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MANIFOLD MAPS COMMUTING WITH
THE LAPLACIAN

BILL WATSON

The commutative algebra Q)(G\H) of isometry-invariant differential operators
on a Riemannian symmetric space always contains the Laplace-Beltrami
operator Δ. In fact, Δ is the generator of Q)(G\H) exactly when G/H is of
rank one. Therefore it is natural to ask which manifold maps φ: G1/H1-+
G2/H2 commute with the Laplacian on C°° functions of G2/H2, i.e., φ*Δ2f =
Δ^f for all / e C°°(G2/H2). Helgason [3, p. 387] showed for a general pseudo-
Riemannian manifold M that the only diffeomorphisms Φ: M —> M which
commute with Δ are the isometries. Recalling the powerful de Rham-Hodge
theorem (classical real pth cohomology group = pth de Rham cohomology
group = space of harmonic p-forms) on compact Riemannian manifolds, the
above question should be: which surjective maps ψ: M —> N commute with Δ
on differential p-forms for compact M and NΊ

Our main results are:
(1) Every such Laplacian-commuting map is a Riemannian submersion,

and therefore is a locally trivial differentiable Riemannian fibre space.
(2) If there exists such a map ψ: M —> N commuting with Δ on p-ίorms

for compact M and fixed p, then bp(N) < bp(M).
(3) For compact M,ψ: M —> N commutes with the Laplacian on functions

if and only if ψ is a harmonic Riemannian submersion.
An analogous question "which compact fibre space mappings π: E-^B

commute with the codifferential operator δ on forms of all degrees simultane-
ously" has been answered in certain specific cases [5], but our result is more
general.

The author wishes to express his thanks to the referee for the clarification
of certain points in Theorem 5.1. This research is part of the author's doctoral
dissertation at the University of Oregon under John V. Leahy and Richard
M. Koch. The work was partially supported by NSF grant No. GP-21178.

1. Definitions

All manifolds will be real, compact, connected, smooth, oriented and
Riemannian. Let M (resp. N) have dimension m (resp. ή) and Riemannian
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structure g (resp. h). Since we will never consider powers of the Laplacian
operator, it should cause no confusion to let ΔP

M denote the Laplacian operator
-(dδ + δd) = Δ: ΛP(M) -+ Λp(M) on the differential p-forms of M.

We define the set of pth Laplacian commuters to be

ΩP(M N) = )V: ^ ~>N is a C3 surjective manifold map and!

\φ*Δp

Na = Δp

Mφ*a for all a e ΛP(N) J '

If ΩP(M, N) is empty, we say ΩP(M, N) is trivial. Similarly, ΩP(M, N) is trivial
if p > min {m, ri).

Proposition 1.1. Ifφe ΩP(M, N) and ψ <= ΩP(N,N'), then ψoφε ΩP(M, ΛO
Proof. Easy.

Recall from [1] that a mapping φ: M -+ N is harmonic if τ(^) = 0, where
the tension field τ(φ) is locally given by

(The superior bar indicates parameters of the target manifold N.) In that paper,
Eells and Sampson defined certain vector-valued differential forms associated
to the vector bundle π: <p~\T(N)) —> M and a Laplacian operator Δ on these
forms. For instance, φ^: T(M) —> T(N) is a differential vector-valued 1-form
and τ(φ): M —* Γ(N) is a vector-valued 0-form.

It is known [1, p. 123] that φ is a harmonic mapping if and only if Δφ% — 0.
Let β(φ) be the fundamental form of the mapping ψ. If φ is a Riemannian

submersion, and T and 4̂ denote its structure tensors [6], then essentially β(φ)
has the matrix form:

0 -A

-A -T

corresponding to the orthogonal decomposition T(M) = H 0 V induced by
φ^ on the tangent bundle of M. Since Tr (β(φ)) = τ(φ), we infer

Proposition 1.2. A Riemannian submersion φ: M —> N is harmonic if and
only if Tr (Γ) = 0.

We also note that T is actually the second fundamental form of the fibres
ψ~\y) of the Riemannian submersion ψ. Recall, too, that a submanifold F of
M is minimal (resp. totally geodesic) if the trace of the second fundamental
form (resp. the entire second fundamental form) of the immersion of F into M
is identically zero.

