## A CHARACTERIZATION OF RIEMANNIAN MANIFOLDS OF CONSTANT CURVATURE

RICHARD HOLZSAGER

As in [2], consider the parallel bodies of a hypersurface in a Riemannian manifold. That is, suppose $M$ is a submanifold of codimension 1 with oriented normal bundle in a manifold $\bar{M}$. Define a homotopy $h: M \times R \rightarrow$ $\bar{M}$, by letting $h(x, t)=\gamma_{x}(t)$, where $\gamma_{x}$ is the geodesic through $x$ whose tangent at $x$ is the positive (with respect to the orientation on the normal bundle of $M$ ) unit normal vector. In other words, $h_{t}(M)$ is obtained by translating $M$ distance $t$ along orthogonal geodesics.

If $M$ is a compact hypersurface (with or without boundary), it makes sense to consider the area (or volume) $A_{M}(t)$ of the singular hypersurface $M_{t}$. If $M$ and $\bar{M}$ are $C^{\infty}$, so is $A_{M}: R \rightarrow R$. In [1], we showed that surfaces of constant curvature $c$ are characterized by the fact that for any hypersurface (i.e., curve) $A_{M}$ satisfies the differential equation $A^{\prime \prime}+c A=0$. This result is now generalized to higher dimensions.

Theorem. For an n-dimensional $C^{\infty}$ Riemannian manifold $\bar{M}$, there is a differential equation $A^{(n)}+a_{1} A^{(n-1)}+\cdots+a_{n} A=0$ ( $a_{i}$ constant) satisfied by $A_{M}$ for every hypersurface $M$ if and only if $\bar{M}$ has constant sectional curvature. The relation between the equation and the curvature is $c=a_{2} /\binom{n+1}{3}$.

Remark. It is impossible for an equation of order $m$ less than $n$ to be satisfied by every $A_{M}$. To show this choose some $x \in M$ and an orthogonal base $T_{1}, \cdots, T_{n}$ for the tangent space at $x$. Define a coordinate system $\phi_{m}$ about $x$ by $\phi_{m}\left(r_{1}, \cdots, r_{n}\right)=\exp _{y} X$, where $y=\exp _{x} \sum_{m+2}^{n} r_{i} T_{i}$, and $X$ is the parallel translation of $\sum_{1}^{m+1} r_{i} T_{i}$ to $y$ along $\exp _{x} t \sum_{m+2}^{n} r_{i} T_{i}$. Let $U$ be a small neighborhood of $(1,0, \cdots, 0)$ in an $m$-sphere $S^{m}$, and $V$ a small neighborhood of the origin in an ( $n-m-1$ )-dimensional Euclidean space $R^{n-m-1}$. For small values of $t, \phi_{m}$ will imbed $(t U) \times V$ in $\left.\bar{M}, \phi_{m}(t U U) \times V\right)$ forms a family of "parallel" hypersurfaces and $A(t)=t^{m} \int \sqrt{g} \circ \phi \circ(t \times \mathrm{id}) d$ Vol, integral over $U \times V$, where $g$ is the determinant of the metric tensor on $\bar{M}$ with respect to $\phi$. Then $A^{(m)}(0)=m!\operatorname{Vol}(U \times V), A^{(i)}(0)=0$ for $i<m$. Thus $A$ cannot satisfy an equation of order $m$.

Proof of the theorem. Assume the equation is satisfied by every $A_{M}$. Let $\phi=\phi_{n-2}$ be as in the remark (i.e., build a coordinate system using tubes about the geodesic through $T_{n}$ ). Let

$$
A_{0}(t)=\lim A(t) / \operatorname{Vol}(U \times V)=t^{n-2} \sqrt{g}(\phi(1,0, \cdots, 0))
$$

limit taken as $U$ and $V$ converge down to $(1,0, \cdots, 0) \in S^{n-2}$ and $0 \in R$ respectively. $A_{0}$ will also satisfy the equation, giving for $t=0$

$$
\begin{equation*}
\binom{n}{2}(n-2)!T_{1} T_{1} \sqrt{g}+(n-1)(n-2)!a_{1} T_{1} \sqrt{g}+(n-2)!a_{2} \sqrt{g}=0 \tag{1}
\end{equation*}
$$

