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CLASSIFICATION OF THE SIMPLE SEPARABLE
REAL L*-ALGEBRAS

IGNACIO UNSAIN

Introduction

A real (complex) L*-algebra is a Lie algebra L over the real (complex)
numbers such that the underlying vector space is a Hubert space (throughout
this work the Hubert space is assumed to be separable) and such that, for each
x ε L, there is an x* e L satisfying ([x, y],z) = (y, [x*, z]) for all y, z in L.
L*-subalgebras and L*-ideals are denned in the usual way, with the additional
property of being closed subspaces, invariant under the map x -> x*. These
algebras were introduced by J. R. Schue [11], [12], who obtained a complete
classification of all simple separable complex L*-algebras. V. K. Balachandran
[1], [2], [3], [4], [5] gave more general settings to the techniques used by Schue
for not necessarily separable L*-algebras he also defined the notions of real
form and compact real form.

The main result of this work is the classification1 of the simple separable real
L*-algebras up to L*-automorphism.

We show in § 1 that the complexification L of a simple real L*-algebra is not
simple if and only if L = MR (MR denotes the real L*-algebra obtained from
M by restriction of scalars). Therefore, the classification reduces essentially,
aside from simple real L*-algebras having a complex structure which are in a
one-to-one correspondence with the simple complex L*-algebras, to the study
of the real forms of all simple complex L*-algebras.

If L is a real form of a semisimple L*-algebra L, the decomposition L =
K + M (Hubert direct sum), where K = {a e L: α* = — a} andM = {a € L:
α* = a}, defines an involutive L*-automorphism S of L (S\K = id and
S\M = —id.) which can be extended to L by linearity. S is called the involu-
tion of L associated to L. Conversely, if S is an involutive L*-automorphism
of L, then S leaves the unique compact form U (set of all self-adjoint elements
of L) invariant and we have U = K + iM, the decomposition of U into eigen-
spaces of S. The real form L = K + M is said to be associated to S.

There is a one-to-one correspondence between isomorphism classes of real
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1 The classification was also obtained, independently, by Mr. Pierre de la Harpe.



424 IGNACIO UNSAIN

forms of L and conjugacy classes of L*-automorphisms of L containing an
involutive element.

Following an idea of S. Murakami [9], [10] we show that of S is an involu-
tion of L we can find a Cartan subalgebra H and a regular self-adjoint element
h in it such that SH = H, Sh = h, and the 1-eigenspace of S in H is a maxi-
mal abelian L*-subalgebra of K (the complexification of K),

Having such a Cartan subalgebra we are able to compute explicitly the struc-
ture of K in terms of the roots of L relative to H.

Next (§§ 2, 3, 4), we show case by case, that if an involutive rotation leaves
a regular self-adjoint element fixed, then it is a "particular" rotation (i.e., it
leaves some system of simple roots invariant).

It is known [4] that in the case of simple complex L*-algebras of types A
and C all Cartan subalgebras are conjugate, and in case B, the Cartan sub-
algebras fall into two conjugacy classes. Thus, if we fix in cases A and C a Cartan
subalgebra H and a system Π of simple roots there exists in each conjugacy
class of L*-automorphisms containing an involutive element, an involution
leaving H and Π invariant. In case B we have to take two non-conjugate
Cartan subalgebras in order to get a similar result.

The classification follows easily by reducing such an involution to a normal
form.

At the end of § 5 we discuss natural realizations of all the real forms.
The result we obtain is exactly what we expect as an infinite dimensional

analogue of classical real simple Lie algebras.
The author wants to express his gratitude to his thesis advisor Dr. I. Satake

who suggested this problem to him, and whose encouragement, advice and
friendly care have been invaluable to him. The author is also grateful to Dr.
S. Kobayashi, who guided him through the early stages of his graduate work
and stimulated, in many ways, his interest in this area of study.

1. Reduction of the problem

1.1. Preliminaires. Throughout this work, all L*-algebras are assumed
to be separable. Let L be an L*-algebra. L is semisimple if [L, L] — L (where
[A, B] = closed subspace spanned by {[a, b], ae A, b e B]}). This is equivalent
to saying that the map x —> ad (x) is one-to-one. If L is semisimple, x* is
uniquely determined by x and satisfies x** = x, (ax + βy)* = ax* + ]ϊy*,
[x,y]* = \y*,x*] and (JC*, y*) = (y,x). L is simple if there are no nontrivial
ideals. Let Lx and L2 be L*-algebras. A map Γ: Lγ —• L2 is a L*-isomorphism,
if T is a Lie algebra isomorphism and is an isometry and T(x*) = T(x)*.

Let L be a complex L*-algebra. The real L*-algebra obtained from L by
restriction of scalars and by taking the real part of the inner product of L is
denoted by LR and called the real L*-algebra obtained from L by restriction
of scalars. The map / from LR onto itself, defined by Jx — ix, is an orthogonal



SIMPLE SEPARABLE REAL L*-ALGEBRAS 425

map satisfying J(x*) = — (/x)*, [Jx, y] = J[x,y] = [x,Jy] and P = id. / is
called a complex structure of LR. Conversely, let L be a real L*-algebra with
a complex structure /. L together with the complex multiplication defined by
(rt + ir2)x = rxjc + r2jχ (r19 r2e R,x € L) and the Hermitian inner product
(x, y) + i(x, Jy) (where ( , ) is the inner product in L) becomes a complex L*-
algebra. Let L be a real L*-algebra. Then the complexification L = L + iL
of L together with the Hermitian inner product (x + iy, u + ίv) — (x, u) +
(y, v) + i((x, u) — (x, v)), the conjugation (x + iy)* = ** — iy* and the Lie
bracket extended by linearity, becomes a complex L*-algebra called the com-
plexification of L. If L and M are L*-algebras over the same field, the vector
space LxM together with the inner product ((*, y), (u, v)) = (x, u)L + (y, v)M,
the Lie bracket defined by [(*, y), (w, v)] — ([x, u], [y, v]) and the conjugation
(JC, j ) * = (JC*, Y*) becomes an L*-algebra called the product L*-algebra. From
now on we will denote a real L*-algebra by L, its complexification by L, and
the real L*-algebra obtained from L by LR. It is trivial to see that L, L, LR

are all semisimple if and only if one of them is.
Let L be a complex L*-algebra. A real form L [3] is an L*-subalgebra of

LR such that, the inner product of L restricted to L x L is real-valued and L
is the complexification of L, i.e., L = L + /L. The map σ: Z —> £ defined by
(7(JC + z» = JC — /y is an involutive L*-automorphism of LR such that (σx, σy)
= (y, *) and <7(αJc) = α<τ(jc) (aeC). σis called the conjugation of £ with respect
to L. Conversely, if σ is a map of L onto itself with the above properties, the
set L of fixed points of σ is a real form of L having σ as the associated conju-
gation. A real form U of L is a compact real form of L if ( t, x*) < 0 for all
x € U. Every complex L*-algebra has a unique compact real form [3] indeed,
U = {x € Z: x* = — JC}. We always denote the unique compact real form by
U and the conjugation of L with respect to U by τ.

1.2. Real forms and involutive L*-automorphisms. Let I be a semi-
simple complex L*-algebra. If L is a real form of L, then L = K + M (Hubert
direct sum) where £ and M are the skew-adjoint and self-adjoint parts of L,
i.e., K = {x e L: x* — —x] and M = M{x e L: x* = jt}. They are orthogonal
closed subspaces, and J^ is an L*-subalgebra of L called the characteristic sub-
algebra of L, also [K, M] C M and [M, M] C ϋC. The map S of L onto itself
defined by S(x + y) = * — y (x e X, y e Λf) is an involutive L*-automorphism
of L(5 = τ | L , τ as above). The extension of S by linearity to an L*-automor-
phism of L, which we also denote by 5, is involutive, and we say that S is the
involution of L associated with real with real form L. Conversely, let S be an
involution (an involutive L*-automorphism) of L. Since (Sx)* = Sx*, S leaves
U (the unique compact form of L) invariant. Let K + iM be the decomposi-
tion of U into eigenspaces of S corresponding to the eigenvalues + 1 and — 1.
Then L — K + M is a real form of L having S as its associated involution. L is said
to be the real form of L associated to the invoultion S. So the real forms of L
are in a one-to-one correspondence with the involutive L*-automorphisms of L.
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Denote the graup of all L*-automorphisms of L by Aut (L). The next theo-
rem shows that there is a one-to-one correspondence between isomorphism
classes of real forms of a semisimple complex L*-algebra L and all conjugacy
classes in Aut (£) containing an involutive element.

