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GAUSSIAN CURVATURE AND CONFORMAL MAPPING

DIMITRI KOUTROUFIOTIS

1. Introduction and preliminaries

An ovaloid in Ez is a closed convex surface of class C2 with positive Gaussian
curvature. We shall denote the unit sphere in E3 by Σ.

L. Nirenberg has posed this question: given a C°° positive function K on Σ,
do there exist an ovaloid S and a conformal mapping φ of S onto Σ so that
the Gaussian curvature of S at P is equal to K(φ(P)) for all points P on SΊ In
this paper we shall prove that the answer is yes in the special case where the
given function K is even and sufficiently close to 1 pointwise. In fact, the
ovaloid S will also turn out to be "almost spherical" in a natural sense. Some
related questions will be discussed briefly in the last section of this paper.

We shall deal with the problem from the point of view of partial differential
equations. A priori estimates for solutions and their derivatives with respect
to local parameters on Σ will be needed. We shall therefore introduce now
coodinate systems and function spaces appropriate to our problem. The unit
sphere can be described by two overlapping coodinate patches. Say, we choose
two overlapping open regions on Σ, one containing the north pole and bounded
by a southern parallel of latitude, and one containing the south pole and bound-
ed by a northern parallel of latitude. These two regions are mapped into the
equator plane (x, y) through stereographic projection, the first one from the
south pole and the second one from the north pole. Thus the parameter do-
mains for the two spherical regions are two (coincident) open discs Gx and G2

in the equator plane. For the sake of definiteness, from now on we shall con-
sistently use this parametrization of Σ, although our final results will be in-
dependent of the smooth parameters used to describe it.

The norm of a function of class Ck on Σ is defined as

ll/ll* = Σ sup|Z)β/| + Σ sup|Dα/|,
|α|<fc Gi \a\ζk Gi

where a = (a19 a2), \a\ = aλ + a2 and Daf = dlalf/dxaidya2.

If, in addition, the kth derivatives of /, in each patch, satisfy a Holder-con-
dition with exponent a, 0 < a < 1, we define the norm of / to be

l l/ l l* + β = 11/11* + A ,
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where h is the smallest possible coefficient in the Holder-conditions for the &th
derivatives in Gi9 i = 1,2. We have thus defined the normed linear spaces C m

for every nonnegative number m. They are in fact real Banach spaces.
Next we consider the set of functions / o n Σ with

f Σ \Daf\rdGx + Γ Σ \Daf\rdG2 < αo ,

for some r, 1 < r < oo, and some integer k. Banach spaces Wk

r are construct-
ed by completion of these spaces with respect to the norm

ll/ll*,r= (Γ Σ \D"i\*dG\Vr + (Γ Σ \D°ίγdG\Vr.

Note that W°r = Lr.
We shall have to solve an equation of the form

\Δ2v + v = f

for the unknown function v o n l . Here Δ2 denotes the Laplace-Beltrami op-
erator on the unit sphere in E3. It is well-known that this equation is solvable
if and only if / is orthogonal to all the solutions of the corresponding homo-
geneous equation, i.e., to all linear functions on Σ:

ψ = axx + a2y + azz , x2 + y2 + z2 = 1 , j fψdω — 0 .
Σ

The solution we shall construct will define a new positive-definite metric on
Σ, to be realized as an ovaloid in E3. Some version of WeyPs realization
theorem will be needed. Before formulating the version which is appropriate to
our situation, we introduce Banach spaces of quadratic forms on Σ. If

(1.1) ds2 = £ ( * , y)dx2 + 2F(x, y)dxdy + G(x, y)dy2 ,

we define | | * 2 | U + α = | | £ | | f c + α + \\F\\k+a + | | G | | Λ + β , where k is a nonnegative
integer and 0 < a < 1.

