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G-TOTAL CURVATURE OF IMMERSED MANIFOLDS

BANG-YEN CHEN

Given an immersion x: M —> Em of a bounded manifold M of dimension n
in a euclidean space Em of dimension m, we define what we call the G-total
curvature with respect to a given vector-valued function g on the normal
boundle Bv as the integral over Bv of g times a power of a general mean

curvature, i.e., \ giK^dV Λ dσ. We also define the G-total absolute curva-

tures in a similar way. The main purpose of this paper is to give the relations
between different G-total curvatures or G-total absolute curvatures depending
on g, i and m, first for a fixed immersion and later for different immersions.
In particular, our results generalize many well-known results in differential
geometry such as Gauss-Bonnet's formula, Chern-Lashof's theorems,
Minkowski-Hsiung's formulas, etc.

1. Definitions

Throughout this paper, a bounded manifold means a compact manifold with
or without smooth boundary. A closed manifold is a (compact) bounded mani-
fold without boundary. Let M be a bounded manifold of dimension n, and
x: M —> Em an immersion of M into a euclidean space Em of dimension m.
Suppose that Em is oriented. By a frame P,e19 -—9em in the space Em we
mean a point P € Em and an ordered set of mutually perpendicular unit vectors
*i> * # 5 £m with an orientation coherent with that of the space Em. Let F(Em)
be the set of all frames in the space Em, and F(M) be the set of all (ortho-
normal) frames in M with respect to the induced metric on M.

To avoid confusion, we shall use the following ranges of indices throughout
this paper unless otherwise stated:

1 < /,/,Λ, ••• < n; n + 1 < r9s, t, < m; 1 < A, B, C, < m .

In F(Em) we introduce the 1-forms ΘA, ΘAB by
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(1.1) dx=Σ0ΛeA9 deA=Σ0ABeB, OAB + ΘBA = O.

Since

(1.2) d(dx) = O, d(deA) = O,

from (1.1) we have that

(1.3) dθA = Σ ΘB Λ ΘBA , d f l ^ = ΣΘAC A ΘCB ,

where Λ denotes the exterior product.
Let BΌ denote the bundle of unit normal vectors of x(M) so that a point of

Bv is a pair (P, e) where e is a unit normal vector at x(P). Then Bυ is a bundle
ot (m — n — l)-dimensional spheres over M and is a (smooth) manifold of
dimension m — 1. Let 5 be the set of elements b = (P, e^ , em) such that

(P, ex, , en) 6 F(M) , (jt(P), ex, , e J e F(E-) ,

where we have identified e* with dx(ei). Then B —> M may be regarded as a
principal bundle with fibre 0(ή) x 5O(m — ή), and jc: £ -» F(£ m ) is naturally
defined by x(b) = (x(P), e19 , eTO). Let ω^, ω^β be the induced 1-forms from
ΘA, ΘAB by the mapping x. Then we have ωr = 0, and ω1? , ωTO are linearly
independent. Hence the first equation of (1.3) gives Σωι A ωίr = 0. By
Cartan's lemma we may write

(1.4) ωίr= ΣΆjωj . AlJ = Ar

jί .

The eigenvalues kx(P, er), , kn(P, er) of the symmetric matrix (A^) (which
is called the second fundamental form at (P, er)) are called the principal
curvatures of M at (P, er). The ί-ίΛ mean curvature Ki{P,er) at (P, er) are
defined by the elementary symmetric functions as follows:

(1.5) (") W , e r ) = Σ UP,er) -UP,er) , i - 1, ,n ,

where ί^j = n\/[i\ (n - / ) ! ] .

In the following, let d F = ωx Λ Λ ωn and rfσ = ωm>n+1 Λ Λ ωTOfm_i.
Then d F is the volume element of M, and dσ is a differential (m — n — 1)-
form on BΌ such that its restriction to a fibre 5^" n " 1 of Bυ over P € M is the
volume element of S^'71'1. Furthermore, dσ Λ dV can be regarded as the
volume element of Bv (for the detail, see [10]).

