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DIFFERENTIABLE FUNCTIONS ON BANACH SPACES
WITH LIPSCHITZ DERIVATIVES

JOHN C. WELLS

Introduction

. In this paper we study those functions in Ck(E, F), (i.e., functions from two
Banach spaces E to F having k continuous Frechet derivatives), whose k-th
derivative is Lipschitz with constant M. On Rn we construct C1 functions whose
derivatives are piecewise linear with Lipschitz constant M. From this we obtain
a Whitney type extension theorem for real-valued differentiable functions on
Hubert space, and show that every Hubert space has C1 partitions of unity. We
examine the existence of "nontrivial" Ck functions with Lipschitz derivatives
on separable Banach space and show that cQ has no "nontrivial" C1 function
with Lipschitz derivative. We show that the Whitney extension theorem fails
for separable Hubert space by exhibiting a C3 function on a closed subset of I2

having no C3 extension.
We make the definitions:

Bk

M(E,F) = {f\f e Ck(E,F) and \\D*f(y) - Dkf(x)\\ < Aί\\x - y|| for alljc,y},

Bk(E, F) = {f\f € Bk
M(E, F) for some M} .

As in Bonic and Frampton [2] a Banach space E is said to be Bk smooth if
there is a function / 6 Bk(E, R) with /(0) Φ 0 and support (/) bounded. Then
Bk+ι smoothness implies Bk smoothness, and E is said to be B°° smooth if E is Bk

smooth for all k. We briefly summarize some results concerning Ck smoothness
of separable Banach spaces. We refer to [2] and Eells [5] for more details.

1. Hubert space is C°° smooth with C°° norm away from zero.
2. c0 is C°° smooth with equivalent C°° norm away from zero. Kuiper.
3. A Lebesgue space J£?p is C°° smooth for an even integer p, and Cp~ι

smooth but not Dp smooth for an odd integer p Bonic and Frampton [2].
4. If E is separable, then E has a norm in C(E - {0}, R) if and only if £ *

is separable Bonic and Reis [3].
5. Any Ck smooth separable Banach space has Ck partitions of unity Bonic

and Frampton [2].

In § 2 we prove some basic properties of B^(E, F), the most useful one
being that {/|||/|| < b on some open subset of E] Π Bk

M(E,F) is closed in the
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topology of pointwise convergence. We observe from [2] that an <£p space is
B°° smooth for an even integer p and Bίp~Ώ smooth when p is not. We show
that cQ is not B1 smooth and that every Bk smooth separable Banach space has
Bk partitions of unity. These last two results were announced in Wells [10].

The distance function from a convex set is studied in § 3, and we show that
if || *| |2 e Bι

M(E, R) then distance 2(x, A) e B^iE, R) for closed and convex A.
In § 4 we make a cellular decomposition of Rn on which a Bλ

M function is
constructed with prescribed values and derivatives at a finite number of points.
Using these functions we obtain a necessary and sufficient condition for a real-
valued function defined on a closed subset of Hubert space to have a Bλ

M ex-
tension to all of Hubert space. One of the properties of this extension implies
that every closed subset of Hubert space is the zero set of a B\H, R) function.
Thus a nonseparable Hubert space has C1 partitions of unity by an easy con-
struction; this result was announced in Wells [11].

In § 5 we exhibit a closed convex subset in I2 for which there exists no B2

function satisfying/G4) = 0 and /({;t|||d(jc, A)\\ > 1}) > 1. A corollary of this
is that the Whitney extension theorem fails for C3 functions on Hubert space.
We end the section with some open problems.

2. Bk functions and Bk smooth Banach spaces

If / has a /-th Frechet derivative at x, we will let Djf(x)[h] denote the /-multi-
linear map Djf(x) acting on (A, , A). A version of Taylor's theorem reads
(refer to Abraham and Robbin [1] and Dieudonne [4]):

Taylor's theorem. // f(x) e Ck(E, F) where E and F are Banach spaces, then

κ> - /w - Σ

(Λ-D!

Proposition 1. If f e Bk

M(E, F), then

1 ) I Kx + A) - f(x) - }

rx + ί A ) _ /)*/(*))[A]Λ.

Λl(k + 1)! .

Proof. Immediate from Taylor's theorem.
Proposition 2. Bk

M(E,F) = {f\ 1) f is bounded on some open set, 2) for
every finite dimensional linear subspace H, f\H(x) is continuous, 3) letting
Δhfix) = fix + A) - f(x), || J£+ 1/(*)| | < M\\h\\k+1forallxandhinE}.

Proof. Suppose / € B^(E, F). By the mean value theorem, we have

Δk

h

+1f(x) = ΔhΔ\f{x) = Δ\Df(x + CiA)[A]
( 2 ) = . . = Λ ^ λ / ( ^ + c,A + + cfcA)[A]

for some 0 < c t < 1. So | |J^ + 1 /(JC) | | < M||A|| fe+1.
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Suppose that f(x) satisfies the conditions on the right side of (2). For any finite
dimensional linear subspace H, find a measure μH on H and a φHtΎi e C°°(H, R)

with \φH,ndμH = 1, φH,n > 0 and ||y|| > 1 / n ^ H support φHtΛ. Define

/*.»(*) by Unix) = J / ( * + y)ψH,n(y)dμH{y)- Then

o(\\h\\))dμH(y),

so

and £>/#,„(» [A] = lf(x + y)DφHtn(y)[ — h]dμH(y). Repeating this argument

gives jHt7l <ε C°°(H, F). Now Lim fHt7l(x) = f(x) for x G H, and

So by (2) we have sup||D*+1/H>π(;t)|| <M and fHiπeB«M(H,F), and D*/H. W
a;

is uniformly equicontinuous on bounded sets in H for i < k. By the Ascoli-
Arzela theorem, there are a subsequence moίn and a *&/(*) e LJ(H, F) with
lim D ^ m(x) = dyix). Using Proposition 1 and taking m —• oo we obtain

||J(jc + A) - /(JC) - Σf-^/WtΛl/ϋH < M||Λ||fe+1/(A: + 1)!.
For any other finite dimensional H', d̂ //(jc)[A] = d /̂(jc)[A] if x,x;

yheH (Ί
^ , so we have maps d*/(jc) /-multilinear from E to F at each Λ: with

1)! .