Nirenberg proved in [1, Theorem 2, p. 351] that if the given metric (1.1)
is close enough to the natural metric of Σ in the C2+α-norm, then it can be
realized by an ovaloid which is close to Σ in C 2 + α . However, we shall succeed
in constructing a metric which is only C1+"-close to that of Σ. Nevertheless,
making use of the Schauder estimates in [2] for equations in variational form,
it is a straightforward matter to modify Nirenberg's proof so as to give the
following stronger theorem, to be used subsequently:

Let ds\ be a positive-definite quadratic form of class C 4 + α on Σ, with positive
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curvature, which can be realized by an ovaloid ϊ?Q(x9 y) in E3. There exists a
positive number ε such that any quadratic form ds2 of class C2+a on Σ can be
realized by an ovaloid X(x, y) of class C2+a in E3 with || j? — A*0||i+α arbitrarily
small if only ds2 is sufficiently close to ds2

0 in C1+αr.
The author takes pleasure in thanking L. Nirenberg for having suggested

this problem, but also for his interest and assistance.

2. The main result

Theorem. Given a C°° symmetric function K on the unit sphere Σ, suffi-
ciently close to 1 pointwise, there exist a centrally-symmetric ovaloid S in E3

and a conformal homeomorphism φ of S onto Σ so that S has Gaussian curva-
ture K(φ(P)) at the point P for all P e S. Furthermore, the position of S and
parameter systems covering it can be chosen in such a way that, for the position
vectors )C and J?o describing S and Σ respectively, J?(P) — £0(φ(P)) and its
first derivatives are arbitrarily small in absolute value if K is sufficiently close
to 1.

Proof. The parametrization (x, y) of Σ through stereographic projection
introduced above is isothermic, i.e., the line element ds2

0 of Σ assumes the form

ds\ = eu°(χ>y)(dx2 + dy2) .

We shall construct a new line element

ds2 = eu^y)(dx2 + dy2)

on Σ, which has the given function K as Gaussian curvature. If such a metric
exists, the Theorema Egregium in these parameters states that

(2.1) K= -\e~uΔu,

where Δ signifies the ordinary Laplacian: Δ = 32/dx2 + d2/dy2. We also have

(2.2) 1 = -\e~^Δu, .

Setting v = u — u0, (2.1) may be written as

K = - J έ Γ t t -M(Ko + v) ,

or, in view of (2.2) and the linearity of J ,

(2.3) \e~u»Δv + Kev = 1 .

Note that v is a well-defined invariant function on Σ, since ev = ds2/ds2

0.
Furthermore, the operator e~UoΔ is the Laplace-Beltrami operator Δ2 on Σ,
expressed in isothermic parameters. Thus (2.3) is an invariant equation on Σ.
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It is a quasilinear elliptic partial differential equation for v, linear in the high-
est-order derivatives. We rewrite it as

(2.4) \Δ2v + v = (1 - K)ev + 1 + v - ev .

Note that the right-hand side of (2.4) is of order ε, if K — 1 and v are of order
ε, and so it is plausible to try to construct a "small" solution of (2.4) by ite-
ration, starting with V0=0 and defining vn as the suitably normalized solution
of the linear equation

(2 5) ^ΔlVn + Vn = ( 1 K)e~1 + l + Vn~ι ~ eVn~X '
n = 1,2,3, . . . .

We must make sure that, at each step of the iteration, the right-hand side is
orthogonal to all the linear functions on Σ. Since K is a symmetric-, i.e.,
even-function on Σ, assuming vn_λ is symmetric, the right-hand side of (2.5)
is symmetric. Starting with vo = O, we choose at each step as vn the uniquely
determined symmetric solution of (2.5). This choice is possible since, if v(v),
\v\ = 1, is a solution of

(2.6) \ΔlΨ + φ = f,

f(v) being a given symmetric function on Σ, then v(ΐ>) = v( — v) is also a
solution of (2.6) and so is the function vs = \{v + v). Now ^ is a symmetric
function on Σ and, in fact, is the sole symmetric solution of (2.6), since any
other solution is obtained from vs by adding to it an arbitrary linear function
and hence is not symmetric any more. With this choice of vn the right-hand
side of (2.5) remains constantly symmetric, therefore always orthogonal to the
linear functions on Σ, and the sequence of iterates {vn} is well-defined. Note
that they are all C°° functions, since K is C°°.