Theorem 1.2.1. Let L19 L2 be real forms of a semisimple L*-algebra L, and
S19 S2 be the associated involutions of L. Then Lλ and L2 are L*-isomorphic if
and only if St and S2 are conjugate in Aut (L).

Proof. Suppose that Lλ and L2 are L*-isomorphic, and that T is an L*-
isomorphism between them. In the decompositions Lx = Kx + M1 and L2 =
K2 + M2 into skew-adjoint and self-adjoint elements, we have TKλ = K2 and
TM1 = M2. Since Sj \ (Kj + iK3) = id and Sj \ (Af, + ίM3) = - i d (/ = 1, 2),
the extension of T to L by linearity satisfies S2 = TSxT~ι. T gives the desired
conjugation.

Suppose that Sx andS 2 are conjugate, i.e., there exists T e Aut(L) such that
S2 = TSλT-\ Since Γ, Sx and 52 leave U invariant, T(Kλ) = K2 and TQM,) =
iM2 (U = Kt + iMj is the eigenspace decomposition of U with respect to Sj).
Then T\Lλ is an L*-isomorρhism between Lx and L2.

1.3. Reduction of the problem. In this section, we show that the simple
real L*-algebras fall into two classes, one class containing all the simple real
L*-algebras with a complex structure and the other containing the real forms
of all simple complex L*-algebras.

Theorem 1.3.1. Let L be a simple real L*-algebra. Then the complexifica-
tion L of L is not simple if and only if L = MR, where M is a simple complex
L*-algebra, i.e., L has a complex structure.

We break the proof in several lemmas.
Lemma 1.3.2. Let L be a simple L*-algebra, S be the involution of L with

respect to L, and σ be the conjugation of L with respect to L. Then L is either
simple or the sum of two nonzero L*-ideals interchanged by σ, and U is the
sum of two nonzero L*-ideals interchanged by S.

Proof. Since L is semisimple, let L = Σj Lj b e t n e decomposition of L
into simple L*-ideals [11]. σ interchanges the L/s. If for some index 1 one
has aLx = L19 then Lx = (L Π Lλ) + (iL Π Lt). Since Lf is an L*-ideal in LR

andL is an L*-subalgebra, Lx Π L is an L*-ideal in L. By assumption it must
either be {0} or L; if Lλ Π L = {0}, then i(L Π Lλ) = (iL Π Lλ) = {0} because
Lx is a complex vector space, and Lγ reduces to {0}, which is impossible. So
L C Lλ and iL C L19 and L = Lλ is a simple L*-algebra. On the other hand,
if σ interchanges two of them, say σLλ = L2, then σ(Lλ + L2) = Lx + L2 and,
along the same lines as in the above argument, L = Lλ + L29 i.e., £ is the
sum of two nonzero L*-ideals interchanged by σ, and U = Vx + U2 (C/ :̂
unique compact real form of L^ is the sum of two nonzero L*-ideals inter-
changed by S{S\ U = τ\U).

Lemma 1.3.3. Let L be a semisimple L* -algebra, L be a noncompact real
form of L, and S be the involution of L associated with L(S Φ id). // U =
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Uι + U29 two nonzero L*-ideals interchanged by S, then L has a complex
structure.

Proof. The map T:UR-+L defined by T(u + ίv) = ((u + Sv) + i(v — Sv))
satisfies all the conditions, but is not an isometry, i.e., (Tx, Ty)UR = 2(x, y)L,
as is trivial to see. Anyway, the pull-back of the complex structure on UR gives
the desire complex structure on L.

Lemma 1.3.4. Let L be a semisimple L*-algebra, L be a real form of L,
and S be the involution of L associated to L. If L is noncompact and carries a
complex structure /, then U is the sum of two nonzero L*-ίdeals interchanged
byS.

This lemma is the converse of Lemma 1.3.3.
Proof. Let Lλ and L2 be the eigenspaces of the extension of / to L by line-

arity corresponding to the eigenvalues / and —/. Then Lx and L2 are L*-ideals
of L interchanged by a (conjugation of L with respect to L) because if
x + iy € Lλ (x, y e L) we have (x — iy) € L2. So U = Uι + U2 (the compact
real forms of Lx and L2 respectively) and σ = S \ U interchanges them.

Proof of Theorem 1.3.1. Trivial.
1.4. Simple real L*-algebras having a complex structure. In this section

we classify all simple real L*-algebras having a complex structure.
Proposition 1.4.1. // L is a simple L*-algebra, then LR is a simple L*-

algebra.
Proof. Suppose LR is not simple (in any case is semisimple). We can find

a nontrivial L*-ideal A properly contained in LR its orthogonal complement
AL is also an L*-ideal, and LR = A + AL. Since LR is semisimple, both A
and AL are semisimple. A is invariant under complex multiplication; if x e A,
then ix = a + b (a e A, b e A1), and for every y e AL we have [b, y] = [ix, y]
— [a, y] = i[x, y] — [a, y] = 0. By the semisimplicity of AL the component b
of ix must be zero and ix 6 A. So A is a nontrivial simple complex L*-sub-
algebra properly contained in L, which is a contradiction, q.e.d.

In the next proposition we prove that if two simple complex L*-algebras
induce L*-isomorρhic real L*-algebras by restriction of scalars they are also
L*-isomorphic.

Proposition 1.4.2. Let L be a simple L*-algebra having two complex struc-
tures J and I. Then the two complex simple L*-algebras obtained from L through
these complex structures are L*-ίsomorphic.

Proof. We indicate the complex L*-algebras obtained from L through /
and / by (L, /) and (L, /) the corresponding inner products by (, )j and ( ) 7 .

Let L be the complexification of L. L = Lλ + L2, where Lx are L2 are the
eigenspaces of the extension of / to L by linearity corresponding to the eigen-
values / and —/. Lλ and L2 are L*-ideals of L. If x e L, then x = \{x — Jix) +
j(x + Ux) with respect to the decomposition L — Lι-\-L2. The map Tλ: (L, /)
—> Lγ defined by T(x) = %(x — iJx) satisfies all the conditions for an L*-
isomorphism except that it is not an isometry, i.e., (x,y)j = \{Tx, Ty). The
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map Tz: (L,/)-> L2 defined by T(x) = \{x + Ux) satisfies all the conditions
for an anti-L*-isorπorphisms except again that it is not an isometry i.e., (x,y)z

= i(Tx, Ty). In any case, we see that Lx and L2 are simple, and the decompo-
sition L — Lx + L2 is that of L into simple L*-ideals. Doing exactly the same
with /, we get that the decomposition of L is also Lλ + L2 by the uniqueness
of the decomposition into simple L*-ideals. Thus (L,/) and (L,/) are either
L*-isomorphic or anti-L*-isomorphic in the second case in order to get the
desired L*-isomorphism we need only to compose the given anti-L*-isomor-
phism with, for instance, the map x —> x*. q.e.d.

Thus the isomorphism classes of simple real L*- algebras having a complex
structure are in a one-to-one correspondence with the isomorphism classes of
simple L*-algebras.

1.5. Cartan subalgebras and involutive L*-automorphisms. It remains to
classify, up to L*-isomorphisms, the real forms of all simple complex L*-
algebras. According to Theorem 1.2.1, it is enough to classify the conjugacy
classes in Aut (L) containing an involutive element, for all simple complex L*-
algebras. We already know [11] that there are essentially three different kinds
of simple separable complex L*-algebras, and we called them of types A, B,
and C. In this section, we show that in the case of L*-algebras of types A and
C, if we fix a Cartan subalgebra, we can choose in each conjugacy class con-
taining an involution, an element leaving invariant the Cartan subalgebra and
a regular self-adjoint element in it. To get a similar result in case B we need
two Cartan subalgebras.

Theorem 1.5.1. Let L be a semίsimple L*-algebra, and S an involution of
L. Then we can find a Cartan subalgebra (a maximal abelian L*-subalgebra)
H and a regular self-ad joint element h in H such that SH = H and Sh = h.

Proof. Since S leaves U invariant, let U = K + M be the decomposition
of U into eigenspaces of S. Then the complexifications of K and M provide
the decomposition of L with respect to S, i.e., L = K + M. K is an L*-sub-
algebra of U which may not be semisimple, but it can be written as the sum
of two L*-ideals, its center Z and its semisimple derived L*-subalgebra Kx =
[K,K] (L*-algebras are reductive [11]). The corresponding decomposition of
K is K = Z + Kx. It is easy to see that an abelian L*-subalgebra Hλ of K is
maximal if and only if Hλ — Z + H{, where H\ is a maximal abelian L*-sub-
algebra of Kx. Let Hι be a maximal abelian L*-subalgebra of K, and H a max-
imal abelian L*-subalgebra of U containing Hλ. H is invariant under S: if
x e H and h e Hί9 then

[JC + Sx, h] = [x, h] + S[x, Sh] = S[x, A] = 0 .

