)$ for all x in H if $g \in B_{M}^{1}(H, R)$ with $g(p)=f_{0}(p)$ and $D g(p)=f_{1}(p)$ for $p \in A$.

Now order \mathscr{F} the set of all finite subsets of A by inclusion. Then $F^{\prime} \supset F$ implies $f_{F^{\prime}}(x) \leq f_{F}(x)$ for all x, so $\operatorname{Lim}_{F \in \mathscr{F}} f_{F}(x)=f(x)$ exists for every x, and $f \in B_{M}^{1}(H, R)$ by Proposition 3. Also $f(p)=\operatorname{Lim}_{F \in \mathcal{F}} f_{F}(p)=\operatorname{Lim}_{F \in \mathcal{F}, p \in F} f_{F}(x)=f_{0}(p)$ for $p \in A$, and $D f(p) \cdot z=\operatorname{Lim}_{F \in \mathscr{P}, p \in F} D f_{F}(p) \cdot z=f_{1}(p) \cdot z$ for all z in H and p in A, so $D f(p)=f_{1}(p) . f_{F}(x) \geq \inf _{y \in A} d_{y}(x)$ for all F gives $f(x) \geq \inf _{y \in A} d_{y}(x)$. Finally, $g \in B_{M}^{1}(H, R), g(p)=f_{0}(p)$, and $D g(p)=f_{1}(p)$ for $p \in A$ implies $g(x) \leq f_{F}(x)$ for all F, so $g(x) \leq f(x)$.

Corollary 1. Let A be a closed subset of a Hilbert space H. Then there is an $f \in B_{M}^{1}(H, R)$ with $f(x) \geq \frac{1}{4} M d^{2}(x, A)$, and $g(x) \leq f(x)$ if $g \in B_{M}^{1}(H, R)$ and $g(A)=D g(A)=0$.

Proof. Take $f_{0}=f_{1}=0$ on A. Then $d_{y}(x)=\frac{1}{4} M(y-x)^{2}$, and the corollary follows.

Remark. If A is convex, then $\frac{1}{2} M d^{2}(x, A) \in B_{M}^{1}(H, R)$ by Proposition 7, and $f(x) \leq \frac{1}{2} M d^{2}(x, A)$ by Proposition 1. So $f(x)=\frac{1}{2} M d^{2}(x, A)$.

Corollary 2. Any locally finite open cover $\left\{V_{i}\right\}$ of a Hilbert space H is the supporting set for a C^{1} partition of unity.

Proof. Find $f_{i} \in B_{4}^{1}(H, R)$ with $f_{i}(x)>d^{2}\left(x, H-V_{i}\right)$. Then $V_{i}=f_{i}^{-1}\left(R^{+}\right)$, and by defining $\varphi_{i}(x)=f_{i}(x) / \sum_{j} f_{j}(x)$ we have a C^{1} partition $\left\{\varphi_{i}\right\}$ of unity with $V_{i}=\varphi_{i}^{-1}\left(R^{+}\right)$. Actually $\varphi_{i} \in U^{1}(H, R)$ in the sense of the remark following Corollary 2 of $\S 2$.

Corollary 3. $C^{1}(H, F)$ is uniformly dense in $C^{0}(H, F)$ for a Hilbert space H and any Banach space F.

Corollary 4. Given A and B closed in a Hilbert space H with $d(A, B)=$ $\delta>0$, there is an $f \in B_{4 / 0^{2}}^{1}(H, R)$ with $0 \leq f(x) \leq 1$ and $f(A)=0$ and $f(B)=1$.

Proof. Let $B^{\prime}=\{x \mid d(x, A) \geq \delta\}$. Let $f_{0}(A)=0, f_{0}\left(B^{\prime}\right)=1, f_{1}(A)=$ $f_{1}\left(B^{1}\right)=0$. Then (5) holds with $M=4 / \delta^{2}$, and we have $f \in \frac{1 / \partial^{2}}{1}(H, R)$ with $f(A)=0, f\left(B^{\prime}\right)=1$.

Since $d\left(x,\left(A \cup B^{\prime}\right)\right) \leq \delta$ for all $x, m=\sup f(x)<\infty$. Suppose $m>1$, and find a sequence x_{n} in $H-B^{\prime}$ with $f\left(x_{n}\right) \rightarrow m$ and a sequence $z_{n} \in A$ with
$\left\|x_{n}-z_{n}\right\|<\delta$. Then $m \geq f\left(x_{n}+\delta\left(\frac{1}{4} D f\left(x_{n}\right)\right)\right) \geq f\left(x_{n}\right)+\frac{1}{8} \delta^{2}\left\|D f\left(x_{n}\right)\right\|^{2}$ by Proposition 1. So $\left\|D f\left(x_{n}\right)\right\| \rightarrow 0$. But then (5) implies $m=\operatorname{Lim}_{n}\left|f\left(x_{n}\right)-f\left(z_{n}\right)\right|$ ≤ 1, a contradiction, so $m \leq 1$ and $0 \leq f(x) \leq 1$.