Since we have no information about the Holder norms of K and about its
derivatives in our fixed coodinate covering of Σ, we shall work in the space
W\. We shall now prove in standard fashion that if ε > 0 is sufficiently small,
and K is close enough to one pointwise, then the sequence {vn} converges in
W2

r to a smooth solution v of (2.3) satisfying ||i;||2,r < ε. By virtue of its choice,
vn satisfies the inequality

\\vn\kr < cJild - K)e"-* + 1 + vn_λ - e"-*|kr

(2.7) < cjmaxll - K|.||<*—||0.r + ||1 + vn.λ - e**-%
L Σ

n= 1,2,. .

where cx is some constant depending only on r. If we assume that | |^n_1 | |2 > r < ε,
from Sobolev's inequalities we obtain
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(2.8) maxltv.il < IK-iH« < ^ll^n-ilkr < c2ε >

Σ

where r > 2, 0 < a < 1 — 2/r and c2 = c2(r). It follows that

f ? 9 Ϊ | |Λ»n-i | | <f /»ca«|l1 II — r pc*e c — r (r)

\£.y) \\e | |O ί 7. \ c | | l ||o,r — C3e 5 C3 — cz\r)

From Taylor's theorem, (2.8) and (2.9), we have
C? 1ΓΠ ll̂ ϋfi-i Π 4- V Ήl — 111??2 pθυn-i\\ <^ ±r2r p2pC2S

where ^ lies between 0 and 1. Thus we obtain the following estimate for vn:

(2.11) H ^ l l ^ <

Now pick an ε > 0, and assume ε < min {1, (c^^cle02)'1} and max 11 — K\ <

\c\£. Then using (2.7), (2.11) and v0 = 0, by induction it follows immediately
that ||vw||2fr < e f° r aU w We proceed to prove convergence:

since vn — vn_λ is orthogonal to all the linear functions on Σ and satisfies the
equation

φ = -K(ev»-> - eVn~*) + vn_, - vn_2 .

We may write

evn-i _ ^«-a _ β»S-i(|;n_ 1 — 7JW_2) ,

v* _! being between TJ^,! and vn_2, and we obtain

(2.12) \\vn - Vn.xlkr < c x max | l - ^ ^ - ψ l l ^ ^ - i;TC_2||2,r .
Σ

Since — c2ε < vn < c2ε for all n,

1 - XeC2£ < 1 - Kev*-i < 1 - Ke~c* .

Using 1 - \c\ε2 < K < 1 + i φ 2 , we have that

(2.13) cλ max 11 - Kev*-*\ < μ < 1

for a fixed constant μ and all n, provided that we restrict ε further so that

- 1 < c j l - (1 + iclε2)ec*°] and cx[\ - (1 - |c2V)ίrC2ε] < 1 .

From (2.12) and (2.13) we now obtain
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This shows the sequence {vn} to be a Cauchy sequence in W\ which therefore
converges to a function v. Clearly, v is a weak, symmetric solution of (2.3)
satisfying | |fl |kr.< ε, provided r > 2, ε is sufficiently small and max 11 — K\ <

c(r)ε2. A fortiori, v is in C 1 + α for 0 < a < 1 — 2/r, and satisfies the inequalities

\\v\\1+a < c(r)\\v\\2,r < φ)ε .

Equation (2.3) is quasilinear of the type investigated in [3] since all its coef-
ficients are C°°, the bounded weak solution v must itself be C*° [3, Theorem 7,
p. 493]. We now set u = u0 + v, and consider on Σ the new C°° metric

(2.14) ds2 = eu(dx2 + dy2) .

It defines an abstract two-dimensional Riemannian manifold M homeomorphic
to the sphere Σ C E\ The underlying topological space of M is Σ itself, and
the homeomorphism is the identity on Σ. The same fixed parameters (JC, y) are
used to describe corresponding points of M and Σ. Since, with respect to these
parameters, both the metrics ds2 and ds\ = eUo{dx2 + dy2) assume isothermic
form, the homeomorphism in question is, in fact, a conformal mapping of M
onto Σ. Note that, since v is a symmetric function and u0 defines the natural
metric on Σ, the metric ds2 is symmetric on Σ in the sense that a curve on Σ
and its reflection on the center have the same length with respect to ds2.
Furthermore, the curvature of this new metric is our given K, since, using (2.3)
and (2.2), we have

-\e~uΔu = ( - \e-u«Δu^e-v + (-±e~UoJv)e-υ = K .