where we write $T_{i}$ for $\partial / \partial x_{i}$ throughout the coordinate system.
Let us also write $D_{i}$ for covariant differentiation with respect to $T_{i}$. Then, as in [2], $T_{1} \sqrt{g}=\sum_{i=1}^{n} \gamma_{i i} \sqrt{g}$, where $D_{1} T_{i}=\sum_{j} \gamma_{i j} T_{j}$ and $T_{1} T_{1} \sqrt{g}=$ $\left(\sum_{i, j=2}^{n} \gamma_{i i} \gamma_{j j}+\sum_{i} T_{1} \gamma_{i i}\right) \sqrt{g}$. By definition of $\phi, \sum_{i=1}^{n-1} r_{i} D_{i}\left(\sum_{j=1}^{n-1} r_{j} T_{j}\right)=0$ at any point of the form $\left(t r_{1}, \cdots, t r_{n-1}, r_{n}\right)$. In particular, this implies $D_{i} T_{j}=$ 0 for all $i, j \leq n-1$ at $x$. Also, $D_{n} T_{i}=0$ for all $i$, so $D_{1} T_{n}=D_{n} T_{1}=0$. Consequently $\gamma_{i i}(x)=0$ for all $i$. Thus

$$
\begin{align*}
& \binom{n}{2} \sum_{i} T_{1} \gamma_{i i}+a_{2}=0 \quad \text { at } x .  \tag{2}\\
& T_{1} \gamma_{i i}=\sum_{j}\left(T_{1} \gamma_{i j}\right)\left\langle T_{i}, T_{j}\right\rangle=T_{1}\left(\sum_{j} \gamma_{i j}\left\langle T_{i}, T_{j}\right\rangle\right)-\sum_{j} \gamma_{i j} T_{1}\left\langle T_{i}, T_{j}\right\rangle \\
& =T_{1}\left\langle T_{i}, D_{1} T_{i}\right\rangle=\left\langle D_{1} T_{i}, D_{1} T_{i}\right\rangle+\left\langle T_{i}, D_{1} D_{1} T_{i}\right\rangle=\left\langle T_{i}, D_{1} D_{i} T_{1}\right\rangle,
\end{align*}
$$

so (2) becomes

$$
\begin{equation*}
\binom{n}{2} \sum_{i}\left\langle T_{i}, D_{1} D_{i} T_{1}\right\rangle+a_{2}=0 \tag{3}
\end{equation*}
$$

At $\phi\left(x_{1}, \cdots, x_{n}\right), \sum_{j, k=1}^{n-1} x_{j} x_{k} D_{j} T_{k}=0$. Applying $D_{i}(i=1, \cdots, n-1)$ at $\phi\left(x_{1}, 0, \cdots, 0\right)$ gives $2 x_{1} D_{i} T_{1}+x_{1}^{2} D_{i} D_{1} T_{1}=0$. Dividing by $x_{1}$ and applying $D_{1}$ give $2 D_{1} D_{i} T_{1}+D_{i} D_{1} D_{1}+x_{1} D_{1} D_{i} D_{1} T_{1}=0$, so $D_{i} D_{1} T_{1}=-2 D_{1} D_{i} T_{1}$ at $x$. Therefore the sectional curvature determined by $T_{1}$ and $T_{i}$ at $x$ for $i=$ $1, \cdots, n-1$ is $R(1, i)=-3\left\langle D_{1} D_{i} T_{1}, T_{i}\right\rangle$. Also, $R(1, n)=-\left\langle D_{1} D_{n} T_{1}, T_{n}\right\rangle$, since $D_{1} T_{1}$ vanishes along $\phi(0, \cdots, 0, t)$, so $D_{n} D_{1} T_{1}=0$ at $x$. Now (3) becomes

$$
\begin{equation*}
R(1, n)+\frac{1}{3} \sum_{2}^{n-1} R(1, i)=a_{2} /\binom{n}{2} \tag{4}
\end{equation*}
$$

The roles played in this whole argument by $T_{n}$ and $T_{i}(i=2, \cdots, n-1)$ may be switched, adding $\frac{2}{3}(R(1, i)-R(1, n))$ to the left side without changing the
right. Thus $R(1, i)=R(1, n)$, so $\frac{n+1}{3} R(1, n)=a_{2} /\binom{n}{2}$, or $R(1, n)=$ $a_{2} /\binom{n+1}{3}$. Since $x, T_{1}, T_{n}$ were arbitrary, this finishes the proof in one direction.