2. 0-forms

Theorem 2.1. A c3 mapping φ e Ω°(M, N) if and only if (a) ψ is a Rieman-
nian submersion and (b) one of the following equivalent conditions holds:
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( i ) φ is a harmonic mapping,
(ii) Δφ* = 0,
(iii) each fibre φ~ι(y) of φ is a (compact) minimal submanifold of M,
(iv) Tr (β(φ)) = Tr CΓ) = 0.
Proof. Let φeC3(M,N). We take local coordinates about xεM and

φ(x) e N. Choose / e Λ°(N) = C°°(N) arbitrarily. Then φ e Ω\M, ΛO if and only
if φ*Δ°Nf = Δ°Mφ*f. In local coordinates Δ°M = —gίjFiPj, and similarly for Δ°N.
Expressing the commutation condition in local coordinates and comparing the
corresponding terms which contain df/dXi and d2f/dXidxj, we obtain

( 1 ) h >oφ = gV-tyLJ&L forall«,/3,
dxt dXj

( 2 ) ΔUψr) = (Aβ '/V o φ for all a,β,r.

(1) is equivalent to φ being a Riemannian submersion. Substitution of (1) into
(2) and a glance at the definition of the tension field τ(^) yield that φ must be
a harmonic mapping. Then the statement of the theorem follows from Propo-
sition 1.2 and its accompanying remarks.

Corollary 2.1.1. // dim M < dim N, then Ω\M, N) is trivial
Proof. A Riemannian submersion is an open map.
Corollary 2.1.2. A O mapping ψ: M —> N which commutes with Δ on

0-forms is actually C°°.
Proof. O harmonic mappings are smooth [1, p. 117].
In the cases
(a) dim M — dim N,
(b) dim M = dim N + 1,

we are able to completely classify the manifold pairs (M,N) which admit
nontrivial sets Ω°(M,N). First, we have

Theorem 2.2. Suppose M and N have the same dimension. Then Ω\M, N)
is nontrivial if and only if M is a Riemannian covering manifold of N.

Proof. Let φe Ω°(M,N). Then the Riemannian submersion criterion is
equivalent to

as (m x m)-matrices. Hence

detλ

So φ has a nonvanishing Jacobian determinant and is a local isometry. For
complete manifolds, it is well-known [7, p. 254] that this implies φ is a
Riemannian covering map. Conversely, Riemannian coverings are clearly
harmonic Riemannian submersions.
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Corollary 2.2.1. Ω°(M, M) = /(M).
Secondly, we have
Theorem 2.3. Suppose dim M — dim N + 1. Then Ω°(M, N) is nontrivial

if and only if M is a fibre bundle over N, which has totally geodesic fibres and
has the Lie group of isometries of a fibre as structural group.

Proof. Necessity is clear because fibre bundle mappings are Riemannian
submersions, and, for fibre dimension 1, the notions of minimal and totally
geodesic submanifolds coincide. Sufficiency follows from Hermann's theorem
[4, Theorem 1].

For dim M > dim N + 2, the problem of a complete classification reduces to
classifying those locally trivial compact fibre spaces whose fibre map has
fundamental form

° *
* Tr = 0

This is a decidedly nontrivial question. We may, however, produce several non-
existence theorems.

Theorem 2.4. Suppose that the Ricci tensor {Rij(x)} is positive semidefinite
everywhere on the compact manifold M and is positive definite at least at one
point of M. If the Riemannian curvature of N is nonpositive, then Ω°(M, N)
is trivial.

Proof. A result of Eells and Sampson [1, p. 124] implies that under these
curvature conditions, every harmonic mapping φ: M --• N is a constant, and
the constants are not in Ω°(M, N).

Theorem 2.5. Suppose dim N > 1 and N has everywhere negative Rieman-
nian curvature. If M has a positive semidefinite Ricci tensor, then Ω°(M, N)
is trivial.

