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BOUNDED SETS AND FINSLER STRUCTURES
FOR MANIFOLDS OF MAPS

K. UHLENBECK

Abstract infinite dimensional manifolds modelled on Banach spaces lack
much of the topological structure of both finite dimensional manifolds and their
linear Banach space models. In this paper we show that certain manifolds of
maps between finite dimensional manifolds, or more generally manifolds of
sections of a finite dimensional fiber bundle, have an additional natural struc-
ture of sets which we call “intrinsically bounded” which have many of the
properties of bounded sets in the linear model. Theorem 1 shows that these
sets can be characterized in several different ways. Our results are specifically
stated for the Sobolev manifolds LZ(E) where E is a fiber bundle over the
compact manifold M of dimension less than pk. We also construct a canonical
Finsler structure for LZ(E) from geometrical structure on E, and find Finsler
structures which have intrinsically bounded sets as their bounded sets. The
discussion of Finsler structures will be helpful in freeing the use of condition (C)
of Palais and Smale in the calculus of variations from the unnaturally arbitrary
choice of Finsler structure on the manifolds of maps.

Many of the definitions and formal statements of theorems are due to R. S.
Palais. Construction and properties of a weak topology have been obtained by
D. Graff. U. Koschorke has developed a more abstract theory for Banach
manifolds with specified atlases [4]. J. Dowling has shown that minimizing
geodesics exist for the Finsler structures discussed in the second section [1].
A good many of the results of this section were obtained at the same time by
H. Eliasson [3] but without the construction of bounded sets. Eliasson also
gives the construction in Appendix II in a different style [2].

All manifolds and maps are C* unless otherwise stated. The results are given
for sections of a fiber bundle E over a compact base manifold M, with or
without bundary, where the fibers are finite dimensional manifolds without
boundary. The reader is periodically reminded that E = M X N is an impor-
tant case where the sections are merely maps between M and N. Most of the nec-
essary inequalities are of the same general type, which is discussed in Appendix
I, and they are therefore not explained in the paper. The construction of the
covariant derivatives which are used has been left to Appendix II.

Communicated by R. S. Palais, July 2, 1971. The research for this paper was done as
part of the author’s Ph.D. thesis under Professor R. S. Palais, Brandeis, 1968.
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0. The manifolds

Let .#(¢) denote a Banach space of functions or distributions for every C*
bundle over a compact C~ manifold M. Palais has shown that if .# satisfies
certain axioms (B§2 and B§5), then .#(E) is a Banach manifold for every C~
fiber bundle E over M [5]. As far as the author knows, every Banach space
of functions, which depends on a C> structure and is contained in the space
of continuous functions, satisfies these axioms, and the results of §1 are good
for spaces which are completely continuous in the continuous functions; no
general proofs have been found. We shall use exclusively the spaces #(E) =
LZ(E) where pk > dim M = n. L2(M) are the functions whose derivatives up
through order k are p integrable. Although a clear and detailed discussion of
these manifolds is to be bound in Palais [5], we will find the following infor-
mation useful.

(0.1) If E C & for a fiber bundle E imbedded in a fiber preserving manner
in the vector bundle & over M, then L?(E) = C°(E) N L?(¢). For E=M X N
where N is a finite dimensional manifold without boundary, by the Whitney
imbedding theorem we can assume there exists an imbedding N & R™, which
gives

Li(M,N) = Ly(M,R™) N C°(M,N) .

Since, by patching together such imbeddings, we can assume E & M X R”,
we can use the above identity as a definition.

(0.2) Let TFE be the tangent bundle along the fiber over E. If z: E—M,
then TFE is the bundle which is the kernel of dr. TFE, = T,(E,,). If
s: M — E is a section of E, then s*TFE denotes the bundle over M which is
the pull-back by s of TFE. (s*TFE), = TFE,,, = T,.,(E;). The tangent
bundle to L?(E) at s is naturally L2(s*TFE). If the definition of (0.1) is used,
the tangent bundle to L2(E) C L?(&) at the section s of E is identified with
{u € ng(g)/u(x) € Ts(x)(Ex)}-

(0.3) The canonical neighborhood structure of L2(E) at a section s € LZ(E)
consists of L2(y) for a vector bundle » C E, which is imbedded as an open
subbundle of E. s(x) €, C E,. Such a bundle 75 is called a vector bundle
neighborhood of s in E.