Since x + Sx e K and H1 is maximal abelian in K, we have that x + Sx e Hλ

and xεH. In other words, we can write H = H1 + H_x where Hι = K f] H
H_1 = M Π H.
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H_λ is completely determined by Hu i.e., H_λ = {x e M: [x,h] = 0 for all
h e ifj}. Suppose that x € M and [x, h] — 0 for all h e Hλ. Let α be any ele-
ment in H. Then

a = \{a + So) + i(a - So) = a! + a" ,

in the decomposition of H mentioned above.
If a'eH19 then [a',x] = 0. If a"eH_19 then [a",x]eK. Actually,

[a", x] <= Hγ because it commutes with all elements in H19 i.e., if y e H19 then
we have

\a" 9 y] = 0 because a" and y are in H ,

[y, x] = 0 because y ζ Hλ .

Thus [y, [α7/, *]] = -[a", [x, y]] - [x, [y, a''] = 0. Since Hλ is maximal abelian
in K, we conclude that [a", x] e Hv Hence [x, a] = [x, a!\ e i^for all aeH, and
x is in the normalizer of H, which is exactly H because H = H + iH is a
Cartan subalgebra of L.

It should be remarked that H = {h e L: [h, x] = 0 for all x € # J .
Let us see now that iHλ contains a regular element [2]. Let Δ be the root

system of L with respect to H. The elements of Δ are real-valued linear func-
tionals on ίH. For any γ 6 Δ set M r = {h e ίH: γ(h) = 0}, and assume that iHx

contains no regular elements, i.e., iH1 c U r € J M r Since a separable metric
space is not the union of a countable number of nowhere dense subsets, we
conclude that iHλ c Mr for some γ. In other words γ\iHί = 0. Since f is C-
linear, γ\H1 = 0. If ^r is a root vector of γ, then [/z, ̂ r] = γ(h)er = 0 for all
heHx. By the above remark, er ε ίϊ which is a contradiction, so iH1 contains
a regular element, say h. Since Hι (Z K, S\Hλ = id, and therefore Sh = h.
Hence our proof is complete.

In the case of simple complex L*-algebras of type A and C, all Cartan sub-
algebras being conjugate, we can restate the theorem as follows:

Corollary 1.5.2. Let L be a simple L*-algebra of type A or C, and H a
Cartan subalgebra. Then every conjugacy class of L*-automorphisms contain-
ing an involutive L*-automorphism has an element leaving H and a regular
self-adjoint element in it invariant.

In the case of simple complex L*-algebras of type B, the Cartan subalgebras
fall into two classes such that any two in the same class are conjugate, while
no two from different classes are [4]. We call those in one class Cartan sub-
algebras of type I and those in the other class Cartan subalgebras of type II.

Corollary 1.5.3. Let L be a simple L*-algebra of type B, and ίίly Hu be
Cartan subalgebras of type I and II respectively. Then every conjugacy class of
L*-automorphisms containing an involutive L*-automorphism has an element
leaving one of the Cartan subalgebras Hτ, Hu and a regular self-adjoint element
in it invariant.
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1.6. Characteristic sub algebras. Let L be a semisimple L*-algebra, and
L = K + iλί (skew-adjoint part and self-adjoint part of L respectively) be a
real form of L. K is an L*-subalgebra of L called the characteristic subalgebra
of L. If L and Lλ are L*-isomorphic real forms of L, their characteristic subalge-
bras are also L*-isomorρhic. The classification will show that the converse is
also true, i.e., a simple real L*-algebra is determined by its complexification
and the structure of the characteristic subalgebra. In this section, we develop
some techniques which will allow us to compute the structure of the complex-
ification of the characteristic subalgebra associated to an involution of L.

Theorem 1.6.1. Let L be a simple L*-algebra, and S an involution of L.
Then K (1-eigenspace of S in L) is a maximal L*-subalgebra of L.

Proof. It is enough to show that K is a maximal proper L*-subalgebra in
U (simple real L*-algebra). Suppose that K is contained properly in some L*-
subalgebra of U = K + M, i.e., there exists a nontrivial closed subspace Mλ

in M such that [K, ΛfJ C Mλ. If M2 = Mf (in M), then [K, M2] c M2.
[M19 M2] = {0}: If ax e Ml9 a2eM2, and x e K, then we have

(x, [a19 aj) = ([a*, x], a2) = ([x, aj, a2) = 0 .

Since [a19 a2] ζ. K and x is arbitrary in K, we have [a19 a2] = 0 and they generate
[M1 ?M2] = {0}.

Denote Kt = [M^M^ (i = 1,2), and KQ = (K, + K2)
L.

Ko, K19 and K2 are L*-ideals in K: Since [K, M J c M4 and [Mt, M J c ^ ,
we have [ϋC, £ J c ^ (i = 1,2). Thus ^ and Ĉ2 are L*-ideals in K together
with Kx + K2. Ko is an L*-ideal because it is the orthogonal complement of an
L*-ideal.

[Ko, MJ = [KQ, M2] = {0}: If * e Ko and a, b, e M19 we have ([x, a],b) =
(x, [a, b]) = 0 (Λ* = — α) because * € £ 0

 a n d [a, b] e Kλ. So [x, a] is orthogo-
nal to Mx and belongs to M19 it must be zero. The same for [̂ Co, M2].

From this we see that KQ is an ideal in U, a simple L*-algebra, and Ko re-
duces to 0.

(Kl9K2) = {0}: If « A e M , , then [a^bJ^K, ( i = l , 2 ) and ([β^ftj,
[α,, 6J]) = ( f l l - [α2, [i 2, bj] - [62[62, α,]]) - 0 because [Ml9 M2] = 0. Thus
K = Xx + M2 is a Hubert direct sum.

Now Xx + M1 and X2 + M2 are L*-ideals in U; hence one of them must be
zero, i.e., M2 = {0}, Kλ = K and Mλ = M. q.e.d.

Let L be a semisimple L*-algebra, H be a Cartan subalgebra, J = {;-} be
the root system of L with respect to H, and 77 = {PJ be a system of simple
roots [3]. Suppose that 5 is an involution of L leaving H invariant and induc-
ing a particular rotation σ(σ = S\iH, σΠ = Π, Ή = H + ίH). Let {er: γ e Δ)
be a Weyl basis [3], i.e., \\er\\ = 1, β* = er, [̂ r, ^_r] = γ (we assume J C ίH
through the inner product), [eγ9 eδ] = 0 if γ + ^ is not a root, and [er, ^] =
Nrtδer+δ if ^ + δ e J , where the Nΐtδ are real numbers satisfying NTtδ = —N_r _δ
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and N*rtT = J( l — p)q(γ,γ). Set Ser = vreσr, (γεΔ). It is easy to see that
\vr\= 1, i^ , r = 1, v_r = iv Setting

Jj = {« € J : σα: = αr, va = 1} ,

Zf2 = { β e ά : σ β = β , v β = - 1 } ,

we have j = J x U J 2 U 4? We denote, from now on, any root in Δ by γ, δ, μ, π,
any root in Δλ by or, any root in Δ2 by β, and any root in Δ3 by f.

If # = H1 + H_x is the decomposition of H into the ( ± l)-eigenspaces of
S, then H = Hx + H_λ is the corresponding decomposition of H.

Lemma 1.6.2. iHx = {h e /fl: (f - <τ?)/ι = 0 /or all ξ € j 3 } .
Proof. Suppose that (ξ, /z) = (σf, /0 for every ξ e J 3 , and consider the ele-

ment h — Sh.

(A - SA, α) = (A, or) - (5A, a) ='(A, α) - (A, or) = 0 , α e J , ,

(A - SA,/3) - (A,]8) - (Sh,β) = (h, β) - (h, β) = 0 , 3̂ € J2 ,

(A - 5A,f) - (h,ξ) - (h,Sξ) = 0 , f 6 J s

Since J is total in /H1? Sh = h and A € / j ^ . The converse is clear.
Lemma 1.6.3. For any root ξ e J 3 , ξ — σξ is not a root.
Proof. Since σ leaves Π invariant, we write

Π = {a19 a29 , ft, ft, , fi, σf!, f2, σ?2> * * *} •

Then

f = aγaγ + a2a2 + + bxβγ + b2β2 + + c&

+ c2ξ2 + c3f 3 + c4σξ2 + ,

where the coefficients are integers, all nonpositive or all nonnegative.

σξ = axaγ + a2a2 + + bφx + b2β2 + •

+ cxσξx + c2ξ! + c3σξ2 + c4f 2 + .

