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POSITIVELY CURVED COMPLEX SUBMANIFOLDS
IMMERSED IN A COMPLEX PROJECTIVE SPACE

KOICHI OGIUE

1. Statement of results

Let Pn+p(C) be a complex projective space of complex dimension n + p with
the Fubini-Study metric of constant holomorphic sectional curvature 1. By a
Kaehler submanijold we mean a complex submanifold with induced Kaehler
structure.

The purpose of this paper is to prove the following two theorems.
Theorem 1. Let M be an n-dimensional complete Kaehler submanifold im-

mersed in Pn+p(C). If every holomorphic sectional curvature of M is greater
than 1/2, and the scalar curvature of M is constant, then M is totally geodesic
in Pn+P(C).

Theorem 2. Let M be an n-dimensional complete Kaehler submanifold
immersed in Pn+p(C). If every holomorphic sectional curvature of M is greater
than 1 — | ( n + 2)/(n + 2p), then M is totally geodesic in Pn+p(C).

It is clear that in the case of p = 1, Theorem 2 is an improvement of
Theorem 1.

2. Preliminaries

Let / (resp. /) be the complex structure of M (resp. Pn+p(C)), let g (resp. g)
be the Kaehler metric of M (resp. Pn+p(C)), and denote by V (resp. F) the
covariant differentiation with respect to g (resp. g). Then the second funda-
mental form σ of the immersion is given by

σ(X, Y) = VXΎ - VXY ,

and satisfies Jσ(X, Y) = σ{JX, Y) = σ{X, JY), and the structure equation of
Gauss is

g(R(X, Y)Z, W) = g(σ(X, W), σ(Y, Z)) - g(σ(X, Z), σ(Y, W))

, W)g(Y, Z) - g(X, Z)g(Y, W)
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+ g(JX, W)g(JY, Z) - g(JX, Z)g(JY, W)

+ 2g(X,JY)g(JZ,W)],

where R is the curvature tensor field of M. Let ξ19 , ξp, ξ^, , ξp* (?** =
Jξi) be local fields of orthonormal vectors normal to M. We use the following
convention on the range of indices: /, / = 1, , p λ9μ = 1, , p, 1*, ,
p*. If we set

then Aλ, λ = 1, , p, 1*, , p*? are local fields of symmetric linear trans-
formations. We can easily see that At* = JAt and JAi — —AJ so that, in
particular, tr Aλ = 0. Moreover, the structure equation of Gauss can be written
in terms of Aλ's as

g(R(X, Y)Z, W) = Σ ίg(AλX, W)g(AλY, Z) - g(AλX, Z)g(AλY, W)]

, Z) - g(X, Z)g(Y, W)

+ g(JX, W)g(JY, Z) - g(JX, Z)g(JY, W)

+ 2g(X,JY)g(JZ,W)] .

Let S be the Ricci tensor of M, and p the scalar curvature of M. Then we have

( 2) S(X, Y) = J(Λ + l)g(X, Y) - 2g(Σ A\X, Y) ,

( 3 ) p = n(n+ l ) - | | σ | | 2 ,

where ||σ|| is the length of the second fundamental form of the immersion so
that

We can see from (1) that the holomorphic sectional curvature H of M deter-
mined by a unit vector X is given by

( 4 ) H(X) = 1 - 2 \\σ(X, X) ||2 = 1 - 2 Σ S(AλX9 X)2 .

It is known that the second fundamental form σ satisfies a differential equation
which gives

Lemma 1 [2]. We have

in + 2)\\σ\\\
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where Δ denotes the Laplacian, and V the covariant differentiation with respect
to the connection (in tangent bundle) 0 (normal bundle).

3. Proof of theorems

Since M is complete and every holomorphic sectional curvature of M is
bounded from below by a positive number, M is compact.

First we prove Theorem 1. Since 1/2 < H < 1 and p is constant, Theorem
2 in [1] implies that H is constant. This, combined with the corollary to
Theorem 3 in [4] and Theorem 1 in [3], implies that M is totally geodesic.

Next we prove Theorem 2. From (4) we can see that if every holomorphic
sectional curvature of M is greater than 1 — δ, then the square of every
eigenvalue of Aλ must be smaller than δ/2. Therefore we have

( 5 ) tr (A\A2

μ) < — tr A\ for all λ and μ .

Lemma 2. If H > 1 — δ, then

( 6 ) Σ tr(AλAμ - AμAλy + 2pδ\\σ\\2 > 0 .

Proof. We have

= -2\Σ tr (A\A) - (AtAj)2) + 2 Σ tr {A\A\> - (A^f)

+ Σ tr (A\A). - (A^^Y) + Σ tr (A\*A)* - 0 4 ^ *)
ίφj iφj

= - 4 Σ tτ(A\A) - (AiAj)2) + 2 Σ tτAt + Σ tr (A*A) +

= -δί~Σ tiA\A) + Σ tr^ίl - - 8 Σ tr (A*A)) .
liΦj J

From (5) it follows that

which implies (6) immediately.
Lemma 3. If H> 1 — δ, then

( 7 ) Σ [ t r U Λ ) ] 2

Proof. Let A = tr (AλAμ). Then A is a local field of symmetric (2p, 2p)-
matrix. Since Σ [tr (AλAμ)]2 = XxA\ Σ \Xτ(AxAμ)\2 is a geometric invariant,
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i.e., it does not depend on the choice of ξ19 , ξp. Therefore it suffices to
show that the inequality holds for a suitable choice of ξ 1? , ξp at each point
of M. Since A = tr (AλAμ) is a real representation of the Hermitian matrix
Ao = (tr (AiAj) + V— 1 tr 04^*)), it can be diagonalized by a unitary trans-
formation at each point of M. In other words, at each point of M, A can be
assumed to be diagonal for a suitable choice of ξ19 , fp, that is,

'UΛU =

\τλ\

0

MA\

0
tτAl

for (real representation of) some unitary matrix U. Therefore we obtain

( 8 ) [tr (AλAμ)]2 = trA2 = tr = 2 £ (tr i*)2 < 4π Σ tr λ\ ,

by using the general fact that a symmetric (2/2,2«)-matrix A satisfies (tr^42)2

< 2ntτA\ (8), together with (5), hence implies (7). q.e.d.
From Lemmas 1,2 and 3 it follows that

\Δ ||σ||2 > \\(n + 2) - (n + 2p)δ] \\δ\\2 .

Since δ = \{n + 2)/(/ι + 2p), we have Δ \\σ\\2 > 0. Thus by the well-known
Bochner's lemma, ||d||2 is constant, and so is p due to (3). Since 1 —
\{n + 2)/(n + 2p) > J, Theorem 1 implies that M is totally geodesic.
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