(0.4) If f: E— F is a C> fiber preserving map from E to the fiber bundle F
over M, then composition o f: LZ(E) — L2(F) is a C* map of Banach mani-
folds. If E and F actually have vector bundle structures as & and 7, we have
Ifosllzzey < C,ll8]lzzce)- This inequality is of the type of Appendix I.

In the above discussion, M may have a boundary. We shall be briefly inter-
ested in L?,.(E) C LZ(E) which is the closed subbundle agreeing with the
section f of E on the boundary through some specified number of derivatives.

For completeness we give the definition of Finsler structure and metric.
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(0.5) If B is a bundle with fiber a Banach space b over the space X, then a
Finsler structure for B is a real-valued function || || such that:

(i) | ||z is @ norm on B, ~ b for all x e X,

(ii) for every local trivialization @ X bC B, all x € @ and all K > 1, there
exists a neighborhood % of x such that (1/K)|u|l, < ||u|l, < K| u|, fory e %
and u e b.

(0.6) If || ||is a Finsler structure on the tangent bundle to a smooth Banach
manifold X (we shall roughly refer to this as a Finsler structure for X), then the

1
length of a differentiable curve ¢: [0, 1] - X is given by l(¢) = f e’ @D, dt

[}
where 8(x,y) = infimum of /(¢) such that ¢(0) = x, ¢(1) = y. This distance
gives a metric on X, and the Finsler structure is said to be complete if this
metric is complete.

1. Intrinsically bounded sets

(1.1) Definition. A set S C L2?(E) (E is a C> fiber bundle over the com-
pact manifold M, pk > n = dim M) is intrinsically bounded if S is relatively
compact in C°(E), and if any subset of S, which is bounded in C°(y) where
7 C E is an open vector bundle neighborhood in E, is bounded in L2(). Sets
in LZ,.(E) are intrinsically bounded if they are intrinsically bounded as sub-
sets of LZ(E). The results for boundary value spaces are not stated, because
they follow directly from the results for no boundary values.

In the case where E = 7 is a vector bundle over M, the intrinsically bounded
sets are clearly the bounded sets. The closure of an intrinsically bounded set
is intrinsically bounded, a subset of an intrinsically bounded set is intrinsically
bounded, and the finite union of intrinsically bounded sets is intrinsically
bounded. It is only slightly more difficult to show that a set which is relatively
compact in LZ(E) is intrinsically bounded.

Theorem 1. S intrinsically bounded (property (1.1)) is equivalent to each
of the following:

(1.2) S is relatively compact in C°(E), and every element s ¢ C°(E) lies in
a vector bundle neighborhood 7 C E in which all subsets of S, bounded
in C°(y), are bounded in L%(z).

(1.3) There exists a finite number of open vector bundle neighborhoods {£},
1 < i <R, such that S is the finite union of sets bounded in L2(E,).

(1.4) E C Fis aclosed fiber-preserving imbedding, and S C L2(E) is intrinsi-
cally bounded as a subset of L2(F).

(1.5) S is a bounded set in one of the special Finsler metrics on L¥(E).

(See Theorems 2a and 2b for clarification and proof of this last equivalence,
which will not be discussed in this section.)

(1.6) Corollary 1. Suppose E C & for a vector bundle & over M. Then
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S C LZ(E) is intrinsically bounded if and only if S C L2(§) is contained in a
ball of finite radius.

This is an application of (1.4).

(1.7) Corollary 2. If S is intrinsically bounded, then the elements s e S
represent only a finite number of homotopy classes of sections of E.

This is due to (1.3).

We now prove the theorem in a series of steps.

(1.1) = (1.2). This follows from the fact that every continuous section is
contained in an open vector bundle neighborhood.