Suppose that / is bounded near x0. Find ^ such that ||/Cv)|| < B when \\y — Λ:0
< δ. Then for ||A|| = 1 we have

/(JC + Λ) — /(JC) —

i Λί μ ί -
(k + 1)! \ k

<

k

Mδk+1

so || Σ5-i (ίlk)WKx)[δh\lJ\ \\<2B + Mδk+1/(k + 1)!. Since the k X k matrix
Λij = (ί/ky/jl isinvertible, \\d^f(x)[h]\\ < kWA-^ilB + Mδk+1/(k +
and so d*/(jc0) is bounded at *0 for i = 1, , k. Now fH m e Bk

M(E, F),
so | | ^ / ί f , m ( ^ + A)[A /]-D f c/ i f,m(x)[A1| |<M||A| | | |A / | r 1 for x,h,h'eH.
Using the fact that dfe/(*0) is bounded at x0 and taking limits over m give
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dkf(x) e B°M(E, Lk(E,F)). Now <**/(* + h) - #/(*) = UmD^Jpc + h) -

D^H mW = Lim f DJ+1fH m(x + th)[h]dt. By the uniform convergence of
m J

0

Dj+1fH,7n(x + th) on 0 < t < 1, this is equal to Γ # + 1 / ( * + th)[h]dt. Thus
0

+ A) - #/(*) = f d'+ 1/(* + th)[h]dt, and by taking / = k - 1, k - 2,

• , 0 we have Dd*f(x) = d*+1f(x) and /(JC) 6 £^(£, F) with £)^/ = d*f.
Proposition 3. Suppose fp e Bk

M(E, F) and Lim fp(x) = f(x) for all x in E.

If fp are uniformly bounded on some open set, then f € Bk
M(E, F) and Djf(x)[h]

= UmD%(x)[h].

Proof. The fp \H(x) are uniformly equicontinuous on bounded sets in a finite
dimensional linear subspace H of E, so f\H(x) is continuous. Also

\\ΔΪ+If(x)\\ = | | Π m # , % ( * ) | | < M.||Λ|| f c + 1 .

By Proposition 2, / 6 Bk

M(E, F). Using (2) we have D*f(x)[h] = Lim Δ\hf{x)\V

= Lim Lim Δ{hfv(x)\V = Lim Lim Δ{hfv{x)\V = UmD%(x)[h] by the uni-

form convergence of Lim Δ{hfv(x)\V in p.

Proposition 4 (Inverse Taylor's theorem). Suppose f: E —> F is bounded
on some open set, and for all x there are maps djf(x): j-multilinear from E to
F satisfying

k

- fix) ~ Σ
. 7 = 1

ιl(k + 1)! .

Then f e Bk

M(E, F) and D*f(x) = d'f(x).
Proof. For any x and h, \\f(x + ph) — f(x) — Σ)=ιPjdjf

M pk+1\\h\\k+1. Also Σl+Λ(-l)p(k + 1)pj = OfoτO<j<k, so multiplying

the first equations by (— 1)W ~"~ J and adding from p = 0, , k + 1 give

II Ik + ί\ i (k + 1\
|| P=o \ P ) ~~ p=0\ P I

Hence by Proposition 2, / 6 £*(£, F) and D*f(x) = *'/(x). Suppose JC, A, A7 e a

finite dimensional linear subspace # , and let fHt7l = I /(JC + y)φH,n(y)dμH(y) as

in Proposition 2. Then /#> w satisfies (3) with DjfHt7l = I D^/(JC + y)y>H,n(y)dfiH(y)

and so | | D f e + 1 / ^ J I < M . Thus fH>ne Bk

M(H, F), and | |i)*/U + A)[A']-

^/WtA'ϊll = Lim H D ^ ^ C J C + A)[A7] - DkfHtn(x)[h']\\ < M\\h\\ - ||A'||*. So

feBk

M(E,F). q!e.d.
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By proposition 2 we can characterize Bk

M(E, F) without mentioning the de-
rivatives.

Even though at every x, f(x) = Lim fp(x) in norm, Djfp(x) need not approach

Djf(x) in norm as the example fn(x) = (en, x) where en is an orthonormal basis
in I2 and f(x) = 0 shows.

Corollary l For any real number b and open U in E, X = Bk

M(E, F) Π
{/III/WII < b for x ζ U} is compact in the topology of pointwise convergence
on E to the weak topology on F.

Proof. Let b(x) = sup ||/(JC) ||. Then by Proposition 3, Bk

M(E, F) Π {/|||/(JC) ||
/ex

< b for x e U} is closed in the compact \\X^E b(x) c FE.
Corollary 2. Bι

M(E, F) = {f\f(x) e C°(B, F) and \\f(x + h) + /(* - h) -
2f{x)\\<M\\h\f}.

Remarks. The class Bk(E, F) may be extended to a class Uk(E, F) =
{f\f € Ck(E, F) and for every x in E there are a neighborhood U of x and a M
such that /Iff 6 5^(L/, F)}. Then Ck+\E, F) c L/fc(£, F) C Cfc(^, F), and Propo-
sitions 1, , 4 have obvious generalizations to Uk(E, F).

Theorem 1. Suppose that E is a Bp smooth separable Banach space, and
{Ua} is an open cover. Then there exists a partition {/J of unity refining {Ua}
with ft € Bp(E, R) for each ί.

Proof. We find two countable locally finite open covers {V\}, {VI} refining
{Ua} and maps g i e B*(E, R) such that V\ C FJ, 0 < ^(JC) < 1, ft(KJ) = 1 and
gi(CVl) = 0. For every xeE find a φxe B*(E,R) such that 0 < φx < 1,