Let V be a finite dimensional vector space over R, and let

(1.6) g:Bv->V

be a F-valued continuous function on the normal bundle Bv. The integral
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(1.7) GfaP^m) = J

is called the i-th G-total curvature of rank m at P with respect to g, and the
integral

(1.8) Γ,(jt,g,m) - JGi(x,P,g,
M

m)dV

is called the i-th G-total curvature of rank m with respect to g if the right hand
side of (1.8) exists. The integral

(1.9) K*(x,P,g,m) =
sm-n-i

is called the i-th G-total absolute curvature of rank m with respect to g at P,
and the integral

(1.10) TAfa&m) = Jκ*(x,P,g,m)dV
M

is called the i-th G-total absolute curvature of rank m with respect to g if the
right hand side of (1.10) exists.

In this paper, let X denote the Em-valued function on Bυ which maps (P, e)
€ Bv onto x(P), and e the £m-valued function on Bυ which maps (P, e) e Bυ

onto e. We also denote by X the position vector field on M in Em.
The G-total absolute curvatures have been studied previously by Chen [4],

[6] and Santalό [17] for arbitrary i-th G-total absolute curvatures, and by
Chern-Lashof [10], Chen [2] and many others for the last G-total absolute
curvature. For the relations between i-th G-total absolute curvatures and
integral geometry, see Chern [8], Santalό [17].

2. Elementary formulas

Through a point in Em, let i?ls , ι?m_15 i b e m vectors in Em, and let
Vι X X Um-i denote the vector product of the m — 1 vectors vλ, , tfm_i
Then

(2.1) V iVί X ••• X Vm-d = ( - l ) m ~ Ί l M > i > •• ,I?m-il >

where \v, ι?15 , ϋ m _ i | denotes the determinant of v, Όι, , ι?m_i From (2.1)
we have

(2.2) e, X - X eA X X em - (-l)m+ΛeA ,
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where the roof means the omitted term. In the following, let < , ) denote the
scalar product in E m , and x the combined operation of the vector product
and the exterior product. We list a few formulas for later use:

(2.3) d*x = d2eA = 0 ,

(2.4) dx X >< dx x en+1 X X er X X em = n\ ( - 1 ) - + ' e r d V ,

n

\der, , der, dx, , dx, en+1, , έ?w|
(2.5) " - I * ^ — '

= ( - l)*π! Kt(P, er)dV (i not summed) ,

(2.6) p(P, e) = x(P) e , K0(P, e) = 1 .

In the following, if there is no danger of confusion, we shall simply denote

Ki(P, e) by Ki9 em by e and Af- by Ai5.

3. Mean curvature form

Let

(3.1) θ = Σ (-1)*~X Λ Λ ώ i Λ Λ wnet .

Then θ is a well-defined vector-valued (n — l)-form on M, and is called the
mean curvature form of the immersion JC: M —> Em. Since we have, from a
direct computation, that

( 1 Λ m - l

( 3 ' 2 ) θ = (n-l)\ d-X * " t - * d x * en+ι * ' ' * * e" '

by taking exterior derivative of (3.2) we obtain

(3.3) dθ = nHdV ,

where H = (l/ri) Σ Ar

uer is called the mean curvature vector. If the mean
curvature vector H = 0 identically on M, then M is called a minimal sub-
manifold of Em. From (3.3) we see that

Observation. M is a minimal submanifold of Em when and only when the
mean curvature form θ is closed.

Moreover, by (3.3) and Stokes' theorem, we have
Proposition 3.1. Let x: M —> Em be an immersion of an n-dimensional

bounded manifold M in Em. Then

(3.4) n JHdV = jθ ,

where dM denotes the boundary of M.
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Proposition 3.2. Under the hypothesis of Proposition 3.1, we have

(3.5) nv(M) + n J<X, H}dV =

where v(M) and X denote the volume and position vector field of M,
respectively.