If f — σξ were a root, its expression in terms of the elements of 77 would be

ξ — σξ = (cx — c2)ξ! + (c2 — c > ? ! + (c3 — c4)f2 + (c4 — c3)<jf2 + ,

and all the coefficients should be either nonnegative or nonpositive, i.e., 0 =
Cj = c2 = cz — c4 = to get σξ = f which is a contradiction, q.e.d.

We can write for K and M:
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M = H^+ Σ {eβ}c + Σ {e, - vtett}c .

The sum iH — iHx + iH_x is an orthogonal direct sum. Denote by ft —> h!
the orthogonal projection onto iH1. In other words h! = \{h + σh). For the
roots

a! = a , ? = β, ξ' = Kf + *ξ)

Since iHι contains a regular element, f Φ 0 for all γ e Δ. In J^ we have the
following relationships:

[h, ea] = (h, a)ea , [ea, e_a] = a ,

[Λ, β, + ^ e # e ] = (ft,

So we can see that K is generated by the elements

a, ea, a € Δλ

β, βεA;

ξ', er + vξeσζ, ξεJ3;

and the derived algebra Kλ is generated by

a, ea, a e Δx

As we mentioned before H1 = Z + H[, where H[ is a Cartan subalgebra
of K[. Then the corresponding root system of K[ relative to H[ is Δ[U Δ%.

So in the next sections, in order to compute the structure of K we are going
to compute in each case the center Z and a system of simple roots in Δ[ U JJ.

Theorem 1.6.4. Lei L be a simple L*-algebra, H be a Cartan subalgebra,
and S be an involution of L leaving H invariant. If σΦ id (σ being the rotation
induced by S), then K is semisimple.

Proof. The center Z of K is contained in Hx. The centralizer of Z in L
contains K and H_x which is not zero by assumption. Since K is a maximal
proper subalgebra of L (Theorem 1.6.1), the centralizer of Z must be L. Thus
Z is contained in the center of L which reduces to zero, and K is semisimple.

2. Real forms in simple complex L*-algebras of type A

2.1. Description of LA. Let E be a separable Hubert space over the com-
plex numbers, and {^: / e Z) be an o.n.b. (orthonormal basis) which we keep
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fixed throughout this section. We consider every bounded linear transformation
of E into itself as a matrix, i.e., a == (a^) where a{j = (aβj, et). The set L2

of all Hilbert-Schmidt operators (bounded linear transformations a = (atj)
such that Σίtj |tfίt/|

2 < oo) with the positive definite hermitian form (a, b) =
Σίj aίjbij becomes a Hubert space over the complex numbers (the inner
product just defined is independent of the particular o.n.b. in E, [6]). Let LA

be the complex L*-algebra arising out of L2 by introducing a* = ιά, and [a, b]
= ab — ba. LA is a simple complex L*-algebra of type A.

Let etj denote the element of LA having 1 in the (/, /') entry and 0 elsewhere.
The set {e^'A,] e Z] is an o.n.b. of LA, and if a = (ai3), then a = Συ aaeir

Given a Cartan subalgebra H in LA we can find an o.n.b. in E such that H
consists of all diagonal elements in LA relative to the o.n.b. Conversely, given
an o.n.b. in E, all diagonal elements in LA form a Cartan subalgebra.

Let H be a Cartan subalgebra of all diagonal elements in LA, i.e., H —
{h e LA: h = Σί λ«e«} The linear functional ^ : H —• C defined by ̂ (λ) = Λt

for all /z € H is bounded, and the system of nonzero roots Δ of LA relative to
/Ms:

root root vector

λi - λj = e« - e^ (ί Φ ]) eυ

(We identify the linear functional λt with the element eu through the inner
product.) We denote λt — λό by γtj for brevity. A system of simple roots in Δ
is

•" ~ I ' ' ' 9 Y-n,-n + ι> * ' ' J 7-1,09 Γθ,l? 7l,29 ' * ' 9 7n,n + l7 ' ' ' J

The following family of L*-automorphisms will be used frequently in this
section as well as the next two. If μ is a unitary operator of E, then the map
T: LA^>LA defined by Ta = a'1 is an L*-automorphism. We say that T is the
L*-automorphism of LA inplemented by the unitary operator μ or simply that
T is implemented by u.

Let / —» mi be a permutation of the integers, i.e., an injection of Z onto it-
self. The map weέ = em. can be extended to an unitary map of E onto itself,
which we denote with the same letter. The L*-automorphism T of LA imple-
mented by u satisfies T(£itJ a^e^ = Σίj aijemimr T leaves H invariant,
and the induced rotation in iH (elements in H having real entries) will be said
to be "implemented by w".

2.2. Rotations. In this section we characterize the rotations in LA.
Theorem 2.2.1. Let σ be a rotation in LA. Then σ or —a is implemented

by a unitary operator of E.
Proof. Let us study the action of σ on the system Π of simple roots men-

tioned in § 2.1. Suppose that σ(γ01) = γmn and σ(γί2) = γpq. Since a is a one-
to-one orthogonal map, it must be either (i) m Φ q and n = p or (ii) n Φ p or
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m = q. In the first case we keep σ and in the second we consider — σ to get
—<K?Όi) = ϊnm and — σ(γ12) = γqp, i.e., the second subindex of — σ(γOί) is equal

to the first subindex of — σ(γ12). So assume

<KΓoi) = ΐmn 9 σ(γ12) = r n p ,

and set m0 = m, mι = n, m2 = q. Suppose now that σ(γ23) = γrs- Again, there
are two possibilities, either (i) mι = 5* and m2 Φ r or (ii) m1 Φ s and m2 = .r.
In the first case we have σ(γoι) = γmomi and σ(^23) = γrmi, which is a contradic-
tion to the fact that σ is an orthogonal map, i.e., (σ(γoι), σ(γ22)) = 1 or 2 and
(TΌi> Γ23) = 0. So it must be the second case, and setting s Φ ra3 we have (7( 1̂2)
= 7Ίιnma and σ(γ2Z) — τ-m2m3. Proceeding in the same way to the right of γ23 and
to the left of γ01 we get a map from Z into itself / —> m^ which is one-to-one and
onto, Π being a system of simple roots and σ sending Δ onto J . Let T be the L*-
automorphism implemented by the extension of the map u: et —> e m ί to a unitary
operator of £ . Then T\iH = σ. q.e.d.

Denote by τ the multiplication by —1 in ϊH (a rotation), by F the group
of all rotations, and by G the supgroup of all rotations implemented by an
unitary operator of E. Then F = G U τG, and G is a normal subgroup.

Suppose now that a is an involutive rotation leaving a regular self-adjoint
element h — Σ h^a (ht e R) fixed. Since h is regular, y^Qi) = ht — hj Φ 0
(i φ /), i.e., all the components of h are different. According to Theorem
2.2.1, either a or — a is implemented by an unitary operator of E. In other
words, we can find a permutation / —> raέ of Z such that σe^ = ± e m i m i for all
i e Z .

(a) σ is implement by an unitary operator of E. Then the equation σh — h
is equivalent to 2 ί A ^ = 2 ί A^m.TO.. Since all the components of /z are dif-
ferent, from ht = Amf we conclude that m^ = / and σ is the identity.

(b) —a is implemented by an unitary operator of E. Then σeu — —em.mi

for all /, and σh = h implies that ht — —hm. for all i e Z. Since all the com-
ponents of h are different, at most one of them is zero and we have an infinite
number of positive components as well as negative components. We distinguish
two cases:

(i) One of the components of h is zero. Since Σ ΐ | / ^ | 2 < 0 and all the
components are different, we can assume, changing σ to be another rotation if
necessary, that the components of h satisfy:

h0 = 0 , K > h2 > A3 > . . > 0 , A_! < h_2 < A_3 < . . < 0 .

Then — Am. = Â  (/ > 0) implies mt = —i and ra0 = 0. In other words,

σe00 = e00 and σe^ = e_*_i. Thus σ (or a conjugate of σ) sends ^ , U l into ^ . ^ . j ^ ^
and leaves Π invariant.

(ii) No component of A is equal to zero. As before, we can assume (chang-
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ing to another rotation conjugate to a if necessary) that the components of A
satisfy:

hx > h2 > h3 > > 0 , Ao < A.! < h_2 < . < 0 .

Then hm. = — ht (i > 1) implies mt = — i + 1 (i > 1) and σeu = e_ί+lt_ί+1,
and the action on the simple roots are σγί>ί+ι = p_ ί f _ ί + 1 .