^^(x) = 1 and that support φx is contained in some Uα. Let ̂ 4^ = {̂ Î ^Cy) >
1/2}. Then {Λx} covers E and, since E is Lindelof, we can extract a countable
subset {^.} of {Ax} which also covers E. Now let £^ = {tό >l/2,ti<l/2 +
1//, i < j}l Cj = {̂  < 1/2 - I//, or ί, > 1/2 + 2//, for some i < j} in R^.
Then distance (Bj, C3) > 0, and we can find ηi € Bp(Rj, R), with ηfa, . , tj) == 1
for (ί1? , *,) € £^ and ^(ί15 , t3) = 0 for (ίx, , t3) € C^ . Let ψ^x) = ^ X l

and ψ,(*) = ^(9>X1U), ,φx,(xj) for / > 2. Define V\ = {x|ψ,W > 1/2},
V\ = {jclψ tCjc) > 0}. Since F^ C support φXl9 {V\} refines {C/β}. To show that
{V]} covers E, suppose that x e E and that i(x) is the first integer for which
ψίix) > 1/2. Such an integer exists because the A/s cover E. Thenψ ί ( Λ. } = 1,
and hence x e V\(x), so {V]} covers E. Now again suppose that x e E and find
an integer n(x) such that 9n(a.)(jc) > 1 /2. Then there exist, by the continuity of
φn{x), a neighborhood Nx of JC and an αx > 1/2 such that inf pΛ ( a ; )00 > αx.
Pick A: large enough so that k > /I(Λ ) and 2/Λ < αx — 1/2. Then for / > A:,
f>n(a?)(y) > I / 2 + 2// for y e NX9 and hence ψ^Cy) = 0 for y e Nx. There-
fore Nx Π V) = 0 for j > k so that {F }̂ is locally finite. Finally take some
A eBp(R,R) with A(ί) = 1 for ί < 0 and h(f) = 0 for ί > 1/2, 0 < A < 1.
Defining ^t(jc) = A(ψt(jc)) we have that gt e ^^(E, /?) and 0 < ^ < 1, ^(FJ) = 1
g4(CFJ) - 0. Now let f,(x) - &(*) and /4(JC) = g4(jc)(l - ^ ( Λ ) ) . . (1 - g^x))
for i > 2. Then /t 6 BP(E, R) and support /̂  C support ĝ  c F^, hence every
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point of E has a neighborhood on all but a finite number of //s vanish. Since

\χ\8i(χ) = 1} Ξ> F J , Π f - i ί 1 — ftW) = o f o r e v e r y χ a n d s o m e n- A l s o

ΣΓ-i/iW - 1 - Π ? - i d - 8i(x))> so ΣUfiM = 1 and {/,} is a partition of
unity refining {Ua} with /t e Bp for each i. q.e.d.

For the <£v spaces it can be shown that for p an even integer Dp+1\\x\\p = 0
and that for p not an even integer || Dk \\ x + h\\p - D*\\x\\*\\ < (pl/kl)\\h\\*-k

(see Bonic and Frampton [2]). So &* is B°° smooth for p an even integer and
cgv i s jgcp-i] smooth for p not an even integer. Not every C1 smooth space is

B1 smooth as the following corollary shows (see also Wells [10]).

Theorem 2. // n = 2N, endow n-dimensional Euclidean space En with the
norm \\x\\ = sup 1**1. Suppose feB^E71^) with /(0) = 0 and f(x) > 1

ί=l, ,n

wfen ||Λ:|| > 1. Then M > IN.
Proof. Assume M < 2N, and let A = {x\xt = ±1/N for i = 1, . . ? n

except for at most one iQ where |* i o | < 1/N}. Then 4̂ is radially symmetric
and connected, so there is an hx e y4 with Z)/(O)[ΛJ = 0. Ax has at least 2N~ι

components = 1/N. Likewise there is an h2 e A with Dj(h^)[h^\ = 0, and we
can choose σ2 = ± 1 so that ftj + σ2A2 has at least 2ΛΓ~2 components equal to
2IN. Inductively choose hk e A and σ4, Λ = 3, , iV, such that !>/(/*! + σ 2A2

+ + <7*_iλ*_i)[λ*] = 0 and that Ax + α 2Λ2 + + σtΛt has 2N~k com-
ponents equal to k/N. Then 11^!+ + σNhN\\ = 1 so by Proposition 1,

11 - 0| = |/(A1 + σ2h2 + . + σ ^ ) - /(0)|

= Σ |/(Λi + ^ 2 + + σkhk) - ίQh + σ2h2 + + σk^hk^\
fc = l

a contradiction.
Corollary 3. c0 w noί 5 1 smooth.
Proof. Assume/ e Bif(c0, Λ) with/(0) = 0 and /(I) > 1 when | |* | | > 1, and

restrict / to {x\xt = 0, i > 2(ilf+1)/2} to get a contradiction to the theorem.
Remark. In this theorem we have only used the uniform continuity of Df.

3. Convex sets and Bι

M functions

If A is a subset of a Banach space E, let d(x,A) = inf \\y — * | | . Then

d(x,A)ζB°1(E,R). If ,4 is convex, d(x,A) shares many of the properties of

| |* | | . The first proposition is well-known. See Restrepo [8] or Phelps [7].
Proposition 5. Let A be a closed convex subset of a Banach space with

norm diβerentiable away from zero. Suppose that d(x,A) = \\x — p(x)\\ for
every x in E and some p(x) in A. Then d(x, A) <= D(E — A,R) and Dd(x, A)
= D\\\\(x - p(x)).

Proof. Let D | | | | ( J C ) denote the derivative of || || at *. Then for xeA,
\\x + h- p(x)\\ = \\x - p(x)\\ + D\\ | | ( * - p(x))[h] + o(||/ι||), and for any h
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with p(x) + h € A, \\x - 0 0 ) + A)|| > ||* — P(JC)|| which implies D\\ \\(x -
p(x))[h] < 0. Thus the hyperplane L = {y\D\\ \\(x - p(x))\y - p(x)] = 0} is
a supporting hyperplane for A at pipe), and d(x + A, L) < d(x + h, A) <
d(x + A, p{x)) so that

\\x - p(x)\\ + D\\\\(x - p(x))[h\

< d(x + h,A)< \\x - p(x)\\ + D\\ ||(JC - p(*))[A] + o(\\h\\) .

Hence 0 < d(x + A, A) - d(x, A) - D\\ ||(JC - P(JC))[A] < o(||A||), and so
d(x, A) is differentiable at x and DJ(JC, A) = D\\ \\(x — p(x)).

Proposition 6. / / 4̂ is closed and convex and \\x\\ e B^φclWxW > a}, R),
then d(x, A) e flif/β({jc|d(jc, A) > a}, R).

Proof. Suppose that every point x in E has a closest point p(x) in A. By
Proposition 1, if d(x, p(jc)), d(jc + A, p(jc)) > a, then |d(jc + A, p(x)) - d(x, p(x))
- D\\ || (JC - P(JC))[A]| < |M| |A| | 2 /^, and we have

0 < d(x + h,A) - d(x,A) - D\\ ||(JC -

by arguing as in Proposition 5, and therefore d(x, A) e B^/a({jc|d(jc, A) > or}, 2?)
by Proposition 4. Now suppose that A is arbitrary. If H is a finite dimensional
linear subspace, then every point in E has a closest point in A f] H. Hence
d(x, A Π H) € £^/a({;c|d0t, ^4) > a},/?). With the finite dimensional linear
subspaces ordered by inclusion, d(x, A) = Lim d(x, A Π H) e B)f/a({x\d(x, A)
>(<x}, R) by Proposition 3.