The metric ds\ is analytic, the metric ds2 is C°° and, since C 1 + α is a Banach
algebra, we have the estimates

α = 2||e« - eu%+a = 2\\e"°(e" - l ) | | 1 + β

< 2 ^ | | ^ - l | | 1 + β < 2ΛΛII*||1+β < const, ε .

We may thus apply the Realization Theorem stated in § 1 to obtain an ovaloid
S C E3 and a global isometry M —• 5. This ovaloid is given by a vector J?(x, y)
in terms of the isothermic parameters (x, y), and X(x, y) differs by little in
the C1+α-norm from the vector J?0(JC, y) representing Σ. Note that, since the
same parameters (x, y) are used on S and Σ, we have a conformal mapping of
S onto Σ whereby points with the same parameter values correspond. Further-
more, a point on S with parameter values (x, y) has Gaussian curvature equal
to the value of K at the point of Σ with the same parameter values (x, y). In
addition, the ovaloid S is centrally symmetric: the metric ds2 is symmetric if
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we choose as origin of coodinates the center of Σ, all the known quantities in
the differential equation for X are symmetric, considered as functions on Σ9

and the solution vector is symmetric too. Also, the conformal mapping S —> Σ
carries antipodes into antipodes. Hence the theorem is proven.

3 Related questions

It is not known to the author whether the ovaloid S obtained as above is
unique up to congruence. More generally, we may ask: if two centrally-sym-
metric ovaloids are such that there exists a conformal mapping between them
preserving antipodes and Gaussian curvature, are they congruent? An affirm-
ative answer to this question would yield the following result: if the centrally-
symmetric C°° ovaloid So imbedded in Ez has curvature K sufficiently close to
1 pointwise, then it is almost spherical in the sense of the theorem of the previous
section. Namely, as we shall show below, So can be mapped conformally onto
Σ so that K becomes an even function on Σ. We can then apply the theorem of
the previous section to construct an almost-spherical centrally-symmetric ovaloid
S and a conformal mapping of S onto Σ preserving antipodes. The induced con-
formal mapping of S onto So would therefore preserve curvature and antipodes,
and hence So would be almost spherical.

The possibility of mapping 50 conformally onto Σ so that K, considered as
a function on Σ, is symmetric will be clearly guaranteed, if we can prove that
there exists a conformal mapping of So onto Σ carrying antipodes on So into anti-
podes on Σ. The proof which follows makes use of the group-theoretic pro-
perties of conformal mappings.

Lemma. A centrally-symmetric surface S in E3, of genus zero and class
C3, can be mapped onto the sphere Σ conformally and preserving antipodes.

Proof. Since the metric on S is of class C2, the isothermic local coodinate
systems define a Riemann surface structure on S. The possibility of mapping
S conformally onto Σ is therefore guaranteed by the Uniformization Theorem.
Now pick such a conformal mapping φ: S —> Σ, and let a: S —> S denote the
anticonformal mapping which assigns to every point on S its antipode with
respect to the center. Then the mapping h = φσψ~ι: Σ —> Σ is an anticonformal
involution: h2 = ψσψ~λφσφ~ι = identity. Let r: Σ -^ Σ denote the reflection
of Σ in its center. The mapping rh: Σ —> Σ, being the product of two anticon-
formal mappings, is a conformal mapping of the sphere onto itself, i.e., a
Mobius transformation of Σ. It follows that we may set h = gj, where &
denotes a certain Mobius transformation of Σ. Since h is an involution,

gjgf = identity .

This last relation imposes restrictions on the form which & may assume. We
seek to determine the admissible forms of &. We shall represent conformal and
anticonformal mappings of the sphere Σ onto itself, in the usual way, through
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stereographic projection from the north pole onto the equator plane, as trans-
formations of the extended complex z-plane. The totality of Mδbius trans-
formations is given by

(3.1) z-*(az + b)/(cz + d) , ad - be Φ 0 .