Corollary 5. Suppose A is closed in Hilbert space H, and $f_{0}: H \rightarrow R^{n}$ and $f_{1}: H \rightarrow L\left(H, R^{n}\right)$ with

$$
\begin{aligned}
\langle u, f(y)\rangle \leq & \langle u, f(x)\rangle+\left\langle u, \frac{1}{2}(D f(x)+D f(y))[y-x]\right\rangle \\
& +\frac{1}{4} M(x-y)^{2}-\frac{1}{4}(\langle u, D f(y)-D f(x)\rangle)^{2} / M
\end{aligned}
$$

for all $x, y \in H$ and $u \in R^{n *},\|u\|=1$. Then there is an $f \in B_{M \sqrt{n}}^{1}\left(H, R^{n}\right)$ such that $f(x)=f_{0}(x)$ and $D f(x)=f_{1}(x)$ for x in A.

Proof. Let e_{1}, \cdots, e_{n} be an orthonormal basis for R^{n}, extend $\left\langle f_{0}, e_{i}\right\rangle$ to f^{1}, \cdots, f^{n} and set $f(x)=f^{1}(x) e_{1}+\cdots+f^{n}(x) e_{n}$.

Corollary 6. Given $g(x) \in B_{M}^{0}(H, R)$, a Hilbert space H and an $\varepsilon>0$, there is an $f \in B_{M^{2} / \epsilon}^{1}(H, R)$ with $|f(x)-g(x)|<\varepsilon$ for all x.

Proof. Let $A_{n}=g^{-1}(n \varepsilon), n=0, \pm 1, \pm 2, \cdots$. Then $d\left(A_{n}, A_{n+1}\right) \geq \varepsilon / M$, and by Corollary 4 we can find $f_{n} \in B_{M^{2} / 6}^{1}(H, R)$ with $f_{n}\left(A_{n}\right)=n \varepsilon, f_{n}\left(A_{n+1}\right)=$ $(n+1) \varepsilon$ and $n \varepsilon \leq f_{n} \leq(n+1) \varepsilon$. Let $f(x)=n \varepsilon$ if $x \in A_{n}$, and $f(x)=f_{n}(x)$ if $n \varepsilon<f(x)<(n+1) \varepsilon$.

Remark. This corollary is not true if R is replaced by l^{2}. Take $H=l^{2}$, and let $\sigma(x)=\sum_{i}\left|x_{i}\right| e_{i}$ where $\left\{e_{i}\right\}$ is an orthonormal basis. Then $\sigma \in B_{1}^{0}\left(l^{2}, l^{2}\right)$, but $\sup _{\|x\| \leq 1}\|f(x)-\sigma(x)\| \geq 1$ for $f \in B^{1}\left(l^{2}, l^{2}\right)$. This was proved in Wells [12].

5. B^{2} functions and some open problems

The corollary of the next theorem shows that Corollary 4 of $\S 4$ is not true if B^{1} is replaced by B^{2} even for A convex and bounded.

Theorem 1. Suppose $f \in B_{M}^{2}\left(R^{N}, R\right), f(A)=0$, and $f(x) \geq 1$ when $d(x, A)$ ≥ 1 where $A=\left\{x \mid x_{i}\right.$ (i-th coordinate of $\left.\left.x\right) \leq 0,\|x\| \leq 1\right\}$. Then $N<M^{2}+$ $36 M^{4}$.