Proposition 7. Suppose that A is a closed convex subset of E and that
\\x\f e Bl

M(E, R). Then d\x, A) e B^E, R).
Proof. Suppose every point x of E has a closest point p(x) of A. Then

< | |* - P(x)\\2 + D\\ \\Kx - P(x))[h]

Defining L = {y|D|| ||(JC - p(x))[y - p(x)] = 0} gives

d\x + h,A) > d\x + A,L) = (||Λ - p(*)| | + D| | \\{x - p(x))[h]f

> \\x - p(x)\\2 + 2D\\ \\(χ - p(x))[h](\\x - p(x)\\)

so \d\x + h,A) - d\x,A) - D\\J(x - p(*))[A]| < iM||A||2. Thus d\x,A) €
BX

M(E,R) by Proposition 4. Taking limits of d2(x,A Π fl) over finite dimen-
sional linear spaces H gives as above d2(x, A) e Bλ

M(E, R) for arbitrary A.

Remarks. If E happens to be uniformly convex, then every point x has a
closest point p(x) in a closed convex A and p(x) is continuous. So, if ||JC|| g
C\E - {0}, R), then d(jc, A) e C\E - A,R). The question of whether ||JC|| <=
O(E — {0}, i?) implies d(x, A) e O(E — A, R) in general remains open.



142 JOHN C. WELLS

4. B1 functions on Hubert space

We will suppose that H is a real Hubert space endowed with the usual norm,
and we will identify # * with H and write (y, x) = y-x and ||JC||2 = x2.

We recall the Whitney extension theorem (see Abraham and Robbin [1]):
Let A C Rn be a closed subset, and fi9 i = 0, . , k: A -> L%Rn, F), F an-
other Banach space, and suppose

x ^ Ά ^ P ^ - ΣLjfiWiy - χ]/d - DW\/\\χ - y\Γj = o.

Then /0 has a Ck extension to Rn with Djf0(x) = fό(x) for x e ^4.
In this section we prove a version of this for real-valued B1 functions on

Hubert space, and show that O partitions of unity exist on any non-separable
Hubert space.

Theorem 1. Let A = {pλ, , pm} be a finite subset of Rn endowed with
the usual norm. Let ap.€R, yp. e Rn for i = 1, , m satisfy

( 4 ) ap, < ap + i(yp + yp.) • (j/ - p) + \M{p> - pf - \(yv, - yp)>/M

for all p, p' in A. Then there exists an f(x) e B^R", R) with f(p) = ap, Df(p) = yp

for p in A and f(x) > inf [ap - ±y*/M + \M(x - p + yp/M)2]. Further, if
P c A.

g(x) € Bι

M(Rn, R) with g(p) = ap, Dg(p) = yp when pεA, then g(x) < f(x) for
all x.

Proof. We first construct a convex linear cell complex and a dual complex.
From these a cellular decomposition of Rn is constructed on which / is defined.
Df will turn out to be piecewise linear.

Definition. When p € A we define:

P = P- yvlM > P =

dp(x) = ap- \y\\M + \M{x - p)2 .

Definition. When S a A we define:

ds(x) = wtdp(x), S = {P\pεS},

SH = smallest hyperplane containing § ,

SE = {x\dp(x) = dp.{x) for all p, p'ε S},

S* = {x\dp(x) = dp,(x) < dp,,{x) for all p, pr € S, p" e A},

K = {S\S C A and for some x <= S1*, ds(x) < dA_s(x)} .

So, if p € S e K then p C 5.
Definition. ,S = convex hull of S.
Lemma 1. {p, p'}E = Rn or an (n — \)-dimensίonal hyperplane, and

P' -P±{p,p'h
Proof. dp(x) - dr(x) = (ap - J^/M) - (ap. - ^jM) + p2 - pf2 +
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2x-{pf — p). If p Φ p', this immediately gives the lemma. If p = p', then
p — p' = (yp — yp,)/M and (4) gives ap, — \y\>\M <ap — \y\\M. Reversing
p and pf gives dp(x) = dp,(x).

Lemma 2. S* is closed and convex.
Proof. By the definition and Lemma 1, S* is the intersection of closed

convex sets.
Definition. Let Sb, S% be the relative boundaries of S, S* if dim S,

Φ 0, in which case let S\S% be the relative interiors; if dimS,
= 0, let Sb = 0, S% = 0, fr = S and S% = S*.

Lemma 3. SH _]_ SE, and if SE Φ 0, then dim SH + dim SE = n.
Proof. SE = Π {PJ P'}E together with Lemma 1 implies SH_\_SE. Assume

p,p'es

dim S'H + dim Si = n for S' = S - p, and p' eS -p. Then by Lemma 1
dim O, p')H + dim (p, /?0^ = n, and dimS^ = dim ({p, p7}^ Π (S — p)£) = π
— dim({p, p r}H U (S — p)H) = π — dim SH. By induction dimS# + dimS^ = n
for all S.

Lemma 4. If S d S', then S'* C ^ . // S, S7 6 ϋC, then S Q S' if and only
if S* £ S*, β«d S = S' if and only if S* = S*.

Proof. The first statement follows from the definition of S*. If S Q S' and
S, S' € K, find z e S* with ds(z) < ds,_s(z) so that S* Φ S'* and S'# £ S^. If
Si c S#, find z € Si with d5,(z) < dA_8.(z). So, if p e S, then d5/(z) = dp(z),
so pi A — S\ and hence S C S'.

Lemma 5. If S e K, then S% = {JC|JC e SB, ds(jc) < dA_s(x)}.
Proof, li SeK, then clearly {x\x e SE, ds(x) < dA_s(x)} c S^. Suppose

x e Si and p ε S,p' € A with dp(jt) = dpf{x). Then the hyperplane dp(;c) = <ip/(jc)
must contain all of S#, so p7 e S. Therefore ds(x) < d4_5(^).

