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POSITIVELY CURVED COMPLEX SUBMANIFOLDS
IMMERSED IN A COMPLEX PROJECTIVE SPACE

KOICHI OGIUE

1. Statement of results

Let P,,,(C) be a complex projective space of complex dimension n + p with
the Fubini-Study metric of constant holomorphic sectional curvature 1. By a
Kaehler submanifold we mean a complex submanifold with induced Kaehler
structure.

The purpose of this paper is to prove the following two theorems.

Theorem 1. Let M be an n-dimensional complete Kaehler submanifold im-
mersed in P,,,(C). If every holomorphic sectional curvature of M is greater
than 1/2, and the scalar curvature of M is constant, then M is totally geodesic
in P, ,(C).

Theorem 2. Let M be an n-dimensional complete Kaehler submanifold
immersed in P, ,(C). If every holomorphic sectional curvature of M is greater
than 1 — ¥(n + 2)/(n + 2p), then M is totally geodesic in P, ,(C).

It is clear that in the case of p = 1, Theorem 2 is an improvement of
Theorem 1.

2. Preliminaries

Let J (resp. J) be the complex structure of M (resp. P,, ,(C)), let g (resp. &)
be the Kaehler metric of M (resp. P,,,(C)), and denote by F (resp. /) the
covariant differentiation with respect to g (resp. ). Then the second funda-
mental form ¢ of the immersion is given by

oX,Y) =FxY —VyY,

and satisfies Jo(X,Y) = ¢(JX,Y) = ¢(X,JY), and the structure equation of
Gauss is

8R(X,Y)Z, W) = §(a(X, W),a(Y,Z)) — §(o(X, Z2),a(Y, W))
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+ eUX, W)g(Y, Z) — g(UX, Z)gJY, W)
+ 28(X,JY)e(Z, W)] ,

where R is the curvature tensor field of M. Let &, - -+, &,, &, - -+, &pe (Ex =
J&,) be local fields of orthonormal vectors normal to M. We use the following
convention on the range of indices: i,j=1,---,p; 4, p=1,---,p, 1%, .-,

p*. If we set
8(4,X,Y) = g(o(X, Y), &) ,

then 4,, 2=1,-.-,p,1* ... p* are local fields of symmetric linear trans-
formations. We can easily see that 4,, = JA, and JA, = —A4,J so that, in
particular, tr A, = 0. Moreover, the structure equation of Gauss can be written
in terms of A,’s as

8RX,Y)Z, W) = ¥ [g(4,X, W)g(A,Y,Z) — g(A,X, Z)g(4;Y, W)]
+ 1leX, W)g(Y, 2) — g(X, 2)g(Y, W)
+ 8(UX, W)gUY,Z) — gUX, Z)g(JY, W)
+ 28(X,JY)8(JZ, W)] .

(1)

Let S be the Ricci tensor of M, and p the scalar curvature of M. Then we have
(2) SX,Y) = 3(n + Dg(X,Y) — 28(3 43X, Y)
(3) p=nn+1) —|olf,

where ||g|| is the length of the second fundamental form of the immersion so
that

lolf = 2 % tr 42 .

We can see from (1) that the holomorphic sectional curvature H of M deter-
mined by a unit vector X is given by

(4) HX)=1-26(X, X)P=1—2) g(4.X,X)*.
It is known that the second fundamental form ¢ satisfies a differential equation

which gives
Lemma 1 [2]. We have

3ol = |IF'o| + X tr(4,4, — 4,4)°
— 2 [tr(4:4)F + 3(n + 2o,
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where 4 denotes the Laplacian, and V'’ the covariant differentiation with respect
to the connection (in tangent bundle) @ (normal bundle).

3. Proof of theorems

Since M is complete and every holomorphic sectional curvature of M is
bounded from below by a positive number, M is compact.

First we prove Theorem 1. Since 1/2 < H < 1 and p is constant, Theorem
2 in [1] implies that H is constant. This, combined with the corollary to
Theorem 3 in [4] and Theorem 1 in [3], implies that M is totally geodesic.

Next we prove Theorem 2. From (4) we can see that if every holomorphic
sectional curvature of M is greater than 1 — g, then the square of every
eigenvalue of A, must be smaller than /2. Therefore we have

(5) tr (A242) < %trAi for all 2 and p .

Lemwa 2. If H> 1 — ¢, then
(6) S tr (4,4, — A,AY + 2p3||alf =0 .
Proof. We have

ntr(4,4, — A,A)
= =2 tr (4345 — (4,4.)9)
= —2—}: tr (A3A4% — (4,47 + 2 3 tr (A34% — (4;44))
Lizs

Xt (AT — (A + ¥ tr (AT — (Ai*Aj*)Z)]
i*j

i#]

= 4 Dy — (A)) F 2T A+ T (424 + (AiA,-)Z)]

Li#]' i#]

I
oo

T tr A% 4+ N tr Ag] — 8 tr (4242 .

Li#Jj

From (5) it follows that
D) < B miwrar= 2ol

which implies (6) immediately.
Lemma 3. IfH>1 — 9, then

(7) 2 [tr (4, 4)F < néla|f? .

Proof. Let A = tr(4,4,). Then A4 is a local field of symmetric (2p, 2p)-
matrix. Since | [tr (4,4, = tr £, }; [tr (4,4,)) is a geometric invariant,
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i.e., it does not depend on the choice of &, - - -, &,. Therefore it suffices to
show that the inequality holds for a suitable choice of &, - - -, &, at each point
of M. Since 4 = tr(4,4,) is a real representation of the Hermitian matrix
Ay = (tr (4;4;) + v —1tr (4,;4,2), it can be diagonalized by a unitary trans-
formation at each point of M. In other words, at each point of M, A can be
assumed to be diagonal for a suitable choice of &, - - -, &, that is,

Ctr A2 7

AU =

tr 42 |
for (real representation of) some unitary matrix U. Therefore we obtain
(8) Ytr(AA)P =tr £ =tr (UAUY =2 (tr &> < 4n Y tr 4,

by using the general fact that a symmetric (27, 2n)-matrix A satisfies (tr 4%)?
< 2ntr A*. (8), together with (5), hence implies (7). q.e.d.
From Lemmas 1, 2 and 3 it follows that

|lo|? > [3(n + 2) — (n + 2p)al | 8| .

Since 6§ = ¥(n + 2)/(n + 2p), we have 4|¢|? > 0. Thus by the well-known
Bochner’s lemma, ||§| is constant, and so is p due to (3). Since 1 —
3(n 4+ 2)/(n + 2p) > %, Theorem 1 implies that M is totally geodesic.
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