Proof. Assume $f \in B_{M}^{2}\left(R^{n}, R\right), f(A)=0, f(\{x \mid d(x, A) \geq 1\}) \geq 1$ and $N \geq M^{2}+36 M^{4}$. Let $g(x)=\sum_{p \in S_{N}} f(p(x)) / N$! where S_{N} is the set of all permutations of the N coordinates of x. Then $g \in B_{M}^{2}\left(R^{n}, R\right)$ with $g(A)=0$ and $g(\{x \mid d(x, A) \geq 1\}) \geq 1$. Define points y^{n} for $n=0, \cdots, M^{2}$ with $y_{i}^{n}=1 / M$ for $i=1, \cdots, n, y_{i}^{n}=-1 / M$ for $i=n+1, \cdots, M^{2}$, and $y_{i}^{n}=0$ for $i=M^{2}$ $+1, \cdots, N$. Define z^{n} for $n=1, \cdots, M^{2}$ with $z_{i}^{n}=1 / M$ for $i=1, \cdots, n-1$, $z_{n}^{n}=0, z_{i}^{n}=-1 / M$ for $i=n+1, \cdots, M^{2}$, and $z_{i}^{n}=0$ for $i=M^{2}+1, \cdots, N$. By symmetry, $\frac{\partial g}{\partial x_{n}}\left(z^{n}\right)=\frac{\partial g}{\partial x_{m}}\left(z^{n}\right)$ for $m=M^{2}+1, \cdots, N$. So

$$
\left|\frac{\partial g}{\partial x_{n}}\left(z^{n}\right)\right|^{2} \leq \frac{1}{36 M^{4}} \sum_{m=M^{2+1}}^{N}\left|\frac{\partial g}{\partial x_{m}}\left(z^{n}\right)\right| \leq \frac{1}{36 M^{4}}\left\|D g\left(z^{n}\right)\right\|^{2} \leq \frac{1}{36 M^{2}}
$$

or $\left|\frac{\partial g}{\partial x_{n}}\left(z^{n}\right)\right| \leq \frac{1}{6 M}$. Now by Proposition 1 ,

$$
\begin{aligned}
g\left(y^{n}\right) & \leq g\left(z^{n}\right)+\frac{1}{M} \frac{\partial g}{\partial x_{n}}\left(z^{n}\right)+\frac{1}{2} \frac{1}{M^{2}} \frac{\partial^{2} g}{\partial x_{n}^{2}}\left(z_{n}\right)+\frac{M}{6}\left(\frac{1}{M}\right)^{3} \\
& \leq g\left(z^{n}\right)+\frac{1}{6 M^{2}}+\frac{1}{2} \frac{1}{M^{2}} \frac{\partial^{2} g^{n}}{\partial x_{n}^{2}}\left(z^{n}\right)+\frac{1}{6 M^{2}}, \\
g\left(y^{n-1}\right) & \geq g\left(z^{n}\right)-\frac{1}{6 M^{2}}+\frac{1}{2} \frac{\partial^{2} g}{\partial x_{n}^{2}}\left(z_{n}\right)-\frac{1}{6 M^{2}},
\end{aligned}
$$

so $g\left(y^{n}\right) \leq g\left(y^{n-1}\right)+\frac{2}{3} M^{-2}$. Summing up from $n=1, \cdots, M^{2}$ gives $g\left(y^{m^{2}}\right) \leq$ $g\left(y^{0}\right)+2 / 3$. But $y^{0} \in A$ with $g\left(y^{0}\right)=0$, and $d\left(y^{M^{2}}, A\right)=1$ with $g\left(y^{M^{2}}\right) \geq 1$, a contradiction. Hence $N<M^{2}+36 M^{4}$.

Corollary 1. Let $A=\left\{x \mid x \in l^{2}, x_{i} \leq 0,\|x\| \leq 1\right\}$, and suppose $f \in C^{2}\left(l^{2}, R\right)$ with $f(A)=0$ and $f(\{x \mid d(x, A) \geq 1\}) \geq 1$. Then $f \notin B^{2}\left(l^{2}, B\right)$.

Proof. Obvious from the theorem.
Corollary 2. There exist a closed subset of l^{2} and functions $f_{0}, f_{1}, f_{2}, f_{3}: A \rightarrow$ $R, L\left(l^{2}, R\right), L_{s}^{2}\left(l^{2}, R\right), L_{s}^{3}\left(l^{2}, R\right)$ satisfying the conditions of the Whitney extension theorem with the property that there is no C^{3} or B^{2} function agreeing with f_{0} on the closed set.