Now assume $\bar{M}$ has constant curvature. For any tangent $V$ to $M$ at $x, V$ has a canonical extension along the orthogonal geodesic $\left(V\left(h_{t}(x)\right)=d h_{t}(V)\right)$, so if $T$ is the unit normal vector, then $D_{T} V$ makes sense. Note that if $W$ is another tangent to $M$ at $x,\left\langle D_{T} V, W\right\rangle=\left\langle D_{T} W, V\right\rangle$. To see this, a coordinate system $\phi$ in $\bar{M}$ about $x$ is said to be allowable if it is obtained by taking a coordinate system $\psi$ in $M$ about $x$ and setting $\phi\left(r_{1}, \cdots, r_{n}\right)=h_{r_{1}}\left(\psi\left(r_{2}, \cdots, r_{n}\right)\right)$. If $T, V, W$ are extended to have constant components in an allowable coordinate system, then $[V, W]=[T, V]=[T, W]=\langle T, V\rangle=\langle T, W\rangle=0$, so

$$
\begin{aligned}
\left\langle D_{T} V, W\right\rangle & =\left\langle D_{V} T, W\right\rangle=-\left\langle T, D_{V} W\right\rangle=-\left\langle T, D_{W} V\right\rangle \\
& =\left\langle D_{W} T, V\right\rangle=\left\langle D_{T} W, V\right\rangle .
\end{aligned}
$$

Further, applying $T$ to the relation $\left\langle D_{T} V, W\right\rangle=\left\langle D_{T} W, V\right\rangle$ gives $\left\langle D_{T} D_{T} V, W\right\rangle$ $=\left\langle D_{T} D_{T} W, V\right\rangle$.
Since $\left\langle D_{T} V, W\right\rangle$ is symmetric and bilinear in $V$ and $W$, it is possible to choose an orthonormal base $T_{2}, \cdots, T_{n}$ for the tangent space to $M$ at $x$ such that $\left\langle D_{T} T_{i}, T_{j}\right\rangle=0$ for $i \neq j$, and also an allowable coordinate system so that at $x \partial / \partial x_{i}=T_{i}$ for $i=1, \cdots, n$ (where we now write $T_{1}$ for $T$ ). If $V$ is a linear combination of $T_{2}, \cdots, T_{n}$ at any point of the coordinate neighborhood and $R$ is the curvature tensor, then $\left\langle R\left(T_{1}, V\right) T_{1}, V\right\rangle=\left\langle D_{V} D_{1} T_{1}, V\right\rangle-$ $\left\langle D_{1} D_{V} T_{1}, V\right\rangle=-\left\langle D_{1} D_{V} T_{1}, V\right\rangle=-\left\langle D_{1} D_{1} V, V\right\rangle$ since $D_{1} T_{1}$ is identically 0. If $c$ is the sectional curvature, then since $\left\langle T_{1}, V\right\rangle=0$ and $\left\langle T_{1}, T_{1}\right\rangle=1$, $c=-\left\langle D_{1} D_{1} V, V\right\rangle \mid\langle V, V\rangle$. Thus, as quadratic forms on the span of $T_{2}, \cdots, T_{n}$ at any point, $\left\langle D_{1} D_{1} V, V\right\rangle$ is equal to $\langle-c V, V\rangle$. The symmetric bilinear forms $\left\langle D_{1} D_{1} V, W\right\rangle$ and $\langle-c V, W\rangle$ are equal, so $\left\langle D_{1} D_{1} T_{i}, T_{j}\right\rangle=$ $\left\langle-c T_{i}, T_{j}\right\rangle$ for $i, j \geq 2$. Since also

$$
\begin{aligned}
\left\langle D_{1} D_{1} T_{i}, T_{1}\right\rangle & =T_{1}\left\langle D_{1} T_{i}, T_{1}\right\rangle-\left\langle D_{1} T_{i}, D_{1} T_{1}\right\rangle=T_{1}\left\langle D_{i} T_{1}, T_{1}\right\rangle \\
& =\frac{1}{2} T_{1} T_{i}\left\langle T_{1}, T_{1}\right\rangle=0=\left\langle-c T_{i}, T_{1}\right\rangle
\end{aligned}
$$