Lemma 6. dp.<y) - dp{y') = dp,(y) - dp(y) + 2 ( / - y). (p - pO
Proof. Immediate from the definition.
Lemma 7. S J_ S*. For S e K, dim S + dim S* = n.
Proof. SH JL S^ implies the first part. Suppose S e X and find z e S* with

d5(z) < dA_s{z). But then for some ε, open ball center z radius ε Π SE c S^
so dim S^ = dim S^ and dim S + dim S^ = n.

Definition. It S*Φ0, let S = {p\p € A, dp(z) = d5(z) for all z e S^}.

L e m m a 8 . / / S* Φ 0, then S e K and S* = S * .
Proof. Immediate from the definitions.

Lemma 9. (a) // S,S' εK and S Π S' Φ 0, ίΛ^ S Π S' e K and S Π S'

(b) // S,S'eK and S* Π Si Φ 0, ίA^n S,, Π Si = (SJΓS7)*.

Proof, (a) Assume S qt S' and S' ζί S, and find y e S^, / e Si with

4 W < ^ _ s ( ) 0 , rf^(yθ < ^ - ^ ( / ) Then L - cohull {>;, /} C (S Π S ^ . For

any p ' e ̂ 4 — (S U SO and p € S Π S', the half space dp(x) > dp,(x) dops not

contain y or y', so it does not contain L. For p <= S Π S7 and p' e(S — SO U
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(S' — S), the half space dp(x) > dp,{x) does not contain both y and y'. Since
dp,(y) = dp(y) or dp,ty) = dp(y'), the half space dp(x) > dp,(x) can not inter-
sect IΛ Picking z e ^ w e have dsns,(z) < dA_sns(z), so S Π S' e K. S Π S'

= 5 Π S' is obvious.
(b) Observe (S U 50* = S* Π 5* and use Lemma 8.
Lemma 10. If S e K, then Sb = (J S'.

Pros/. Suppose * € S \ Then xeS' for some S' c 5 with S' (ZSb. Find an
(n — l)-dimensional hyperplane M containing S\ supporting the convex set S
but not containing S. Find y e 5* with ds(y) < dA_s(y), and find / ψ y with
y — y' _l_M, with £ on the side of M in direction yf to y and d&iy*) < dA_s{yr).
Then / — y _[_ (5 Π M)H which implies / € S'E. For all p' e S' and p e 5,
( ^ - p) (y - y') > 0. Thus dp(y') > dv,(y') by Lemma 6 so that ^ , 0 0 <
ds(y'). Also (p - pO. (y - / ) > 0 for some p € 5 - M and all p' e 5', so by
Lemma 6, ^ (Z) > dp.(f)\ hence J5,(j0 < έ/pCvO Thus / e S'* and / * S#.

So fς = 5ς 2 5*, and * 6 S' c I 7 £ *S with 57 € X by Lemmas 8 and 4.
Suppose on the other hand that S' Q S, S e K. Then S'* 2 S* by Lemma

4, so we can find yf € 5^ — S* and y e 5*. Take some p' e 57, and let M =
{•̂ ICy — / ) (^ — P') = 0}. Then y, / e S'H, and ^ c M b y Lemma 2 and so
5' C M. Now if p € 5 - S', then dp,(y) < dp(y'). Since dp,(y) = dp(y),
(y — / ) (P — Pf) > 0 by Lemma 6 and p lies on the side of M in direction
/ to y. Hence M supports S and ^ c »Sδ.

Lemma 11. If S ε K, then S% = \J S%.
S'^S,S'€K

Proof. By Lemma 5, JC e S% if and only if x € 5* for some S' 2 S. But then

x € S; with 57 € X and ^ D S' 2 5.
By Lemmas 9, 10, 11, U S is a ceU complex, and U *$* is a cell complex of

SζK SζK^

Rn U oo dual to U ^ by Lemma 4. We show that (J S = cohull -4. We can
assume that dim A = n. Suppose S 6 K with dim S = n — 1. From Lemma 6
we see that 5* extends infinitely in a half space determined by S# if and only
if there are no points of A in that open half space. Hence S C (cohull A)δ if
and only if 5* has only one boundary point if and only if S does not lie on the
boundary of two other S's in K by Lemma 11. Now there are members of K
with dim S = n, otherwise if dim S' = max dim S < n then 51 = S'Σ. How-

S € K

ever, p' e S' implies that {p', p/;}E must intersect 5^ for some p" e A, otherwise
dim A would be less than n. Thus S'E Φ S*, a contradiction. Hence 0 Φ
( U sYd (cohull A)δ so that (J S •= cohull i .

We also observe that for any x in Rn if we let S = {p\dp(x) = in^rfp,(^)}

then 5 € K and t € 5^. Hence U S* = Rn. Fig. 1 shows an example of these
SζK

two cell complexes.
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W e n o w p e r f o r m a n o t h e r d e c o m p o s i t i o n of Rn.

Definit ion. F o r all S e K let Ts = {x\x = \{y + z) for s o m e yεS a n d

Z C λJ ̂  Γ .

Lemma 12. Ts is closed and convex with nonempty interior.
Proof. Immediate from Lemmas 2 and 3.
Lemma 13. The representation x = \(y + z), y e S, ze 5^ for x ζTs is

unique.
Proof. Suppose * = £ ( / + zθ? / e S, z! 6 5^ also. Then j — / =

— (z — ZOJ and y — yf \_ z — z! by Lemma 3, so y = yf and z = z!.
L e m m a 1 4 . 7 ^ Π Ts, = {x\x = i(y + z),yeS f) S', z e S* Π 5^}.

Proof. Immediate from Lemma 13.
Lemma 15. (a) (Ts Π Ts,)° = 0ifS^S\ and (b) Tδ

s C | J T5,.

(a) S n S' = si i^S' , and 5 Π 5' 6 X by Lemma 9.1fSφ S\ then
5 Π S' C Sδ or S'\ so dim (»S Π SO < max (dim S, dim 50 = n — min (dimS#9

dim Si) < w — d i m ^ ^ Π 5^). By Lemma 14, dim ( Γ 5 Π T^,) < n and the
interior of Ts Π T^, is empty.

(b) If x € Γ | , then JC = i ( j + z) where y ^ 6 and/or zεS%. So y € S7

and/or z € S£ for some 5 ; ς S and S" 2 S by Lemmas 10 and 11. Hence
x € TV and/or Ts,, with 5' £ S and/or Sr/ 2 S.