We can summarize this in the following.
Theorem 2.2.2. Every conjugacy class of L*-automorphisms of LA con-

taining an involution has an element leaving the Cartan subalgebra ίϊ invariant
and inducing on iH one of the following involutive rotations:

(i) σo = id,

f-n-l.-n 7-2,-1 Γ-10 T-Oi Yu Yn,n + l

(ϋ) tfi(Rni) = ΐ-i-ui • • « « ° o o o

Proof. According to Corollary 1.5.2, in each conjugacy class of L*-auto-
morphisms of LA containing an involution we can select an element S leaving
H and a regular self-adjoint element in it fixed. If we denote by a' the rotation
induced by 5, there exists a rotation σ, conjugate to </, which is equal to either
σ0, ax or σ2- Since a' and σ are conjugate, we can find a rotation θ in F such
that σ = θσιθ~ι. If Γ is an L*-automorphism of L^ extending θ [11], then
5Ί = TST1 is the required involution, q.e.d.

Now all that remains is to study the involutions which induce in iH those
kinds of rotations.

2.3. L 1 -automorphisms leaving H pointwise fixed. The statement "if
T e Aut(L) leaves a Cartan subalgebra H pointwise fixed, then T == eΆά{h) for
some h e H" is not true for separable L*-algebras as the following example
shows.

Example, h = Σj iΠ2jf2j is a diagonal bounded skew-hermitian operator
on E. T = e*d(h) (L*-automorphism of LA implemented by the unitary operator
eh) leaves H invariant, and Teifί+ί = —eiti+1. If an element in H induces such
an L*-automorρhism, then each component must be congruent to the corre-
sponding component of h modulo 2/7Ϊ, but then it cannot be in LA.

We have instead the following :

Theorem 2.3.1. // T is an L*-automorphism of LA leaving H pointwise
fixed, then T = ead(/ i) (emh)a = ehae~h) where h is a diagonal bounded skew-
hermitian operator on E.

Proof. Since T\H — id, T leaves each one of the 1-dimensional spaces
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{eiά}c invariant (etJ is a root vector of γu). If Teiti+1 = v<eM+1 (i 6 Z), then the
numbers μt — Log (1 )̂ are purely imaginary complex numbers because | ̂  | = 1.
Set

A; = 0 , Â  = μ0 - ^ - . - μ_x ,

reduce each one of them modulo 277/, and call it ht. Then 0 < \ht\ < 277.
Hence the element A = Σι A te i t is the required one, i.e.,

= eheifί+1e~h =

Γ and ead(/ι) are two L*-automorphisms of LA, which coincide on ^ and on
the root-spaces corresponding to the elements of 77, so everywhere.

Corollary 2.3.1. // R is an L*-automorphism of LA leaving H invariant
and inducing in iH a rotation implemented by an unitary operator U, then R
itself is implemented by an unitary operator on E.

Proof. Let T be the L*-automorphism implemented by u, i.e., Ta = uau~ι

(a € LA). Then T~ιR\H = id, and by the theorem, it is an L*-automorphism
implemented by an unitary of E, say v. Thus Ra = (uv)a(uv)'1 for all a e LA.
q.e.d.

Let S be an involutive L*-automorρhism of LA leaving H pointwise fixed.
Then S = ead(/ ι) where A is a diagonal bounded skew-hermitian operator of E.
Set A = Πiφ (φ = Σiί Φίeu)' Since all the components of φ are real numbers
and S is involutive, we have

e*i«weij = + etj , φ.-φ.zZ (/, / € Z) .

We are allowed to perform the following operations on the components of
φ without changing the conjugacy class of 5 :

(i) Add or substract one and the same number to all the components of φ.
(ii) Reduce any components of φ modulo 2.
(iii) Permute the components of φ.
With the first two, we do not change eIIίa-dw, and with the third, which is a

rotation, we get an element conjugate to S. Thus φ can be reduced to the fol-
lowing normal forms:

,4/7/(0): φ = 0 .

AIII(n): φ = Σ eu ί1 < ι < °°)
i = l

AIII(oo): φ = Σ e u .
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Now we take each case separately, and compute the structure of the com-
plexification of the characteristic subalgebra and the corresponding maximal
abelian L*-subalgebra in K.

Remark 2.3.2. For the rest of the paper, we use the following notation:
LA, LB, Lc are simple L*-algebras of types A, B, C respectively. An9 Bn, Cn,
Dn are simple n-dimensional Lie algebras of types A, B, C, D respectively.
HA, Hc, Hl9 Hu are Cartan subalgebras in LA, Lc, LB of types I, II, respec-
tively. HAn, HBn, HCn, HDn denote Cartan subalgebras in An9 Bn, Cn, Dn

respectively, and 771 a system of simple roots in Δ\ U Δ\ (Δ\ = J x ).
ΛHL S — id, and the corresponding real form is the unique compact real

form of LA, i.e., U = {a e LA: a* = —a}.

AIΠ(n). φ=Σ*it (1 < ί < oo) ,
i = l

A = {<*ij '• i < U i < n U i < l U i > n},

Δ2 = all others , J 3 = 0 ,

Z = {h e H: ctijih) = 0, an e Δλ) - {φ}c ,

Π1 = {at,i+1: 1 < i < n - 1} U {α M + 1 : i < 0;

^o,rι+i (Xi.i + i- i> n) ,

H\ = HAn-! + HA , K = Z + Λn_x + LA .

AIII(oo). φ= Σeii9 Δλ = {aifj: i, j < 1 , i, / > 1} ,
i = l

J 2 = all others , Δ3 — 0 ,

Z = {0}, because ^ is not a Hilbert-Schmidt operator,

Πι = {aiΛ+ι:i<0} U {α<f<+1: i > 1},

2.4. Involutions of LA leaving invariant H and inducing the rotation σγ.
Let S be such an involution. Setting Seitί+1 = v^.i.!,,^ we have |ι^| = 1 and
v_ι_γ — vι because S is an involutive unitary operator of LA. We can assume
all coefficients vt = 1, i.e., for / > 0, denote μ5 = Log vt and h) = μ0 + . +
μ ^ . Reducing /iy modulo 277/, we get an element hj having absolute value
less than 277. If h — Σ7=i hjejj (diagonal skew-hermitian bounded operator
of E), then the involution ^-^Se^{h) satisfies our claim and is conjugate to
S. So we have SeίΛ+ι = e_t_lfi9 and there is only one conjugacy class in Aut (LA)
containing an involution leaving H invariant and indcing the rotation σλ.

Al. 4 = 0 , Δ2 = 0, Δ3 = Δ,

Δl = {ξ)j:ξijeΔ} = {ξ]j:iJ>0},

π1 - {ξ^ξl^ξ1^ •}, 2 |aι 2 = |?Uil 2, 0' > 0),

H = Hj , K = LB .
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2.5. Involutions of LA leaving H invariant and inducing the rotation σ2.
Let S be such an involution. Then Seoι = ±eQ1 and Seiti+1 = Piβ_ί+1 (i Φ 0).
As before, we can have pt = 1 (/ Φ 0) by changing to an involution conjugate
to S if necessary. We have two possibilities:

AIL Se01 = eOί , Seifi+ι = e_it_i+ι (i > 1) ,

A = {*ij . i + / = 1} , Δ2 = 0 , J 3 = {£„: i + / =£ 1} ,

Π1 = R , fϊ2, &, •} , K | 2 = 2 |f}f<+1|
2 , (/ > 1) ,

H\ = He , K = Lc .

Al. Sem = eβι Seiti+1 = e_i:_i+1 , (i > 1) ,

A = 0 . A = {βij • i + j = 1} , 4, = {£«: i + / ¥= 1} ,

i ί j = J&Π , i t = LB .

Remark 2.5.1. The real forms denoted by Al are L*-isomorphic, and we
postpone the proof until we study case B (observe that in this case, where we
have K = LB and we select a Cartan subalgebra, we have two possibilities).

3. Real forms in simple complex L*-algebras of type C

3.1. Description of Lc. Let / be an anticonjugation of E, i.e.,
J(ax + βy) = aJx + ]}Jy), (Jx, Jy) = (yμ), J2 = id, for a, βεC, x, yeE.
Then Lc = {a e LA: a* = JaJ} is a simple complex L*-algebra of type C.