(1.2) = (1.3). For each s ¢ S (closure in C°(E)), let &(s) be a vector bundle
neighborhood, containing the image of s, of the type postulated in (1.2). The
infinite union over s € S of open bounded sets in C°(&(s)) covers S, so by the
compactness of S in C°(E) a finite number of sets C° bounded in C°(&(s))),
0 < i< N, covers S. But each subset of S which is bounded in C°(&(s,)) is
bounded in LZ2(£(s,)) by assumption. Therefore S is contained in the finite
union of sets bounded in L2(¢,), 1 < i < N.

(1.3) = (1.1). A set bounded in L2(&;) is relatively compact in C°(&;) and
therefore in C°(E) by the Sobolev imbedding theorem. So, if S satisfies (1.3),
then S is relatively compact in C°(E).

Now suppose $” C L2(5) for a vector bundle neighborhood » C E, and §’
is bounded in C°(») but not in L2(y). If §’ C S and S satisfies (1.3), we may
extract subsequence {s;} © 8" such that s; € LL(8), ||s;l|22¢) < C, [I8i]lgoey < C
but lim |[s;{|,s,, = oo. This can be shown impossible using the type of ine-

quality of Appendix I.

To prove (1.4) is equivalent to the other properties we need the following
lemma.

(1.8) Lemma. Let E and F be two fiber bundles over M, and G: E — F
a C> fiber preserving map. Then composition with G maps LE(E) smoothly
into L2(F), and intrinsically bounded sets in LE(E) to intrinsically bounded
sets in LP(F).

For example, if E=M X N, F=M X N’ and g is a C* map from N to N/,
this lemma asserts that composition with g, which is a C* map from LZ(M, N)
to L2(M, N'), takes intrinsically bounded sets to intrinsically bounded sets.

Proof. Due to the equivalence of (1.1) with (1.3) we may assume that E
is a vector bundle &, and S is a bounded set in L?(£). Since composition with g
is a smooth map from C°(¢) to C°(F), the image of the relatively compact set
S in C°(&) is relatively compact in C°(F). We need now show that if  C F
is any vector bundle, then a subset of g(S) which is bounded in C°(p) is
bounded in L2(y). This can be done using inequalities from Appendix I again.

(1.4) & (1.1). Since the injection i: E — F is a C~ bundle map, sets which
are intrinsically bounded in L2(E) are intrinsically bounded in LZ(F) according
to Lemma 1.8. On the other hand, since E C F is closed, there exists a C*
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fiber preserving projection P: @ — E of an open bundle tubular neighborhood
0 C F onto E. Composition with P sends intrinsically bounded sets in L2(0)
to intrinsically bounded sets in LZ(E), so the proof rests on the triviality of
demonstrating that intrinsically bounded sets of LZ(F) which are subsets of the
closed set L2(E) are intrinsically bounded in the open neighborhood of L2Z(E)
which is L2(0).

(1.9) Proposition. Suppose kjn—1/p>r/n—1/q>0, k>rand p> 1.
An intrinsically bounded set in LE(E) is intrinsically bounded in LY(E) and
relatively compact, if k > r and strict inequality holds in the inequality.

Due to (1.3), this follows directly from the Sobolev imbedding theorems.

2. Finsler structures!

There are two more or less natural ways of getting a Finsler structure for
L2(E). We may assume E C &, where ¢ is a vector bundle over M, so LZ(E)
C L2(&). Since any norm on L2(&) is a Finsler structure on L2(£) (we call this
the flat Finsler structure), this flat metric induces a Finsler structure on L2(E)
by restriction:

2.1) T (L2(E)) < T,(L2(&)) = L2(&) which has a norm.

In the second method we assume that tangent bundle along the fiber of E the
has a metric and compatible covariant derivative, and that M is a Riemannian
manifold. (If E = M X N, we need only a metric on M and N). The tangent
space to s € L2(E) consists of certain sections of the bundle s*TFE, and the
covariant derivative on TFE may be pulled back to s*TFE. The covariant
differentiation on T*(M) allows us to iterate the covariant derivative s*F on
s*TFE to get a new section (s*F)’u of ®,; T*(M) ® s*TFE for a section u of
s*TFE. These bundles all have induced norms, so we define easily for smooth
s and u

2.2) lul, = (£ [1627yupds)”™

In appendix II this construction is carried out in more detail, and it is shown
that this metric is really defined for all s € L2(E) and u e T(L2(E)), and is a
Finsler structure.