Lemma 16. 7^ Π T 5 , = Tsns> Π

. n S'* = (S Π 50* Π (S U 50
by Lemma 9, and Lemma 16 follows from Lemma 14.
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Lemma 17. (J Ts = Rn.
SζK

Proof. Since the complement of a closed convex set is locally connected
and T°s Π T°s, — 0 if S Φ S', this lemma follows from the next proposition.

Proposition 8. Let {Tt} be locally finite collection of nonempty closed sub-
sets of a connected space E. Suppose that the T[s have disjoint interiors, E — Tt

is connected in some neighborhood of each point of E for each i, and T\ C {J Td.

Then \JTt = E.

Proof. is closed since {7\} is locally finite. Suppose that whenever a
/ \ 0

point y of E is contained in k or less TV s then y e Π j Γ J . If x e Th, , Tik

and no others, then we can find a neighborhood U about x which meets only
Til9 , Tίk and such that U — Ίiχ is connected. Thus Tu U U Tίk is
open and closed in U — Tiχ by assumption, and so contains all of U — Ύiχ.
This implies that U C Th U U Tίk so that x e \J T\. The statement is

i

true for k = 1, so by induction x € [J T\ for all x e E. Hence U Tt is open,
i ί

and (J Ti = E since is connected, q.e.d.
ί

Fig. 2 illustrates the T's superimposed on the dual complexes of Fig. 1.
Definition. Sc = SE Π SH for 5 € K. Sc is a point by Lemma 3.
We now construct / on Rn.
Definition. fs(x) = ds(Sc) + ±Md2(x,SH) - ±Md2(x,SE) for S 6 K and

Fig. 2
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Lemma 18. fs(x) = fs,(χ) if x g Ts Π Ts,.
Proof. By Lemma 16 we can assume that S C S'. Now x = \{y + z) with

yeSd S\ zeS'*C.S* by Lemma 14, and d(x9SH) = \d(z9SH) = \d(z9Sc)
and d(x, SE) = \d(y, SE) = \d(y9 Sc) so that

/5(JC) = ds(Sc) + ^ 2 ( ^ , z ) - $M(P(Sc,y) ,

Similarly,

/fi'W = dstS'c) + iMd\S'c,z) - iMdχS'c,y) .

Now z9S'csS'E and S ^ e ^ , and d?(z9S'c) + <P(SC9S'C) = d2(z,Sc) since
% ± % . Also y, 5 C 6 5 H and Sσ, % 6 5^ with SH J_ S^, so d*(y, Sc) + d\Sc, S'c)
= d2(y,S'c). Finally, p - Sc J_ Sc - S'c for p € 5, so ^ ^ ( 5 ^ % ) + dfi(Sfc)
= ds(S'c) = ds,(S'c). Hence our lemma follows from these equations.

Lemma 19. fs e C^ίT^, i^).
Proof. Observe that d\x, SE) and d2(x, SH) are C°°.
Lemma 20. D/(JC) = ^M(z — y) where x = J O + z)9 y e S and zeS*.
Proof. D(P(x9 SH) = 2\\x- PSH(X)\\D\\X- PSH(X)\\ = 2(x - PSH(X)) where

PSH(X) is the closest point of SH to x by Proposition 5. Now x — PSH(X) =
j(z _ sc)9 so D\Md\x,SH) = \M{z - Sc). Likewise Dd\x,SE) == %M(x -
PSE(X)) = \M(y — Sc) where PSs(x) is the closest point of SE to x. Hence
Df(x) = ±M(z - y). .

Lemma 21. fs(x) e B^ίΓ^, Λ).
Proof. Let JC, JC7 € T, x = ^(y + z) and Λ:7 = \{γ + z') as usual. Then by

Lemma 20,

(D/5(*) - Dfs(x)γ = \M\(z - zf) + (y- y')f = M\x - xj ,

since z-zf A_y -Ϋ. Hence \\Dfs(x) - Df8(x^\\ = M\\x - x>\\.
Lemma 22. Dfs(x) = D/5,(JC) // JC € Γ^ Π Γ^,.
Proo/. If x e Ts Π TV, then JC = J(y + z) where y € S Π S7 and z <= 5^ Π 5'#

by Lemma 14. Thus D/S(JC) = \M(z - y) = Dfs,(x) by Lemma 21.
Definition, /(JC) = fs(x) iixεTs.
f is well defined on Rn by Lemmas 17 and 18, and / € Bι

M(Rn, R) by Lemmas
21 and 22.

Lemma 23. f(p) = αp and D/(p) = yp if p € A.
Proof. By the definition and an assumption in the hypothesis of Theorem

1, for any / / e A we can easily obtain dp(p + yp /M) = \y\ jM + ap< \y\ \M +
cίv + iM(/7 - p'f + J(yp/ + y p ).(p - pθ - i(y p - y p / ) 7 ^ = ^ ' ( P + >W M )
Thus p + y p / M s p , and p = \{p + p + yp/M) e TΨ. Hence f(p) = /-(p) =
dpίp) + iAf (p - (p - J p /M)) 2 = ap9 Df(p) - JAf ((p + yp/M) - p) = yp

by Lemma 20.

Lemma 24. Suppose g e B^CR", Λ) and g(p) = flp, ^)g(p) = yP /or p € ̂ .
Theng(x) <f(x).
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Proof. Suppose first that xε T^. Then by Proposition 1, g(x) < ap +
yP(x -P) + W(x - V? = a p - \y\\M + | M ( i - pf = f?(x) = /(*) . Sup-

pose next that for all S e K with ^ ( 5 ) < m, g(x) < f(x) for xeTs. If ̂ ( S )
= m + 1 and x € Ts, then let x = %(y + z), y e S, z e S*. Fix z, and define
e(w) = g(±(w + z)) - f(i(w + z)) for w € S. Then g(%(w + z)) e B^S, R)
and f(±(w + z)) = const. - ±M(w - 5C)2 with DJ(±(w + z)) = - \M(w
- Sc). For any h with w + heS, De(w + h)[h] - De(w)[h] = \Mh2 +
(Dg(l(w + h + z)) - Dg(i(w + z)))[h] > 0.̂  Thus, if e(w) is maximal at w,
then De(w) Φ 0, so e(w) has its maximum on Sb. Since w e Sb implies x € S' for
some y Q S, x = \{w + z) e Ts, so that e(w) < 0 by the assumption. Hence
e(w) < 0 on S and g(x) < fix) on Ts. By induction ^( c) < f(x) everywhere.

Lemma 25. f(x) > inf dp(x).