We can find an o.n.b. {et: i € Z}, which will be fixed throughout this chap-
ter, such that Jet = —sg(ι)e_i for all /; considering the elements of Lc as
matrices, the condition α* = JaJ reads aί3 = —sg(ΐ)s(j)a_j_i. The diagonal
elements in Lc form a Cartan subalgebra. Conversely, given any Cartan sub-
algebra in Lc we can find an o.n.b. having the property mentioned above with
respect to /, such that all the elements in the Cartan subalgebra are precisely
the diagonal elements in Lc. Let H be the Cartan subalgebra of all diagonal
elements, i.e., H = {h e Lc: h = Σΐ=ιhi(eu ~ £-*-*)}• We denote eu — e_i_i

by U (i > 1). The linear functional λt: H -> C defined by λt: H -> C defined
by λiih) = ht is bounded, and the system Δ of nonzero roots of Lc relative to
# is:

root root vector

*t - λ3 = Wi - fj) V Φ /) ei3 - e-j-ί

λί + h = i(/i + fj) 0" < D ti.-j ~ ejt_i

-I, - χj = - i ( / . + /,) (i < j) e_uj - eit_j
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2λt = fj (i > 0) e^t

-2λt=-ft ( i > 0 ) e_iΛ

A system of simple roots, which will be frequently used, is

11 = {ΔAD Λ2 Λ D Λ3 Λ25 * * ' 5 Λ W + I Λ w , * I .

3.2. Rotations. Let σ be any rotation in iH; just because a is an orthog-
onal map, it permutes the roots of the form ±2λt. Define U by:

Uβi = έ?TO< , Ue_t = e_m. if σ{2λτ) = 2λmi ,

Lte, = e_m ί , l/β_, - emi if α(2^) = -2JT O < .

Then U can be extended to an unitary operator of E. Let T be the L*-auto-
morphism of LA implemented by U. T leaves Lc invariant, and thus its restric-
tion to Lc, which we denote again by T, is an L*-automorρhism leaving H
invariant.

Tft = +fnt if σ(2λ) = 2λmi , or Γ/, = /TOi if σ(2^) = - 2 ^ W ί .

Hence T(2λi) = ^(2^^) (/ > 0). Since {2ΛJ- is an orthogonal set which expands
H, we have T\iH — a. We summarize all of these in the following.

Theorem 3.2.1. Let a be any rotation. Then we can find a permutation
of the positive integers {m19 m2, •} and an L*-automorphism implemented by
an unitary operator U of E such that T\iH = σ and Ύfi = ±fm. (i > 0).

Remark 3.2.2. In particular the map ot iH onto iH which changes the sign
of one of the components of every element in iH is a rotation.

Let a be an involutive rotation leaving a regular self-adjoint element h fixed.
Since h is regular, we have 2ht Φ 0, ht — hj Φ 0, and hi + hό Φ 0. According
to Theorem 3.2.1, σft = ±fmi for some permutation of the positive integers.
So σh — h becomes J] htfm. — 2 hJί and ht = ±hm. (i > 0). Hence mt = /
(/ > 0), and a is the identity. All this [consideration together with Corollary
1.5.3 makes up the following:

Theorem 3.2.3. Every conjugacy class of L*-automorphisms of Lc contain-
ing an involution also has an involutive L*-automorphisms leaving H pointwise
fixed.

Thus all it remains to do is to study the involutions of Lc leaving H point-
wise fixed.

Theorem 3.2.4. Let T be an L*-automorphism of Lc leaving H pointwise
fixed. Then we can find a bounded diagonal skew-hermitian operator h = Σ hjt
on E such that eΆάh = T.

Proof. The proof is completely similar to that of Theorem 2.3.1, so we
omit it.

Let S be an involution of Lc leaving H pointwise fixed. Then according to
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Theorem 3.2.4 there exists a bounded diagonal skew-hermitian operator h =
Σ Π i (Πiφ^fi such that e*dh = S, and we have that 2φγ and φt — φi+1 (i > 0)
are integers.

We are allowed to perform the following operations on the components of
φ = 2]Γ=i Φί without changing the conjugacy class of the involution S.

(i) Add or substruct one and the same integer to all the components of φ.

(ii) Reduce each component of φ modulo 2.
(iii) Permute the components of φ.
(iv) Change the sign of the components of φ.

So the possibilities are:

CI: Φ=Σ Hi ,
i l

: φ=tf< (K#i<oo),
i = l

C / / ( o o ) : φ=Σfn
ΐ = l

Now we take each case separately, and compute the characteristic subalge-
bra K and the corresponding maximal abelian L*-subalgebra Hγ in K.

CI. φ=Σ \U , Λ - R - ^ : i ^ /} , J 2 = all others, J 3 = 0 .
ι = l

2 = {0} , 771 = {ίj — ^2, λλ — λ2, - - -} , Hi = #,1 , K = LA .

C//(0). ^ = id , j£ = unique compact real form of Lc .

Λ = { ± 2 ^ : all /; ^ - ^ , ± ( ^ + Λ,): 1 < /, / < n, n

Δ2 = all others , J 3 = 0 , Z = {0}c ,

jfίj = -ί̂ ew 4" Ή-c 9 K = Z -\- Cn + Lc .

c//(oo). ίi = Σ fu ,
ϊ = l

Λ = {±2λt: all i; ± ^ 2 i ± λ2j, ±λ2ί+1 ± λ2j+1: all /, /} ,

Δ2 = all others , J 3 = 0 , Z = {0} ,

/Z1 = {2λ19 λ3 - Λ, •} U {2^2, Λ - ^ , . •} ,

//} = / ί c + Hc , Â  = Lc + Lc .
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4. Real forms in simple L*-algebras of type B

In this chapter, we determine the real forms of a simple L*-algebra LB of
type B, up to L*-isomorρhisms. The proof of the fact that the different classes
obtained are not L*-isomorphic involves not only the structure of the charac-
teristic subalgebra K but also the different choices of maximal abelian L*-sub-
algebras in K. As we mention before, we have no conjugacy theorem for
Cartan subalgebras of simple L*-algebras of type B. Indeed, it is known [14]
that there are two conjugacy classes of Cartan subalgebras. Elements of differ-
ent classes are not conjugate under any L*-automorρhism of LB whatsoever.

4.1. Description of LB. Let E be a separable complex Hubert space, and
/ a conjugation of E, i.e., J(ax + βy) = aJx + ~βJy, (Jx, Jy) = (y, x), P = id
(a, β € C, and x,yeE). Let LA be the L*-algebra of all Hilbert-Schmidt oper-
ators on E. Then

LB = {aeLA:a*= -JaJ}

is a simple complex L*-algebra of type B.
The two conjugacy classes of Cartan subalgebras of LB will be referred to

as of types I, II respectively.
Cartan subalgebras of type I: We can find in E an o.n.b. {et: / € Z}, which

will be fixed throughout this section every time when we consider type I, such
that Jet — e_i (i Φ 0) and JeQ = eQ. With respect to this basis, the elements of
LB are matrices a = {atj) = Yli^aijeiί. The condition α* = —JaJ becomes
—aίtj — a_jt_i. Let Hτ denote the set of all diagonal matrices in LB. Then Hτ

is a Cartan subalgebra of type I. Conversely, given any Cartan subalgebra of
type I, we can find an o.n.b. as above such that the Cartan subalgebra is pre-
cisely the set of diagonal matrices. An element h € Hτ can be written as h —
2] hji, where h0 = 0 and fi = eίi — e_i_i (ί > 0). The linear functional
λi'. HΣ->C denned by λiQi) = ht is bounded, and the root system Δτ of LB with
respect to HI is:

root root vector

h - h = ¥iι - fj) (i =£ /) eιj - e-j-i

*ι + h = Wi + ίj) (i < D e i f.* - eit_j

— λi — λj = —i(ft + fj) (/ < /) e_itj - e_jti

h = \ίι (i > 0) eί)Q - eOi_i

— *i= ~\U (i > 0) eOtί - e_ί>0

A system of simple roots is:
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Cartan subalgebras of type I I : We can find in E an o.n.b. {et: i Φ 0, / e Z},
which will be fixed throughout this chapter every time when we consider type
II, such that Jet = e_t (all /). With respect to this basis, the condition α* =
—JaJ becomes ai5 — —a_jt_i. Let Hu denote the set of all diagonal matrices
in LB. Then Hn is a Cartan subalgebra of type II. Conversely, any Cartan
subalgebra of type II can be expressed in this form with respect to a suitable
o.n.b. of E having the above property with respect to /. An element h in Eu

can be written as h = Σί>onίfί where /4 = eu — e_if_i (i > 0). The linear
functional λt: Hττ —• C is bounded and the root Δn system of LB with respect
to Hn is:

root root vector

*t — λj — Wi — fj) a Φ i) eij — e-j,-i
_j_ 1(4 I 4 \ (i <^ Ί\ P P

A system of simple roots is:

JJ —. tχ \ χ χ λ λ λ •••/[ λ •••)

where all the roots have ths same length.
4.2. Rotations. We consider two cases.
Rotations in Cartan subalgebras of type I. Let σ be a rotation in iHτ. Since

σ is an orthogonal linear transformation, it interchanges the roots of the form
± λt. Thus we can find a permutation of the positive integers {m1? ra2, } such
that σλi = ±λi. Let U be the unitary operator of E defined by:

Uβi = em. , Ue_i = e_m. if σλt = λm. ,

T7/? — p Tip — p i f rfΊ — JI

<JCi C_T O i , W_i — e T O i 11 OAi — Ami ,

L / C Q CΓQ

The L*-automorρhism T of L^ implemented by U leaves both LB and Hι in-
variant. We have

•Lji = ίmi i t ^ ί = = ^ m ί , OΓ IJi = / m ί II (TΛ^ = ΛTOί .