Proof. The result of Eells and Sampson just mentioned above implies here
that each harmonic mapping φ: M —> N is either a constant or φ(M) is a
geodesic of N. Constants are excluded as we have refnarked previously, and a
Laplacian commuter on O-forms is a surjective mapping by Theorem 2.1.
Hence φ(M) = N whose dimension is greater than 1, and φ(M) cannot then be
a geodesic of N.

Let Hn denote any n-dimensional compact manifold of negative Riemannian
curvature. Then we have

Corollary 2.5.1. Ω°(Tm, Hn) and Ω°(Sm, Hn) are trivial.

3. Examples

There are many more nontrivial examples of sets Ω°(M,N) besides those
which have already been exhibited in Theorem 2.2. From Theorem 2.3 we see
that Ω°(S2n+1,Pn(Q) is nontrivial. Clearly, Ω\Mλ x . . . x Mr,Mt) is non-
trivial because product projection maps are totally geodesic Riemannian
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submersions, i.e., β(πt) = 0. The Hopf map λ: S7 —• S4 is a fibre bundle map
with totally geodesic fibres. Hence β°GS7,S4) is nontrivial. Let G/H be a
compact oriented Riemannian homogeneous coset space with compact Lie
group G, and give G the usual bi-invariant metric. Then π: G —> G/H is a
principal fibre bundle with T = 0. So β°(G, G/H) is nontrivial. In fact, Γ = 0
for any principal fibre bundle π: P—>M. Thus Ω°(P, M) is nontrivial in general.
Let TΓ: «^(M) -> M be the orthogonal frame bundle of M. Then β°CF(M), M)
is nontrivial.

4. 1-forms

Assume a differential 1-form a on TV is expressed locally as a = ^dy*.
Then J ^ α = (JV** + a^R^dy1. The proof of the following theorem is
straightforwardly modeled upon that of Theorem 2.1, incorporating the above
formula for Δ1.

Theorem 4.1. 4̂ c3 mapping φ e β^M, ΛO // ύf̂ d on/y // (a) ψ is a Riemannian
submersion and

The Riemannian submersion criterion (a) produces the obvious analogues
of Corollaries 2.1.1 and 2.1.2. Condition (c) of Theorem 4.1 is not unnatural,
although it looks so at the first glance. In their paper [1], Eells and Sampson
found it unnecessary to explicitly compute Δψ^ for φ: M —> N because they
were studying harmonic mappings (Δφ* = 0). However an elementary calcula-
tion shows

Lemma 4.2. The term corresponding to dxk in the γ-th component of the
vector-valued 1-form Δφ% is

Theorem 4.3. Suppose M is Eίnsteinian and N is flat. If φ e Ω\M,N),

then

where

λ = R/m .

Proof. If M is Einsteinian, R) = d)R/m. N flat implies R = 0 = Γr

aβ

Assume ψ β Ωι(M,N). Then Theorem 4.1 (c) gives
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dφr \ R dφr

JM
dxk I m dxk

So

k m axk m

Corollary 4.3.1. // M is Einsteinian, N is flat, and Ω\M,N) is nontrivial,
then the constant Ricci scalar curvature of M is nonpositίve.

Proof. The eigenvalues of the elliptic self-adjoint operator Δ are discrete
and nonpositive.

Notice that if both M and N are arbitrary Einstein spaces and φ e Ω\(M, N),
then

( * * ] JLβ o φ)
m ml dxk

The possibility that the last two terms on the right side might collapse and so
produce a global invariant condition of an eigen-1-form type: Δφ* — lφ* has
not escapted the author. Theorem 4.3 is promising in this regard.

Theorem 4.4. Assume dim M = dim N. Then Ω\M, N) is nontrivial if and
only if N is a Riemannian covering manifold of N.

Proof. Since dim M = dim N, by Theorem 2.2 a Riemannian submersion
<p: M—+N is a Riemannian covering map. Lichnerowicz [4] showed that
mappings of totally geodesic locally trivial fibre spaces commute with δ and so
with Δ on forms of all degrees. A Riemannian covering map is clearly a map
of totally geodesic locally trivial fibre spaces.

Corollary 4.4.1. Ω\M, M) = /(M).