Proof. By taking exterior derivative of ζX, ©> and applying (3.3) we obtain

(3.6) d(X9 ©> = ndV + n(X, H}dV .

Integrating both sides of (3.6) over M and applying Stokes' theorem, we
obtain (3.5).

Remark 3.1. Proposition 3.2 was obtained by Hsiung [13] for n = 2 and
by Chern-Hsiung [9] for closed M.

Corollary 3.3 (Chern-Hsiung [9]). There exist no closed minimal sub-
manifolds in a euclidean space.

Corollary 3.4. // M is a minimal submanifold of Em, then

(3.7) nv(M) = J<X,Θ>.
dM

These two corollaries follow immediately from (3.5). By Corollary 3.4 we
have

Corollary 3.5. Let M and M' be two bounded minimal submanίfolds of
Em such that (a) there exist two neighborhoods U and JJf of dM and dMf

respectively such that U = U' and (b) dim U = dim V = dim M = dim Mf.
Then v(M) = v(Mf).

4. Differential formulas

Let α = Σ aιei b e a smooth vector field on M. Then

(4.1) da= Σ (daj + Σ aj^ij)^j + Σ <^ r e r ,

and therefore

d<a, θ>= Σ (-Όj-\daj + Σ Wij) Λ ωγ A Λ ώs Λ - Λ ωn .

Thus, if we put da5 = Σ (aj)k^k a n d ωtj — Σ Γj

ikωk, then

(4.2) d(a,θ} = (div a)dV ,

where diva = Σ (aj)j + Σ aiΓίj ^om (4.2) follows immediately
Proposition 4.1. Under the hypothesis of Proposition 3.1, we have
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(4.3)

for any tangent vector field a on M.

Let / be a smooth function on M. By gradf, we mean gradf = Σ / ^ ,

where df = Σ /«<*>*• Since

(4.4) d(fθ) = (gradf)dV + nfHdV ,

from Stokes' theorem .we obtain
Proposition 4.2. Under the hypothesis of Proposition 3.1, we have

(4.5) /i J/JWK + J (g/vϊtf βdF = jfθ .

Let g be a smooth function on the normal bundle Bv. Put dg = J]
Σ Srθ)mr and Vg = 2 g ^ . Then we have

Lemma 4.3. Under the hypothesis of Proposition 3.1, we

(4.6) d(gβ Λ dσ) = (Γg)dV A dσ + ngHdK Λ rfσ .

Proof. By taking exterior derivative of gθ Λ dtf and applying (3.3), we
obtain (4.6) immediately.

There exists a self-adjoint linear transformation A of the tangent space
TpiM) of M at P into itself defined by

(4.7) Aet= -

where (Aί3) denotes the second fundamental form at (F, e). It follows that

(4.8) A(dx) =

where (J^) ί is the tangential component of de. Let A(j)(dx) denote the tangent
vector obtained from dx by applying A repeatedly / times, and * the Hodge
star operator defined by

(4.9) * ( Σ fiCOiβi) = Σ ( - l ) * " 1 / ^ ! Λ Λ ώ t Λ Λ ωnet .

For convenience we put UQ = dx and Uj = A(j)(dx), j = 1, 2, .
Lemma 4.4. Le* e = em. Then

': en+1 X X en

(4.10) ^ " ^ i

 t n

δ \i - I.
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This lemma can be proved in the same way as Lemma 2.1 was proved in
[1], so we omit the proof here.

Lemma 4.5. Let

Ji = ex de >< StdeXdxZ - - * dx ,
(4.11) m-n + i-l n-i-1

/ = 0 , 1 , ,/i — 1 .