Proof. Let $A=\left\{x \mid x_{1}=1, x_{i} \leq 0\right.$ for $j=2,3, \cdots$, and $\left.\left\|x-e_{1}\right\| \leq 1\right\}$, and $B=\left\{x \mid x_{1}=1, d(x, A) \geq 1\right\}$. Let $C A$ and $C B$ be the cones formed on A and B with the origin. Define $f_{0}(x)=x_{1}^{8}, f_{1}(x)[h]=8 x_{1} h_{1}, f_{2}(x)[h]=56 x_{1}^{6} h_{1}^{2}$, $f_{3}(x)[h]=336 x_{1}^{5} h_{1}^{3}$ for $x \in C A$, and $f_{0}(x)=f_{1}(x)=f_{2}(x)=f_{3}(x)=0$ on $C B$. Then it is easy to see that these functions satisfy the hypotheses of the Whitney extension theorem. If $f \in C^{3}\left(l^{2}, R\right)$ or $B^{2}\left(l^{2}, R\right)$, and $\left.f\right|_{C A \cup C B}=f_{0}(x)$, then in the first case $D^{3} f(x)$ is bounded near zero, and in either case $\left.f\right|_{x_{1}=a} \in B^{2}\left(\left\{x \mid x_{1}=a\right\}, R\right)$ for some $a>0$. But this is impossible by Corollary 1. q.e.d.

We list some open problems:
(1) Does $\|x\| \in C^{1}(E-\{0\}, R)$ imply $d(x, A) \in C^{1}(E-A, R)$ whenever A is convex and closed?
(2) Do nonseparable $\mathscr{L}^{p}, p>2$, have C^{1} partitions of unity?
(3) Does nonseparable Hilbert space have C^{2} partitions of unity?
(4) Is Theorem 2 of $\S 4$ true for Banach-valued functions on H or for functions on non-Hilbertian Banach spaces with an appropriate change in (1)?

Added in proof. Since the submission of this paper Henryk Taruńcyk has obtained in [9] results which settle questions 2 and 3 . We summarize some of these results:
(i) A Banach space E admits $C^{p}, p=1,2, \cdots ; \infty$ partitions of unity if and only if there are a set A and a homeomorphic imbedding $u: E \rightarrow c_{0}(A)$ with $p_{\alpha} \circ u(x) \in C^{p}$ for all $\alpha \in A$ where p_{α} is the projection of $c_{0}(A)$ on its α-th coordinate.

Thus Taruńcyk observes that any Hilbert space $\ell_{2}(B)$ has C^{∞} partitions of unity by taking $A=B \cup\{1\}$ and by defining $u(x)$ by

$$
\begin{aligned}
p_{\alpha} \circ u(x) & =\|x\|^{2} \quad \text { for } \alpha=1 \\
& =x_{\beta} \quad \text { for } \alpha=\beta, \beta \in B .
\end{aligned}
$$

(ii) If E is a reflexive Banach space with an equivalent locally uniformly convex norm of class C^{p}, then E admits C^{p} partitions of unity.

Thus \mathscr{L}^{p} has C^{∞} p.o.u. if p is an even integer, and C^{p-1} p.o.u. if p is an odd integer.
(iii) A Banach space E has C^{p} p.o.u. if and only if there is a σ-locally finite base of the topology of E consisting on nonzero sets of real valued functions of class C^{p}.
(iv) In a personal communication Taruńcyk has shown that E has B^{p} p.o.u. $p<\infty$ if there is a σ-discrete base of the topology of E consisting of nonzero subsets of real valued functions of class B^{p}. The author has proved the converse statement.

This generalizes Theorem 1. Also using Corollary 1 and the fact that every metric space has a σ-discrete base for the topology, it follows that every Hilbert space admits B^{1} partitions of unity.

Bibliography

[1] R. Abraham \& J. Robbin, Transversal mappings and flows, Benjamin, New York, 1967.
[2] R. Bonic \& J. Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966) 877-898.
[3] R. Bonic \& F. Reis, A characterization of Hilbert space, An. Acad. Brasil. Ci. 38 (1966) 239-241.
[4] J. Dieudonné, Foundations of modern analysis, Academic Press, New York, 1960.
[5] J. Eells, Jr., A setting for global analysis, Bull. Amer. Math, Soc. 72 (1966) 751807.
[6] S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962.
[7] R. Phelps, A representation for bounded convex sets, Proc. Amer. Math. Soc. 11 (1960) 976-983.
[8] G. Restrepo, Differentiable norms in Banach spaces, Bull. Amer. Math. Soc. 70 (1964) 413-414.
[9] H. Taruńcyk, Smooth partitions of unity on some non-separable Banach spaces, to appear in Studia Math.
[10] J. Wells, Differentiable functions on c_{0}, Bull. Amer. Math. Soc. 75 (1969) 117-118.
[11] --, \mathbf{C}^{1} partitions of unity on non-separable Hilbert space, Bull. Amer. Soc. 77 (1971) 804-807.
[12] Smooth Banach spaces and approximations, Thesis, California Institute of Technology, 1969.

[^0]: Communicated by J. Eells, Jr., February 11, 1972.