Proof. Take p with dp(X) = inf dq(x). Then c e p^ so ^(^ + x) e Tψ and

/?(i(^ + x)) = ap- \γv\M + ilί(x - p)2. Also Z)/(K^ + *)) = |M(JC -
p). So by Proposition 1, /(*) > /(|(x + ^)) + Df(%(x + p))[±{x - p)] -

Lemmas 24 and 25 complete the proof of Theorem 1. We observe from
Lemma 20 that Df is a piecewise linear map from U Ts to Rn, whose deriva-

s
tive in T°s is M Identity 0 — M Identity on SH®SE.

Lemma 26. Suppose p and p — yp jM e L for all p in A where L is an
affine linear subspace of Rn. Then f(x) = fL(πL(x)) + %Md2(x,L), where fL is
the function obtained in Theorem 1 by taking L instead of Rn as the underlying
linear space, and πL is the orthogonal projection of Rn onto L.

Proof. Observe that p β L for all p in A and that K is the same taking
Rn or L. Also Ts on Rn = πl\Ts on L), and d\x,SH) = d\πL(x),SH) +
(x — πL(x))2, d\x,SE) = J2(τrL(jc),5'jδ;). This establishes the lemma.

Theorem 2. Lei A be a closed nonempty subset of any Hilbert space H
endowed with the usual norm. Suppose that fQ is a real-valued function on A.
Then there exists an f e B^iH^R) with f\A = f0 if and only there is a map
f1:A —> H such that for all x,y e A

fo(y) < fob) + itfiW + AGO) -(y-χ)

Further, f can be found such that f(x) > inf dy(x) where dy(x) = fo(y) —

ifi(y)/M + W(x ~ y + Λ(^)/M)2 and such that if g(x) e B\(H, R) with
g(x) = fQ(χ) and Dg(x) = f,(x) for x e A, then g(x) < f(x) for all x.

Proof. If f0 has an extension / in BM(H, R), let ̂ (JC) = Df(x). Let x19 ί = 0,1
be two points in H, set at = fo(xt) and yt = fλ(x^9 and define x2 = \{xQ + xx)
+ ^{yx — yo)/M. By Proposition 1 we have

f(χ2) < Kxo) + 3v(i(*i - xo) + K)7! - 3Ό)) + έ^CK ̂ i - *o) + iCvi - ^o))2,

- Λ0) - K^i - Jo))2,
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so by the parallelogram law,

/CO < /(*o) + iθΌ + >Ί

- xoγ - K J I - )Ό)7M

To go the other way, choose for every finite subset F in A, a finite dimen-
sional linear subspace HF of H containing p and p — f^/M for all p in F. By
Theorem 1 construct /£. € Bι

M(HF, R) satisfying fF(p) = fo(p), DfF(p) = /x(p) for
p in F, etc. Now define for xeH, fF(x) = /^(TΓ^JC)) + ±Md\x,HF). Then
j> 6 # U # , # ) , /*.(p) = Up), DfF(p) = fλ(p) for p e A, and /^ is independent
of HF by Lemma 26. So we have fF{x) > inf d^Ct), and g(x) < f(x) for all x

inHifge BX

M{H9 R) with g(p) = fo(p) and Z)g(p) - /x(p) for p € A.
Now order J^ the set of all finite subsets of A by inclusion. Then F' D F

implies /^/(x) < /̂ (̂ c) for all Λ, SO Lim fF(x) = f(x) exists for every x, and

Bλ

M{H,R) by Proposition 3. Also /(p) = Lim/^Cp) = f Π m f W x ) = /0(p)

f or p e A, and Df(p) z = Lim DfF(p) z = fx(p) z for all z in # and pin A,

so D/(p) = ^(p). fF(x) > inf dy(jc) for all F gives /(JC) > inf dy(x). Finally,

g e BiCff, Λ), g(p) - /0(p), and Dg(p) = /x(p) for p € >4 implies
for a l lF, so g(x) <f(x).

Corollary 1. Let A be a closed subset of a Hubert space H. Then there is
an f € B^iH, R) with f(x) > \Md\x, A), and g(x) < /(JC) if g € Bι

M{H, R) and
g(A) = Dg(A) = 0.

Proof. Take f0 = fλ = 0 on A. Then dy(jc) = JMCy - x)\ and the corol-
lary follows.

Remark. If A is convex, then \Md\x, A) e .B^CH, i?) by Proposition 7,
and /O) < I M ^ U ^ ) by Proposition 1. So /(JC) = \Md\x,A).

Corollary 2. ^ π y locally finite open cover {F^} of a Hubert space H is the
supporting set for a Cι partition of unity.

Proof. Find U e B\(H, R) with /,(JC) > d2(jc, H - Vt). Then Vt = fϊ\R+),
and by defining pf(jc) = fi(x)/Σtj fj(χ) w e n a v e a ^ x partition {^} of unity with
Vt = φϊ\R+). Actually ψi e Uι(H,R) in the sense of the remark following
Corollary 2 of § 2.

Corollary 3. O(H, F) is uniformly dense in C°(H, F) for a Hubert space H
and any Banach space F.

Corollary 4. Given A and B closed in a Hilbert space H with d(A, B) =
δ > 0, there is an f e B\/δ2(H, R) with 0 < /(JC) < 1 and f(A) = 0 and f(B) = 1.

Proof. Let Br = {JC|</(JC, A) > δ}. Let / 0 U ) = 0, /0(£') = 1, fλ(A) =
fλ{Bι) = 0. Then (5) holds with M = 4/δ\ and we have / e \/δ*(H,R) with

Since d(jc, (A U B')) < δ for all x, m = sup/(x) < oo. Suppose m > 1, and
find a sequence jcn in H — Bf with f(xn) —> m and a sequence zw e ̂ 4 with
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| |x n -zn\\< δ. Then m > f(xn + δQDf(xn))) > f(xn) + ±δ2\\Df(xn)\\2 by

Proposition 1. So | |D/0tn)| | -> 0. But then (5) implies m = Lim \f(xn) - f(zn)\

< 1, a contradiction, so m < 1 and 0 < f{x) < 1.

C o r o l l a r y 5 . Suppose A is closed in Hilbert space H, a n d f o : H —> R n a n d

<u,f(y)> < <u,Kx)> Df(y))\y - *]>

- Df(x)}Y/M- y)2 -

for all x,yeH and ue Rn*, \\u\\ = 1. Then there is an f 6 Bι

M^(H,Rn) such
that f(x) = fo(x) and Df(x) = fλ(x) for x in A.