Then

Δi = _ ( m _ n + i - 1)! (n - i - 1)! (-1)' Σ L " h)
Ki-**Uh A da

( 4 1 2 ) + n K m - n + f - D I ^ ( _ 1 ) i + s + ^ + i d F Λ ^
(l + 1)! s = n + l

Λ Λ ώTOtί Λ Λ ωTO,m_Λ .

This lemma can be proved by a direct computation of the left hand side of
(4.12) we omit the proof.

Lemma 4.6. Let

(4.13) ^ = φ Λ < I , ^ > , XA = <X,eA>, i = 0, 1, ,n - 1 .

= (/w-n + ί - l ) ! ( / i - i - 1)! Σ

1.14) ,. n ΛKt_h Σ xμjAiΔ Π ̂ h l)t)dV Λ dσ

+ ( i y : ;
0 + 1) !

Proo/. By (4.8) and (4.9), we have

(4.15) Ut= Σ (-

and therefore

(4.16) *Ui = Σ (-lV 0 + ί + 1 (Π ^ ^ - J ^ i Λ Λώ i 0 Λ ΆωneJt

By Lemma 4.5, we obtain



378 BANG-YEN CHEN

i

^ V \i —

^ A ( Π
A = l \k =

k l }

- n - H - 1 ) ! / £ W Λ+ ( ! ) ^
0 + 1 ) !

From this we can easily derive (4.14).
Lemma 4.7.

dp A Δi - (m - π + i - 1)! (n - i - 1)! £ Σ ( -
Λ = 0 jo," Jh = l

*-» Σ * Λ ^ « . ( Π / Λ - I Λ ) ^ Λ da

0 + 1)!

This lemma can be proved in the same way as we prove Lemma 4.6.
Lemma 4.8.

d(pι-\X, Jt» = (I - ί)pι-%

( 4 1 8 ) - (- lyK 'Cm-n + i - Ό V - ^ Λ dσ

Proo/. Since

</« -k • • X de % dx -k • • :>< dx

(4 19) m-n + i-l »-i

' ( + i(
z!

(4.20) nl(m

by using (4.11), (4.13), (4.19) and (4.20) we can prove (4.18) without
difficulty.

Lemma 4.9.

n\ ί (n — ί)(m — n + ΐ) tJ, , n i - i ^

- (I - Dp'-'K, Σ xμkAjk}dV A dσ
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n-l

(4.21) + " (/ - I V - 2 Σ (*s)2Ki+1dV A dσ
V ~Γ Ll s = n + l

( m _ n + ί _ i) f (n _ / _ i ) !

h*Uh)>} A dσ .

Proof. By Lemma 4.4, (2.5) and (3.1), we have

h=i V h) % \ι I h=Q \ι nj

X d ><SI "V \/ m \f /7f* \f Si 0 Sf . \S SI 0 \f 0 \/ . . . Sc 0

n-i-1 ί

and therefore

Σ ,

i ! (n - i - 1)!

( X) j Λ A J A J A A j A A A

+ d x X XdxXdeX ••• XdeXen+1X ••• X e ,
i Π i 1 ) 1 n-i

= -n ifjKidV + h)(n - i)K4V = - i ί "

On the other hand, from (4.12), (4.13) it follows immediately

(m — n + ϊ — 1)! (n — i — 1)! u + 1/ s=n+i s ι+ι

Substituting the right side of the above two equations in the following equation
and simplifying the resulting equation by using (4.18) we can easily reach
(4.21):

ΛΣ (/ 1 ^{dip^K^ζX, *Un)) - pι-\X, d(Kt_h*Uh)y} A dσ

i / n \
— V \U1 λλnι~2K ήn A /Y *TT \

7ι = l \ /

+ pt-'K^dX, *Uhy) A dσ .

Lemma 4.10. Let
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(4.22) ψ = Σ 1 ( - D W Λ ωm,n+1 Λ Λ ώm>s Λ Λ ωm,m_A
s = n + l

Then

(4.23) - (/ - ί)p1-2

 S Σ (xs)
2Kί+1dV A dσ ,

ί = 0 , 1 , - • . - , / ! - 1 .