This amounts to say that (T\iHT)λj = σλj9 and one has T\iHz = σ since the
elements fi generate Hτ.

We have thus proved the following
Theorem 4.2.1. Let σ be any rotation in iHz. Then there exist a permuta-

tion {mι,m2, •} of the positive integers and an L*-automorphism T, imple-
mented by an unitary operator of E, such that

= σ9 τfi=±fmi ( ι > 0 ) .



SIMPLE SEPARABLE REAL L*-ALGEBRAS 443

Suppose h is a regular element in iHτ. Then γ(h) Φ 0 for all γ e Δl9 and the
components of h are all different and different from zero. If ah — h, then
Σ Kίi = Σ ± Ai/m, and A, = ± hmt (i > 0). Thus ht = hm and i = mi (i > 0),
and we have proved the following

Theorem 4.2.2. 4̂ rotation in iHl9 which leaves a regular element fixed, is
the identity.

Rotations in Cartan subalgebras of type I I : A root of the system Δn is
expressed as a function of two linear functionals λi9 λά as shown above. Thus
we can denote any such a root as γiά. When it is necessary to distinguish be-
tween the two types of roots appearing in the list, we use μi5 and vij9 where
μi3 = χi — χj9 Vij = λt + λj. With this notation, the system of simple roots is
written as:

ΠIΣ = {v129 μ2l, μ3 2, , μi+ui9 } .

Let a be a rotation in iHn. Like in the previous case, we shall define a
permutation {m19 m2, } and a unitary operator U. We consider two "consecu-
tive" roots in Πn, say μi+hί and μi+2li+1, and let σ(μi+hi) = γm>n and
<r(μi+2,i+ι) — ΐp,q- We claim that the pairs (m, ή) and (p, q) have one and only
one common entry. In fact, since 0^+i,*,/^+2,i+i) = ~~l a n ^ the map a is
orthogonal, we must have (γm>n,TPfq) = — 1. Hence they have at least one
common entry. One the other hand, if the set {m, ri\ = {p, q) it can be easily
checked that (γm,n, γp,q) is either 0 or ± 2 . Hence there is only one common
entry. Similarly, we can check that if μί2 is mapped into γm>n, then vl2 is map-
ped into some y\tn (same subindexes). Thus it follows that a maps the system
Tlu onto the system of simple roots:

771 _ f rl r r Ί
11 — l/rai,ra2' / TO2,mi5 (mχ,m^ J *

Lemma 4.2.3. {m^ ra2, •} w a permutation of the positive integers.
Proof. The above considerations show that the mapping i—>mt is well de-

fined. Since Π1 is again a system of simple roots, the map is onto. Again the
above considerations show that mί9 mi+19 mί+2 are all different. Since two non-
consecutive roots are orthogonal, mi+3 is also different from all of them. Pro-
ceeding by an easy induction, we can see that miΦmj of ίφj, i.e., the map-
ping is one-to-one, q.e.d.

Let U be the unitary operator defined on the basis {ej as follows, according
to the different forms of γmί+x,mi\ if γmi+1,mi is equal to:
i"mi+lfm4+i t h e n Ueί = em., Uei+1 = emt+l9 Όe_t = e_m., Ue^^ = e_m.+1;
—J"m<+i,m, t n e n Ue^e^., Uei+1 = e_mt+l9 Ue^ = em., Ue_i_x = em.+1;
Vmi+1,mi then Ueί = e_mί, Uei+1 = emt+l9 Oe_t = emt9 Ue_i_ι = e_m.+Ύ\
-^Wi.m, ^ n ί/^ = βTO4, Uei+1 = e_m.+l9 Ue_t = e_TOi, C/^.^j = emt+1.

The L*-automorphism Γ of L^ implemented by U leaves L 5 and JH'JJ invari-
ant, since Ί]t = ±fm.. Next, we show that T\iHn = σ. Suppose, for instance,
that σμί+ltί = -vmi+1,mi. Then we have
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Uet = em. , Uei+1 = e_m.+ 1 , [/*_* =

and so

Hence

Similarly, we can check the result in the other cases. We have thus proved the
following

Theorem 4.2.4. Let σ be any rotation in iHz. Then there exist a permuta-
tion {m1,m2, •} of the positive integers and an L*-automorphism T, imple-
mented by an unitary operator of E, such that

Now let h € iHn be a regular element such that σh = h. By the regularity we
have γ(h) Φ 0 for all γ e An, i.e., at most one of the components is equal to
0. We consider two cases:

(a) ^ Φ 0 for all /. Then σh = h implies 2 ± hjmt = Σ Λ</« a n d

± h m . = ht for all i. Hence n4 = ήTO4 and / = mt for all /.
(b) Some ht = 0. Since a permutation of the //s is a rotation, we may as-

sume that hλ = 0. Then ±hm. = ht for all / implies o^ = ±/ x and σ/̂  — ft

(i > 1).
Thus we have the following
Theorem 4.2.5. A rotation in iHTI, which leaves a regular element fixed,

either is the identity or permutes μ2ί and vί2 leaving the rest of the roots in Πn

fixed.
4.3. L*-automorphisms of LB leaving a Cartan subalgebra invariant. Ac-

cording to Corollary 1.5.3., all which remains to be done is to study the invo-
lutions leaving Hτ pointwise fixed and the involutions leaving Hn invariant and
inducing one of the rotations mentioned in Theorem 4.2.5.

Theorem 4.3.1. Let T be an L*-automorphism of LB leaving ΉI or Hn

pointwise fixed. Then we can find a bounded diagonal skew-hermitian operator
h= Σ hdί of E such that eΆά(h) = T.

Proof. The proof is completely similar to that of Theorem 2.3.1, so we
omit it.

(I) Case of Cartan subalgebras of type I. Let S be an involutive L*-auto-
morphism of LB leaving Hτ pointwise fixed. Then 5 = eΠίad(φ) where φ =
Σ Φίfί is a bounded diagonal symmetric operator of E. Since S is involutive
and all the components of φ are real numbers, we have that φ1 and φi+1 — φt

(i > 1) are integers.
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We are allowed to perform the following operations on the components of
φ without changing the conjugacy class of the involution 5.

(i) Change the sign of one of the components of φ.
(ii) Permute the components of φ.

(iii) Reduce each component of φ modulo Z.
Thus φ can be reduced to the following normal forms:

B/(0): 0 = 0 .

φ=ΣU ( n = 1 , 2 , . . . ) .

B / ( o o ) : φ=Σfzi-
i = l

£>/(«): φ=Σft (n = l , 2 , •••)•
i = n

Now we take each case separately, and compute the characteristic subalgebra
and the corresponding maximal abelian subalgebra in K. (See Remark 2.5.2
for notation.)

BI(0). S = id, and the corresponding real form is the unique compact real
form in LB.

BI(n). φ = Σ U ,
i = l

Δx — {λii i > n; ±λt ± λf. 1 < /, / < n or n < i, /} ,

Δ2 — all others , Δ3 = 0 .

For n = 1:

Z = {/Jc ,

m = {λ2,λ3 - x2, • • •}, &{ = &,, κ = z + L B .

For n > 1:

Z = {0} ,

B/(oo). φ=Σf*i,

i = l

Λ = fti + l. ±^rt ± Λί» ±^2i + l ± ^ + 1 : a 1 1 '»/} U {*M + 1 : ' > °} »

J2 = all others , J3 = 0 , Z = {0},
Π1 = R, i ! - 2 , , } U { U Λ, Λ - Λ» •} ,
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DI(ή). φ = ΣU (n = 1, 2, •) ,
i = n

Jι = [A{: / < n ±At ± Aji 1 < /, / < n or n < /, /} ,

Δ2 = all others , J 3 = 0 , Z = {0} ,

771 = [A19 A2 - Λ? * ? in-i ~ λn-i) U R + Λn + 1, ^w + 1 - ^n, •} ,

(Πa) Let S be an involution leaving Hπ pointwise fixed. Then S = eπίmφ)

and, as before, φ2 + φ19 φ2 — φl9 φ3 — φ2, in Z. We are allowed to perform
the following operations on the components of φ changing the conjugacy class
of the involution S.

(i) Add or substract one and the same integer to every component of φ.
(ii) Reduce each component of φ modulo z.