The reflection r is represented by the transformation z —> — 1/z.
If & is given by (3.1), an elementary direct calculation easily shows that

gxrgxr = identity implies

(3.2) \bf - ad = \c\2 - άd Φ 0 ,

(3.3) ac - fib = 0 ,

(3.4) db - dc = 0 .

The mapping ψσφ'1 = gxr: Σ —> Σ clearly has no fixed points. This implies
a Φ 0, since otherwise 0 would be a fixed point. Also d Φ 0, since otherwise
oo would be a fixed point. Thus we may assume that d = 1. From (3.2) it
follows then that a is real. Furthermore, from (3.4) we have either b = c = 0
or b = peίψl, c = peίψ2 with <p1 + <p2 = 2kπ, k an integer.

Since the mapping gxr has no fixed points, the equation

(3.5) (aZ + b)/(cz+ 1)= - III

has no solution z. From this fact we shall derive necessary conditions for the
numbers a, b, c. Setting z = \z\eίa, we consider the equivalent equation

(3.6) a\zf + 1 = -\z\p(e^-a) + e^+a)) .

If b — c = 0, i.e., p = 0, we must have a > 0, since otherwise any z with
\z\2 = —I/a would be a solution of (3.5). If p Φ 0, we have φ1 + φ2 = 2kπ
and we may write, instead of (3.6),

(3.7) (a\z\2 + D/(2p\z\) - - cos (Ψl - a) ,

from which it follows again that a > 0 otherwise, z = V — 1 /a eίa and
cos fa — a) = 0 would be a solution. Furthermore, we must have

+ D/(2p\z\)\ = (a\z\2 + D/(2p\z\) >

or

(3.8) a\zf - 2p\z\ + 1 > 0 , for all z ,

which is satisfied for all z if and only if

(3.9) a - p2 > 0 .
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Thus condition (3.9) must be satisfied by the coefficients of

ft: z -> (az + b)/(cz + 1) , b = pe*" , c = pe~^ .

We now consider the equation

(3.10) gφσφ-'g-1 = r

for the unknown Mobius transformation g: Σ -+ Σ, and maintain that if we
can find a conformal g satisfying (3.10), then the conformal mapping ψ =
gφ: S -+ Σ maps antipodes on S into antipodes on Σ, as desired. Indeed, from
(3.10) we deduce ψσ = rψ , which, in turn, gives

where P is any point on S, and the bar denotes reflection in the pertinent
center.

Thus it remains to show that (3.10) has a conformal solution g. In ac-
cordance with our previous considerations, we may write this equation as

(3.11) ggxrg-1 = r .

We seek a solution g of (3.11) in the form

Z-+X& + X2 , Xi Φ 0 .

The inverse mapping g~ι is then given by

1 JC2

Xγ X1

Substituting for g~\ r, gl9 g in (3.11) their representations, an elementary
calculation easily shows that the validity of (3.11) for all z implies

(3.12) cxλ + x2 = 0 ,

(3.13) bx1 + x2 = 0 ,

(3.14) a\xx\
2 + toqjc., + cxxx2 + \x2f= 1 .

(3.12) and (3.13) are equivalent, since b — c. Using (3.12), (3.14) reduces to

(3.15) xγ{ax, + bx2) = 1 .

Setting x2 = -bxx in (3.14) we obtain |JCX|2 = l/(a - p2) > 0.
Thus any mapping
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with \xλ\
2 = I/(a — p2), x2 = — Z?̂  is a solution of (3.11), and our object

has been attained.

Added in proof. The existence part of the theorem in this paper has been

recently generalized by J. Moser to the case of an arbitrary smooth symmetric

K with max K> 0 and will appear under the title "On a nonlinear problem in
Σ

differential geometry". For recent related results consult J. L. Kazdan and

F. W. Warner, Integrability conditions for Au = k — Ke2u with applications to

Riemannian geometry, Bull. Amer. Math. Soc. 77 (1971) 819-823, and the

bibliography therein.
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