(2.3) Definition. A set S C L?(E) is bounded in a Finsler metric if S = 6 S;
i=1

such that 6(x,y) < K for all x and y in S;. The metric § is, of course, the
metric derived from the Finsler structure (0.6).

Theorem 2a. If E C ¢ is a closed imbedding, then the Finsler structure
(2.1) on L2(E) induced from a flat Finsler structure on L2(£)

* A more general treatment is given in [7].
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2.4) is complete, and
2.5 has as its bouded sets exactly the intrinsically bounded sets.

Theorem 2b. If M is a Riemannian manifold and a metric and compatible
covariant derivative for TFE are given in which the fibers of E are complete
(TFE|E, = T(E,)), then the canonical Finsler metric (2.2) induced by this
geometry
(2.6) has exactly the intrinsically bounded sets as bounded sets, and
2.7 is complete.

Before we proceed with the proof, one should note the following special
case of Theorem 2b. If M and N are Riemannian manifolds and N is com-
plete, then there exists a canonical complete Finsler metric on L?(M, N).

The proof of (2.4) of Theorem 2a is given by Palais [5]. Since distance is
shorter in the larger space L2(£) than in LZ(E), sets bounded in the Finsler
metric in L2(E) are bounded in L2(£) and hence intrinsically bounded by
Corollary 1.6. This proves one direction of (2.5) of Theorem 2a. To go in the
other direction, we use (1.3) and assume S is bounded in L2(y), » C E C §.
Let g: 7 C & be the fiber preserving imbedding, so dg,: Ty s(92) — &5. Since
all metrics in L2(§) are equivalent, we choose the metric

k ) Yp
1l = (fjélVﬁlé’dﬂ) ’
M

where V., | |. and dp are some choice of covariant derivative, metric on & and
measure on M. The length of the linear path in L2(y») from O to s in the induced

metric is f | d8:s- 5|2 (eydt. But ||dg;ss|L2(, is equal to(fz |Vi(dg;s-$)|? d,u)

< C(|Is]| L"@) using Appendix I. This proves that 1ntr1n510a11y bounded sets
are bounded in this induced Finsler structure. In fact, this type of inequality
shows that intrinsically bounded sets are bounded in any Finsler structure
given by differential operators.

Part of Theorem 2b, that intrinsically bounded implies bounded in the geo-
metric Finsler structure, is proved exactly like the equivalent statement in
Theorem 2a. The rest of Theorem 2b is easier after Proposition 2.8.

(2.8) Proposition. There are global Sobolev inequalities between the ca-
nonical geometric Finsler structures. Let | u|, 1 denote the canonical geometric
Finsler structure (2.2) for L?, and |u|;c. = 1}’3}}|”(x)lsm~ If kjn—1/p >

rin—1/q>0and k > r, p > 1, then
lulls,co < Cillutlls, 2 < Collullg, 2 »

where C, and C, are independent of u and s.
The proof of Proposition 2.8 can be done by induction on k and r, so we
assume k — r = 1. If ¢ is any bundle with inner product (,) and compatible
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covariant derivative V, and if 1/n — 1/p + 1/g > 0 (1 < p < g), then we
canlet1/l=2/qand 1/s=1/p—1/gso1l/n—1/s + 1/l > 0. Thus for
all smooth sections v of the bundle ¢, using ordinary Sobolov inequalities,

1/s

([aorrde)” < c( [ariorr + opds)

c(fo2wo. 0 + |vi“dy>)””

< 26( f (FoP + |'v|1’dy))1/p( f |v|ﬂd,l>w .

1/21 1/ _
Dividing both sides by ( f ['v|”dp> we get ( f [’U|‘1d,u) "< 2c( f (Pop +
M M M

|v|1’d/,¢))1/p. For 1/n — 1/p > 0 we have in a similar calculation

1/p
mag ot <IC( [@@D? + (o)

1/p
s

< 2cr;1€a}3[<|v(x)|( f (PP + lv(x)li’dp))

which gives max|v(x)] < 2c< f (PP + [v(x)|pd,u))””. Proposition (2.8)
M

can be proved by induction with this process, as all metrics and covariant
derivatives used are compatible. However, the general inequality seems worth
stating as a separate proposition.