(iii) Permute the components of φ.
(iv) Change the sign of any component φ.
Thus the possibilities are:

B/(0): 0 = 0 ,

BI(co): φ = Σ f t ι + l ,
ί = l

DII: φ=Σtfi-
i = l

Now we take each case separately.
BI(0). S = id, and the corresponding real form is the unique compact real

form in LB.

Δx = [±λt ± λj: 1 < i, / < m or /, / > m} ,

J 2 =• all others , J 3 = 0 .

For n = 1:

/JΓ} = /f/7 , Γ̂ = Z

For n > 1:

Z = {0} ,
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#} = #,,„ + # „ , £ = Dn + LB .

B/(oo). 0 = Σ / M + ι , Λ = {±>?2ί ± Λ y , ± - ? 2 ί + i ± ^ + 1 : al l/,/},
ΐ = l

J2 = all others , J 3 = 0 ,

•H"ί r = -ί^/7 + -^77 j -^ : = •ί'B + LB .

£>//. ^ = 2 i / ( , J, = K - ^ : all ί, /} , J2 = all others ,

(lib) Let σ be a rotation leaving the system Πn = {p19p29 '}(ρλ ='vu,
Pi = i"2i> •) invariant and defined by σx — p2, σp2 = pl9 api — ρt (i > 2).
Let ePi be a root vector corresponding to the root ρt, and denote by Sp the
involution of LB defined by SoePt = eσPi (all /) and Sa \ iHu = σ, [11]. Let S be
any involution of LB leaving Hu invariant and S \ Hn = σ. Then Sep = vieβp..
Since σpx — p2, we can assume (as in § 2.4) that vλ = v2 •= 1. Now SSσ = ^^^
is an involution leaving jfiΓ77 pointwise fixed hence

SSσ = eΠί&άw ,

where we can assume hx — h2 = 0 and Λ4 = 0 or 1 for / > 2.
Thus the possibilities are:

B/(oo). ^ = Σ /
2 ί + 1

^ = 0 .

Now we take each case separately.

i = l

4 = { ± ^ ι ± λυ+ΰ U / > ! } , 4 = {±*t ±λt:i>l}

Δ\ = { ± ^ : i > 1} , /71 = {^,λ, - A2, •} U ft, ^8 - λ3,
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n). φ=Σft (« = 2 , 3 , . . ) ,
n + 1

A = {±λt ±λj .2<i,j<norn+l< i, /} ,

d2 = {±λi ± λj . 1 < i < n + 1 and n + 1 < j} ,

Δi = {±λ,±λi:i> 1 } , J i = { ± ; t : / > 1 } ,

H\ = # , „ _ , + # , , £ = Bn_γ + L s .

Z)/(l). 95 = 0 (5 = 5 , ) , A = {±λι± λj:i,j> 1} , Δ2 = 0 ,

Remark 4.3.2. In (I), (Πa), (lib) (§4.3) and in §2.5 we have used the
same notation (e.g., BI(ή), DI(1), •) to denote certain real forms which are
obtained in a different manner. We shall now prove that they are actually L*-
isomorphic to each other. For instance, let us show that the real forms of type
i?/(oo) given in (I), (Πa) and (lib) are L*-isomorphic. In general, if 5 is an in-
volution of LB and Hλ is a maximal abelian L*-subalgebra of K (1-eigensρace
of S in LB), then we can find an L*-automorphism T such that TST'1 = S1 is
one of the involutions listed in (I), (Πa) and (lib), and THι is the correspond-
ing maximal abelian L*-algebra to S1:

Consider a real form L of LB such that L = K + M and K + LB + LB.
By taking a Cartan subalgebra in each simple component of K, we can select
Hx to be one of the following three non-conjugate Cartan subalgebras:

(i) &! + &:, (ϋ) Hj + ίϊπ, (iii) Hj + Hu.

Lpt S be the involutive L*-automorphism of LB associated to L, and let us
take ίίι to be of type (i). It is impossible to the L*-automorphism mentioned
above such that TST'1 is either one of the involutions in (I) or (Πa), because
in either case we get THj = Hn which is a contradiction. So there is only one
case left, and L is L*-isomorphic to the real form of type J5/(oo) in //(b).

Similarly, taking Hx to be of type (ii) we can show that L is L*-isomorρhic
to the real form of type BI(00) on (I) and if H1 is taking to be of type (iii),
then L is L*-isomorphic to the real form of type BI(oo) in //(a).

As a result of the above considerations, we obtain the following
Theorem 4.3.3. Two real forms of a simple complex L*-algebra are L*-

isomorphic if and only if the corresponding characteristic subalgebras are L*-
isomorphic.
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5. Summary of the results

Let E be a separable Hubert space, and Φ = {ej be an o.n.b., which we
are going to reorder in different ways according to the case under considera-
tion, gl (oo, C)2, the set of all Hilbert-Schmidt operators of E, is a simple com-
plex L*-algebra of type A. o (oo, C)2 = {a e gl (oo, C) 2 : 'a = — a} is a simple
complex L*-algebra of type B. Let Φ = {e_ly e_2, - , e19 e2, • } and / =

j Λ9 i.e., / is the bounded operator of E defined by Je_t = — et and

Jet = e_i. Then sp (oo, C)2 = {a e gl (oo, C) 2 : ιaJ + Ja = 0} is a simple com-
plex L*-algebra of type C. We note that in this case we can turn E into a right
vector space over K (K = {1, /, /, ij}κ, the algebra of quaternions) by defining
the action of / by xj = Jx for all x e E; an o.n.b. of E over K is {e19 e2, •}.
An element a e gl (oo, C)2 is ^-linear if and only if Jά = Λ/, i.e., if a is of the

form aL °L2 , and when this is so, we shall use the matrix expression of a
l—a2 aλ]

given by ax + a2j, in other words, as a linear operator of E over K. We denote
by gl (oo, K)2 the set of all ^-linear operators in gl (oo, C)2.

The simple separable real L*-algebras having a complex structure are the
real L*-algebras obtained from gl (oo, C)2, 0(00, C)2 and sp (00, C)2 by rest-
riction of scalars.

The compact simple separable real L*'-algebras are

w(oo,C)2 = {a<=gl(oo,C)2: α* = -a} ,

o(oo,R)2 = {α€θ(oo,C) 2 : α* = -a} ,

where x = x0 — xj — Λ:2/ — xzij9 it x = x0 + xj + x2j + xjj in K.
In the following, L will denote a simple complex L*-algebra, 5 an involu-

tive L*-automorρhism of Z, and L the real form of Z associated to 5 or a real
form of Z conjugate to L.

The noncompact simple separable real L*-algebras are

( a ) Φ = { e 1 ? e 2 , . . , e n , . . . } , J £ n =

£ = g l(oo,C) 2 , Sa=-ιa,

L = gl (00, R)2 = all real matrices in gl (oo, C)2 .

L = gl (00, C)2 , Sα = ^ α ^ 1 ,

L = ιι(n, oo), = {α e gl (oo, C)2: '«*:„ + JSΓ.β = 0} .

L = o (oo, C)2 , Sa = K^K-1 ,

L = o(n, oo)2 = {a ζ gl (oo,/?)2:
 (αKn + Xnα = 0} .
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(b) Φ = {e_1,e_2, .,e1e2,

AIII(oo). L = gJ(oo,C)2,

BDljoo). L = 0(00, C)2 ,

" (c) « = {e_!,^2, . ." .,έ 1 ,β 2 ,

All. £ = gl(oo,C)2, Sa=-PaJ-\, Z = gi(oo,K)2 ,

CI. L = sp (00, C)2 Sa = ά ,

L = sp (00, R)2 = all real matrices in sp (00, C)2 .

(d) Φ = {e_1 5 e_2, . . , e1 5 e2, }, Kn>n = [*» ^

CII(n). L = sp (ex., C) 2 , 5α = Kn,naK^n ,

L = κ(π, 00, X) = {α € gl(oo,X): ^Kw + ^ w α - 0} ,

where Kn is the operator of E over K defined by Knei = — et (1 < i < ή) and

Knei = e t (i > n).

(e) Φ = {e_19e_3, •• ,e_2,e_i, - >,e19e3, , e29 e,, •} ,

Γ ϊ . 0

L
D//7. £ = o (00, C) 2 , &z = /α/" 1 ,

L = o (00, X)2 = {a e gl (00, K\: *a + a = 0} ,

where jc = JC0 + JĈ " — x2/ + xJL ft x = x0 + xj + x2j + Xzti in ^

C//(oo). L = s p ( o o , C ) 2 , 5α = t ) 0 O α t | M , L = w(oo, oo,K)2

(see CII(n)) .
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