Proof. Let e19 , en be an orthonormal basis for Rn, extend </0, ety to
f\ . . . , /» and set /(JC) = f ^ M + + /»(jc)^n.

Corollary 6. Given g(x) e B^(H, i^), a Hilbert space H and an ε > 0, Λere
is an f e B^XH,R) with \f(χ) - g(x)\ < ε for all x.

Proof. Let An = g-1(nε), n = 0, ± 1, ± 2, . . . Then dG4n, y4n+1) > ε/M,
and by Corollary 4 we can find fn e Bι

MV&{H, R) with fn(An) = nε, / n U n + 1 ) =
(n + l)e and nε < fn < (n + l)ε. Let f(x) == wε if Λ; e An9 and /(JC) = fn(x) if
πε < /(JC) < (n + l)ε.

Remark. This corollary is not true if R is replaced by P. Take H — P, and
let σ(x) = Σ ί l ̂ ίkί where {et} is an orthonormal basis. Then σ € #J(/2, P), but
sup ||/(JC) - σ(jc)|| > 1 £ or / € B\P, P). This was proved in Wells [12].

5. B2 functions and some open problems

The corollary of the next theorem shows that Corollary 4 of § 4 is not true
if B1 is replaced by B2 even for A convex and bounded.

Theorem 1. Suppose f e B2
M(RN, R), f(A) = 0, and fix) > 1 when d(x, A)

> 1 where A = {x\xt (i-th coordinate of x) < 0, ||JC|| < 1}. Then N < M2 +
36M4.

Proof. Assume fεB2

MiRn, R), f(A) = 0, fi{x\d(x, A) > 1}) > 1 and
N > M2 + 36M4. Let gix) = ΣP<=sNf(p(x))/N}' where SN is the set of all
permutations of the Λ̂  coordinates of x. Then g <ε B2

MiRn, R) with giA) = 0
zndgi{x\d(x,A) > 1}) > 1. Define points yn for n = 0, ,M 2 withy? = 1/M
f o r i = 1, •• ,/i,y? = - 1/Mforz = w + 1, •• ,M 2, andy? = Oforΐ = M2

+ 1, , N. Define zn for w = 1, , M2 with z? = 1 /M for / = 1, , n — 1,
z£ — 0, z? = — 1 /M for i — n + 1, , M2, and zf = 0 for i = M2 + 1, , N.

By symmetry, -^-(z w ) = - ^ - ( z n ) for m = M2 + 1, , N. So

36M4
36M4 36M2
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or
3 * (,nλ

1

6M
. Now by Proposition 1,

M d 2 M2 fa^2 M2 fa^ 6

°~ - — 6M2 ' 2 d*2, 6M2 '

so g(yn) < gO71'1) + f M"2. Summing up from n = 1, , M2 gives g(jm2) <
gθ°) + 2/3. But y° eA with g(;y0) = 0, and d(yM\ A) = 1 with gO^2) > 1, a
contradiction. Hence N < M2 + 36M4.

Corollary 1. Lei A = {JC|JC 6 Z2, ** < 0, || JC|| < 1}, and suppose f e C\l2, R)
with f(A) = 0 and f({x\d(x, A) > 1}) > 1. Then f $ B2(l2, B).

Proof. Obvious from the theorem.
Corollary 2. There exist a closed subset of I2 and functions /0, f19 f2, f3:A—>

R, L(l2, R), L%12, R), L%12, R) satisfying the conditions of the Whitney extension
theorem with the property that there is no C3 or B2 function agreeing with fQ on
the closed set.

Proof. Let A = {JC|^ = 1, jct < 0 for / = 2, 3, , and ||JC - ex\\ < 1},
and B = {x\xλ = 1, d(x, A) > 1}. Let CA and CB be the cones formed on A
and B with the origin. Define /0(JC) = JCJ, f1(x)[h] — Sxλhu f2 (x)[h] = Sβxfyl,
Ux)[h] = 336xlhl for x e CA, and /0(JC) = Ux) = f2(x) = Ux) = 0 on CB.
Then it is easy to see that these functions satisfy the hypotheses of the Whitney
extension theorem. If / e C3(/2, R) or B2(l2, R), and f\CA\jcB — /oW? t n e n in Λ e

first case D3/(x) is bounded near zero, and in either case f\Xl=a e B2({JC | J^ = a}, R)
for some a > 0. But this is impossible by Corollary 1. q.e.d.

We list some open problems:
(1) Does | |x | | 6 C\E - {0}, R) imply d(jc, A) e C\E - A,R) whenever A

is convex and closed?
(2) Do nonseparable JS?*, p > 2, have C1 partitions of unity?
(3) Does nonseparable Hubert space have C2 partitions of unity?
(4) Is Theorem 2 of § 4 true for Banach-valued functions on H or for func-

tions on non-Hilbertian Banach spaces with an appropriate change in (1)?
Added in proof. Since the submission of this paper Henryk Taruήcyk has

obtained in [9] results which settle questions 2 and 3. We summarize some of
these results:

( i ) A Banach space E admits Cp, p = 1,2, oo partitions of unity if
and only if there are a set A and a homeomorphic imbedding u: E —> CQ(A)
with pa o u(x) e Cp for all a e A where pa is the projection of co(A) on its a-th
coordinate.
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Thus Taruήcyk observes that any Hubert space £2{B) has C°° partitions of

unity by taking A = B U {1} and by defining u(x) by

paou(x) = ||Λ:||2 for a = 1

= jĉ g for a = j8, β € 5 .

(ii) If £ is a reflexive Banach space with an equivalent locally uniformly

convex norm of class Cp, then E admits Cp partitions of unity.

Thus J£p has C°° p.o.u. if p is an even integer, and Cp~1 p.o.u. if p is an

odd integer.

(iii) A Banach space E has Cp p.o.u. if and only if there is a σ-locally finite

base of the topology of E consisting on nonzero sets of real valued functions of

class Cp.

(iv) In a personal communication Taruήcyk has shown that E has Bp p.o.u.

p < oo if there is a σ-discrete base of the topology of E consisting of nonzero

subsets of real valued functions of class Bp. The author has proved the converse

statement.

This generalizes Theorem 1. Also using Corollary 1 and the fact that every

metric space has a σ-discrete base for the topology, it follows that every Hubert

space admits B1 partitions of unity.
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