Proof. By using (dx, Ki+1ψy = 0, we have

d<pι-ιKuιX,T> - Pι-\X,d(Kί+1Ψ)>

= (/ - i)pι~2κuidp A (x,wy + pι-ικί+ι<dx,ψy

Lemma 4.11.

n-l n / n \ n

Σi V ( 1 \i —1 / n \V V1

i -U f-i n - i - 1 "-*-1 A
(4.24) ι-°JO'-'^-1

Proof. For simplicity, we choose the principal frame with respect to
e = em, so that

ωmί = —kiίύi (i not summed) .

By a direct calculation we can easily obtain (4.24).
Similarly we can prove
Lemma 4.12.

n-l I yj \

t_Λ~U \n-i-ί)K"-^^
(4.25)

5. Integral formulas and their applications

Theorem 5.1. Let x: M —> Em be an immersion of an n-dimensίonal
bounded manifold M in Em. Then we have

(5 D _ (/ _ i)r l ( j c > Σ xj^^p'- 2,1) = I p'-'^ΛΓ, θy^dσ,
dBΌ
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for all ί = 0, 1, , n — 1 and an integer I.
Proof. By Lemma 4.5 and (4.22), we have

( « - « + »- 1) ! ( n - i - 1)! VI l' +

By first taking exterior derivative of (5.2), using (4.19) and applying Lemma
4.3, and then taking scalar product of X with both sides of the resulting equa-
tion and multiplying by pι~\ we obtain

(m - n + i)(. ?\)pιKi+1dV A dσ = [n\pι-ι<X,VK>>dV A dσ

+ Σ (i 1 ^Pι-\x,d(κi_h*uh A dσ)} + (.

Substituting (4.21), (4.23) in the above equation for the last two terms and
simplifying the resulting equation by using (4.12), (4.13), (4.22) we can easily
obtain

ip^Kt-d - Dp1"'*, Σ XjX*Ai*W Λ da

(rn - n + / - 1)! {n - i - 1)!

h χ .. 1 J^-^.^AΓ, *Uh A dσ))

Integration of both sides of the above equation and application of Stokes'
theorem give immediately (5.1).

Theorem 5.2. Under the hypothesis of Theorem 5.1, we have

- 1) Σ Σ (-I)*"1 L "
. 7 = 1

(m - n + /)/. £ λτuι(x,pι, 1) + (n - ίjh
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(m — » + i — 1)! (« — i — 1)! J

i = 0,1, •••,/!- 1.

This theorem follows from Lemmas 4.6 and 4.8.

Theorem 5.3. Under the hypothesis of Theorem 5.1, we have

(m-n +

(5.4) +

(m — n + i — 1)! (n — i — 1)!

Proof. Substituting (4.17), (4.19) in

d(pιJt) = pldAt + lpι~ιdp A Δ, ,

we can easily obtain

'-1 Σ

m - 1

Adσ-lp1-^, M K J Σ x*.)dVΛ

-= (-l)i+ίd(pιJJ/[(m - ft + i - 1)! (/ι - i - 1)!] .

Integrating both sides of the above equation and applying Stokes' theorem,
we hence have (5.4).

Theorem 5.4. Under the hypothesis of Theorem 5.1, we have

(I - l)Tn(x,pι-\X,X>, 1) + nTn_Ύ{x>Pι-ι> D

( 5 * 5 ) = (m + I - 2)Tn(x, p\ 1) + ("J 0 ^*

Proof. This theorem follows from Lemma 4.11, Theorem 5.2 for / = π — 1
and the following identity ΣA=1 *A*A = XX - P2

For / = 1, Theorem 5.2 reduces to
Corollary 5.5. If M is closed, then we have
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(i + Wax, 1,1) + (m - n + i)Ti+ι(x, p, 1) = 0 ,

i = 0,1, . . - ,/ ! — 1 .