(2.9) Proposition (nonlinear Sobolev inequalities). Let M be a Riemannian
manifold of dimension n, and & a bundle over M with a metric | | and com-
patible covariant derivative. If the iterated covariant derivative V'’ is interpreted
properly (see Appendix 11), and 1/n — 1/p + 1/q > 0, then

(!:lul"d#)uq < C({iummm;;)w for all ue L2(&),

where C is independent of the bundle, the metric and the covariant derivative.
Likewise, if k/n — 1/p > 0, then

& ) 1/p
max|u(x)| < C(fz |V’u|1’dy) ,
reM =0
M

where C does not depend on &.
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We now proceed with the rest of the proof of Theorem 2b. In fact, the
proof that LZ(E) is complete in this Finsler metric and the proof that bounded
sets are intrinsically bounded depend on the same inequalities. We prove the
theorem by induction on k. For k = 1, assume E C M X R™ is a closed
imbedding.

If S is bounded in the L? Finsler metric, then it is bounded in the C° Finsler
metric, and therefore there exists K such that |s(x)|z» < K since the imbed-
ding E C M X R™ is closed.

The metric induced by the geometry on TFE will be denoted | |,, and
the covariant derivative s*F, whereas the flat metric from the imbedding
EC M X R™ will be ||, and the covariant derivative is just the ordinary
gradient on m functions.

1/p
ey = ( [ Qs*Pulz + luipdp)
M
1/
> c(fqgrad u + (grad s)-I'(s)-uP + |u|Pd;z)) ’
M
1/p _ 1/p
> C(f(lgrad ulP + |u|i"dp)> - C(f(|grad slp)) max |u(x)| ,
M M
where C depends on the form of the connection for I" and max |s(x)|.

Let s, be a path in L?(E) and (d/dt)s, = u,. Then

4
dt

lse — Sollzrar,rm) < ez, my

1 _
< E”ut”st,L{’ + Cl|ollz2car, my

+ IIse — so”Lf(M,Rm)) | t4ells.c -

Divide by 1 + ||s, — |., integrate by ¢ from O to 1 and take the exponential
of both sides to get

(2.10 sy — Sollzecar, mmy < el — 1 < e?t.QL,

where L = f 1||ut||sb prdt is the length of the path in the Finsler metric, and
0

Q0 = C, + G,||sllz2¢,zm- The theorem for k = 1 follows easily from this
inequality (2.10).

We now proceed by induction for k£ > 1. Using Proposition (2.8) we may
assume that if S is bounded (or a Cauchy sequence) in the geometric Finsler
metric || [|,,z>, then it is bounded (or Cauchy) in the metric || ||,z , for all
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1/n — 1/p + 1/q > 0. The hypothesis of the induction is that the theorem is
true in L¢_,(E) for (k — 1)/n — 1/q > 0, so we may assume S to be intrinsi-
cally bounded (convergent) in L{_,(E). We separate out the terms with k de-
rivatives in them in the Finsler structure.

I llsz2 = C(f(éal(s*V)jude))l/p

> ¢( [ieradyupdy)” — ¢ [ eradytsa)” ullc

— ( f GG, u)d[.t)l/p ,

where there are no k-th order derivatives in G(s, #). We go through the same
process as to get equation (2.10), and the contributions from G(s, %) can be
estimated using the induction hypothesis for L{_,(E) for ¢ = pk/(k — 1). We
get again that

(2.11) 51 — Sollzzcr,zm < et QL ,
1
where L = f [| 4 ls,,z2dt is the length of the path s, in the Finsler metric for
0

L, and Q depends on ||, ||z2,zm and 8[|z, zm-

The two kinds of Finsler structures (2.1) and (2.2) belong to the following
class of Finsler structures.