5. Forms of degree > 2

Due to the complexity of the expression in local coordinates for the Laplacian
on forms of degree > 2, (a complete either local or global) classification is
lacking. This complexity is attributable to the introduction of Rίj

kl terms into
the formula for Δ. Recalling that since for spaces of constant sectional curva-
ture, Rlj and RiJ

kι are usually zero and at least constants, there appears hope
that a local theorem may be obtained for Laplacian commuters between such
spaces. The tantalizing connection between ΩP(M,N) and Δ for p = 0,1
indicates that a necessary and sufficient invariant condition for commuting with
the Laplacian Δ lies in the operator Δ.

However, a necessary condition for a map to commute with Δ on arbitrary
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manifolds can be found, and from that condition (Theorem (5.1)) an equal-
dimension classification theorem and several nonexistence results will follow.

Theorem 5.1. For all p the nontrivialίty of ΩP(M, N) implies that each map
φ € ΩP(M, N) is a Rίemannian submersion.

Proof. Since we already have the theorem for p = 0 ,1 , we assume p>2.
If a € ΛP(N) is expressed locally as

a = Jτail...ipdyi* Λ Λ dy'* ,

then

la = -λ-btι...hdy** Λ Λ d?* ,

where

p —.

^ii' ίp — W i r » { , ) + Σ aii.~ir-lJir+l'~ipRJir

V V

+ 2 Σ Σ a i i ' ir-ijir + l' >i8-lJcis + i 'ipRkJiris '
r=l s=l

Let φ € β£ (M, N). Upon calculating the equation

φ*Δv

Na = J ^ * α

in local coordinates, we find

+ (other terms in φ*aix...ip and p*-pullbacks of

the curvature tensors of N, but πoί containing terms which involve the second
partial derivatives of φ*aiim..ip)

= Wφ*aiι...lp))ψL.. .ψL + φa^^ίΛψL.. .&L) + (other terms
°XJi °XJP

 XVXOi VX3P'

not containing second partial derivatives of the aivm.ip).

From the corresponding terms containing d2aix...iJdxδdxr we obtain

dXfr dXj

Since φ e ΩP(M, N), it is surjective and not all of its first partial derivatives are
locally zero. Thus

g

dxk dX

and therefore ψ is a Riemannian submersion.
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Corollary 5.1.1. // ΩP(M, N) is nontrivial and φ e ΩP(M, N), then φ: M —>
N is a compact locally trivial fibre space in the sense of Ehresmann.

Corollary 5.1.2. // dim M < dim N, then ΩP(M, N) is trivial for all p.
As before, we have
Theorem 5.2. Suppose dim M = dim N. Then ΩP(M, N) is nontrivial if

and only if M is a Riemannian covering manifold of N.

Corollary 5.2.1. ΩP(M, M) = I(M) for all p.
Theorem 5.3. Let M and N be spaces of constant sectional curvature K

and K, respectively. In order that ΩP(M, N) be nontrivial for any p > 0 it is
necessary that K > K.

Proof. It is well-known [2, p. 724] that for any Riemannian submersion
φ\ M —> N between arbitrary complete Riemannian manifolds, (KXΫ O φ) > Kxγ

where X is the ^-related vector field on N associated to the vector field X
on M.

Let Sm(r) denote the m-sphere of radius r. For Sm(r), K = 1/r2.
CoroUary 5.3.1. If r < r\ then Ωp(Sm(r), 5n(r0) is trivial for all p.
Corollary 5.3.2. Ωp(Sm, Tn) is trivial for all p.
As we have seen (Corollary 5.1.1), all Laplacian commuters are locally

trivial fibre spaces. Lichnerowicz [5] has shown that any mapping of locally
trivial compact fibre spaces with minimal fibres (Tr (T) = 0) commutes with
the codiίϊerential operator δ and so with Δ = —(d + δ)2 on forms of all degrees
if and only if the horizontal distribution is completely integrable (A = 0). Since
from the proof of Theorem 4 any totally geodesic Riemannian submersion
commutes with Δp for all p, we have

(a) ΩP(M1 x x Mr, Mi) is nontrivial for all p < dim Mt,
(b) Ωp(Tm, Tn) is nontrivial for m > n and all p < n.