it follows that $D_{1} D_{1} T_{i}=-c T_{i}$ for $i=2, \cdots, n$.
Next note that $c\left\langle T_{i}, T_{j}\right\rangle+\left\langle D_{1} T_{i}, D_{1} T_{j}\right\rangle$ is constant along $h_{t}(x)(i, j \geq 2)$, since

$$
\begin{aligned}
& T_{1}\left(c\left\langle T_{i}, T_{j}\right\rangle+\left\langle D_{1} T_{i}, D_{1} T_{j}\right\rangle\right) \\
& \quad=c\left\langle D_{1} T_{i}, T_{j}\right\rangle+c\left\langle T_{i}, D_{1} T_{j}\right\rangle+\left\langle D_{1} D_{1} T_{i}, D_{1} T_{j}\right\rangle+\left\langle D_{1} T_{i}, D_{1} D_{1} T_{j}\right)=0 .
\end{aligned}
$$

But at $x,\left\langle D_{1} T_{i}, T_{j}\right\rangle=0$ for $j \neq i$, so $D_{n} T_{i}$ is a multiple of $T_{i}$ for $i=2, \cdots, n$, so $c\left\langle T_{i}, T_{j}\right\rangle+\left\langle D_{1} T_{i}, D_{1} T_{j}\right\rangle=0$ at $x$ and consequently at $h_{t}(x)$. Thus

$$
\begin{aligned}
T_{1} T_{1}\left\langle T_{i}, T_{j}\right\rangle & =\left\langle D_{1} D_{1} T_{i}, T_{j}\right\rangle+2\left\langle D_{1} T_{i}, D_{1} T_{j}\right\rangle+\left\langle T_{i}, D_{1} D_{1} T_{j}\right\rangle \\
& =-4 c\left\langle T_{i}, T_{j}\right\rangle,
\end{aligned}
$$

for $i, j \geq 2, i \neq j$. This second order equation, together with the initial conditions $\left\langle T_{i}, T_{j}\right\rangle=T_{1}\left\langle T_{i}, T_{j}\right\rangle=0$ at $x$, implies that $\left\langle T_{i}, T_{j}\right\rangle$ is identically 0 along $h_{t}(x)$. Therefore $\left|d h_{t}\left(T_{2} \wedge \cdots \wedge T_{n}\right)\right|=\prod_{2}^{n}\left|T_{i}\right|$ at $h_{t}(x)$. Now

$$
\begin{aligned}
T_{1} T_{1}\left|T_{i}\right| & =-c\left|T_{i}\right|+\left(\left\langle T_{i}, T_{i}\right\rangle\left\langle D_{1} T_{i}, D_{1} T_{i}\right\rangle-\left\langle D_{1} T_{i}, T_{i}\right\rangle^{2}\right) /\left|T_{i}\right|^{3} \\
& =-c\left|T_{i}\right|
\end{aligned}
$$

( $D_{1} T_{i}$ being a multiple of $T_{i}$ ). This means that $\left|T_{i}\right|$ is a linear combination of $\sin \sqrt{c} t$ and $\cos \sqrt{c} t$ or of $\sinh \sqrt{-c} t$ and $\cosh \sqrt{-c} t$ or of 1 and $x$, depending on whether $c$ is positive, negative or 0 . Therefore $\mid d h_{t}\left(T_{2} \wedge \ldots\right.$ $\left.\wedge T_{n}\right) \mid$ is a linear combination of $\sin ^{i} \sqrt{c} t \cos ^{n-i-1} \sqrt{c} t$ or of $\sinh \sqrt{-c} t$ $\cosh ^{n-i-1} \sqrt{-c} t$ or of $1, \cdots, x^{n-1}$. In any of these cases there is a (unique) differential equation of order $n$ with constant coeficients satisfied by any such combination. The same equation would hold for $h_{t}$ applied to the unit ( $n-1$ )vector at any $y$ in $M$, and therefore also for $A_{M}$, since integration over $M$ will commute with differentiation by $t$.

Added in proof. More general results have been announced in the author's paper, Riemannian manifolds of finite order, Bull. Amer. Math. Soc. 78 (1972) 200-201.

## References

[1] R. A.. Holzsager \& H. Wu. A characterization of two-dimensional Riemannian manifolds of constant curvature, Michigan Math. J. 17 (1970) 297-299.
[2] H. Wu. A characteristic property of the Euclidean plane, Michigan Math. J. 16 (1969) 141-148.