Definition. A Finsler structure || || defined on LY(E) or L?,,(E) is admis-
sible, if over every vector bundle neighborhood » € E and K > 0, there exists
an N such that

N7 ully < l[ullepey < Nlluls

for all ||s|lzz,) < K, seLf;,(E) and u in the tangent bundle at s. It is im-
mediately clear that if || || and || | are two admissible Finsler structures, then
for every intrinsically bounded set S there exists an N such that

N7 ully < flully < Njuli

for all se S and u e T,L?,,(E). Any natural method of putting a Finsler struc-
ture on L2(E) or L?,,(E) is likely to give an admissible Finsler structure. The
last theorem explains why it is unnecessary to specify Finsler structures for
condition (C) on manifolds of maps.

Theorem 3. Letf be a real-valued C* function on the smooth Banach mani-
fold L} ,,(E), and suppose that the inverse image of compact sets in R is in-
trinsically bounded. Then f satisfies condition (C) in all admissible Finsler
structures, if it satisfies this condition in any admissible Finsler structure.
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3. Appendices

L. All the inequalities necessary to complete the proofs in this paper follow
from

(1) the formula for a mixed partial derivative of the product of several
functions,

(2) the formula for a mixed partial derivative of the composition of two
functions,

(3) the Sobolev imbedding theorems,

(4) Holder inequalities of the form:

n 1/
fso'Dalsl.Dnsz ..... D‘"‘Sndﬂ < Ul ‘(le“isi]qidﬂ) ’Iilgleaj}lso(x)] ’

M M

wheré q; = (gllaj[)/lail'

See for example the proof of the change of coordinates for LZ(E) in Palais [5].

II. Covariant derivatives [6]. A covariant derivative on a bundle » over
M is a differential operator V/, which maps sections of 7 into sections of
7 ® T*(M), and which locally over trivializations has the form grad +1I,
where I' ® L(y, 7 ® T*(M)). In order to define the Finsler structure (2.2) we
need:

(1) the formula for pulling back a covariant derivative from a bundle 73
over E to s*pover Mif s: M - E,

(2) a method for getting a covariant derivative 1 ®; T*(M) & 7 given one
on T*#(M) and 7 so we can iterate these successively, and

(3) the ability to handle non-smooth covariant derivatives, which arise
when s: M — E is not smooth.

We will assume the bundle are trivial, 7 = E X R™ since the formulas can
be patched together. Denote the gradient or flat covariant derivatives by D.

(1) The pull-back s*V on M X R™ of ¥ on E X R™ by 5: M — E™ should
obey the rule (s*F)fos = Ffods. If V = D + I', then s*V = D + I'(s) o (ds)*.
Since Iy, € L(R™, R™ @ T%,,(M)), we have " od,,, € L(R™, R™) ® T*(M)).

(2) IfP,=D 41T, is a covariant derivative on M X R™, and V', =D + I,
is a covariant derivative on M X R”, then the only covariant derivative which
obeys the usual product rule for M X R"®@R* is V,QV, =D + I'y®I +
IQ T, [6].

(3) We say a connection V is of class L? if ¥ = D + I'" where I" e L?
-(L(R™, R™ ® T*(M)). In the case of a cross-product bundle, the connections
of class L? form a linear space and in general they form an affine space. Given
the C~ connection ¥ = D + I' on E X R™, the map s — s*/ is a C* map
from LZ(M, E) to LZ_, connections on M X R™. Given a C* connection // on
T*(M), the map s — s*V — ®, FV @ s*V is a C~ map from LZ(M, E) to L?_
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connections on ®; T*(M) ® R™. If we only then prove that an L?_;, connec-
tion maps L?_(M,RY) to L?_, . (M,R*® T*(M)), 0 <1<k — 1, and this
map depends smoothly on the connection, then we have shown that (s*F)/u =
®j_17®s*7((s*l7)f‘1u) (etc.) maps u e LZ(M,R™) linearly into L?(M; ®,
T.(M) ® R™), and the dependence is C* in s € LY(M, E). This outline shows
how to handle the Finsler structures (2.2). We have only neglected to show
that the several covariant derivatives are compatible with the proper metrics
for Proposition 2.8.
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