6. Cohomology

The following result is obvious.
Theorem 6.1. For a fixed p suppose HP(N, R) is nontrivial, while HP(M, R)

= {0}. Then ΩP(M, N) is trivial.
Proof. Let Jfp(M) denote the space of harmonic /7-forms of M. If

ψ e Ωp(M, N), then <p*{J?p(N)} c 3fp(M) and <p*{3>?p(N)} is nontrivial. Hence
the result follows immediately from Hodge's theorem.

A more powerful cohomology result is possible.
Theorem 6.2. For a fixed p suppose ΩP(M, N) is nontrivial. Then bp(N) <

bp(M).
Proof. Since both M and N are connected, H\M,R) = H\N,R) = R.

Thus bo(N) = 1 = bo(M). So we can assume that we have fixed p > 1. As we
have seen in the proof of Theorem 6.1, ψ e ΩP(M, N) implies

{0} Φ <p*{3fp(N)} C jep(M) .

Thus
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dim φ*{3fp(N)} < dim Jfp(M) .

Since φ*: Jfp(N) —> Jf P(M) is a distance-preserving linear mapping, Ker (φ*)
— {0} and therefore

Hence, from Hodge's theorem,

6p(JV) = dim J^(ΛO < dim

We begin our applications of Theorem 6.2 by showing that the nontriviality
of Ω° does not, in general, force the nontriviality of Ωp, p > 1. For instance,

T h e o r e m 6 . 3 . Ω2k(S2n+\ Pn(C)) is trivial for k > \ .
Proof. b2k(Pn(Q) = 1 and Z>2fe(S2*+1) = 0.

Theorem 6.4.
(i) β°(C/(5), Gβ f 3(O) w nontrivial,
(ii) β4(C/(5), G5'3(C)) ιj ίr/vw/.
Proof, (i) follows from our remarks in § 3 regarding homogeneous coset

spaces. To see (ii) we need only to notice that 64(C/(5)) = 1, while
W G U Q ) = 2.

The examples of ^-triviality produced so far involve even-degree forms.
However, this is not necessary, as we see in

Theorem 6.5.
(i) Ω\SO(6), (jβ,3(/0) is nontriviaU
(ii) Ω\SO(6), G6[3(R)) is trivial.
Proof, π: SO(6)^SO(6)/(SO(3) X 5(9(3)) ^ G6,3(ft) is a compact oriented

reductive homogeneous coset space. Hence (i). The 9-th Betti number of the
compact Lie group 50(6) is 0. To calculate 69(G6)3(JR)) we note that the dimen-
sion of the simply connected Grassmann manifold in 9. Poincare duality then
implies bg =: 1, and hence (ii) follows from Theorem 6.2.

Use of Poincare duality also gives
Theorem 6.6. Assume N is a compact manifold of dimension n < dim M.

Then Ωn(Sm, N) is trivial.
Corollary 6.6.1. Ωn(Sm, Sn) is trivial for m > n.
Thus the Hopf maps λ: S7 —> S4 and μ: S3 -> S2 do not commute with Δ on

4-forms and 2-forms, respectively, although they both commute with the
Laplacian on functions.

7. Appendix: The noncompact case

If M is not compact but only complete, Theorem 5.1 is still true with only
basic assumptions (e.g., connectedness and completeness) on N. Thus
Laplacian-commuting maps are locally trivial Riemannian fibre spaces in the
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noncompact case also. In this way, the case where dim M < dim N is excluded,
and we again obtain the theorem for the case of equal dimensions. However,
the results on betti numbers are not to be expected because of the lack of a
Hodge theorem relating the topological betti numbers with the de Rham
cohomology theory through the harmonic forms.

It is straightforward to prove, using the maximum modulus principle on
harmonic functions, that:

(a) Ωp(Rm, Rn) is trivial if m < n,
(b) Ωp(Rm, Rm) = the Euclidean group E(m) on Rm,
(c) Ωp(Rm,Rn) = πoE(m) if m > n, where π: R™ -* Rn is the canonical

projection mapping.
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