Remark 5 1. If the codimension m — n — 1, then (5.6) are Minkowski-
Hsiung's formulas [12].

If / is odd, then Gι(x,P, 1,1) = 0; if / is even, then Gt{x, P, 1,1) depends
only on the Riemannian structure of M with the induced metric (see Remark
8.2). Hence from Corollary 5.5 we obtain

Corollary 5.6. // M is closed, then the ί-th G-total curvatures Tt{x, p, 1)
for all ί = 1, -,n depend only on the Riemannian structure of M with
respect to the induced metric. In other word, Tt(x, p, 1) is an isometric
invariant for all i = 1, , n.

From Corollary 5.5 follows
Corollary 5.7. // M is a complete submanifold of Em with Gλ(x, P, p, 1)

= 0 everywhere on M, then M is not compact.
Putting / = 0 in Theorem 5.3 we obtain
Corollary 5.8. // M is closed, then Tt{x, e,l) = 0 for all i = 1, , n.

Corollary 5.9. // M is closed, then

(5.7) (m + / - l)Tn(x, pιe, 1) = Tn{x, pι~'X, 1) .

Corollary 5.9 follows from Lemma 4.12 and the identity X — pe —

2-χA=l ΛA^A'

Corollary 5.10. // M is closed, then

(5.8) nUx, H, 1) + T0(x, VKt, 1) = 0 , i = 0 ,1 , . ., n - 1 .

In particular, if Gt(x, P, 1,1) is a constant, then

(5.9) Ux,rκi91) = 0 , i = 0 , 1 , . . , n - 1 .

The first part of this corollary can be obtained by applying to (5.1) for
/ = 1 a translation x —> x + c where c is any constant vector in Em, and the
second part follows from Proposition 3.1 and (5.8).

Corollary 5.11. Let M be an n-dimensional oriented closed submanifold
in Em such that M does not contain the origin and the n-th mean curvature
Kn(P, e) is nonnegative everywhere on Bυ. Then

(5.10) nTn_x{x, p~\ 1) > (m - 2)Tn(jc, 1,1) .

Proof. This corollary follows from Theorem 5.4 for Z = 0 and the assump-
tion Kn(P, e) > 0.
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6. Gauss-Bonnet's formula

In this section, we shall assume that M is an n-dimensional oriented closed
manifold imbedded in Em.

Proposition 6.1. Let a19 -,ah be h nonnegative integers, and α l v , ah

be h fixed vectors in Em. Then

Π
3=1

(6

(6

.1)

Proof.

.2)

=

Put

β =

+ <xhTnL

(m + aλ -

m - l

Σ(-DJ

/ι-l

,̂ Π

+

i Λ

αft - l)Γ n(x,

• Λ ώmιA IQ Σ ,i m,A Λ
-4 = 1

Then

dex - XdeXe = (m-2)\ (-l^-
m-2

On the other hand, from (4.19) we have

(6.3) de X X de = ( - l ) w ( m - 1)! KnedV A da .

Therefore

(6.4) (-ΐ)ndQ = -(m - l)KnedV A da .

Moreover, we can prove that

(6.5) ( - \)n<X, de) A Q = (X - <X, e}e)KndV A da ,

(6.6) ( - l)»<α, de) A Q = (a - <α, ̂ >? ri^dK Λ da ,

where α is a fixed vector in Em. Hence by taking exterior derivative of
<α1,e>βl <αΛ_1,e>β f c- ι<^«>β f cβ a n d applying (6.3), --.,(6.6) and Stokes'
theorem, we can obtain (6.1).

Proposition 6.2. Let a be a fixed vector in Em perpendicular to

a2> '' >«Λ-I Then

= (m + «! + + ah — l)Tn(x, <«!,
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By taking scalar product of (6.1) with a, we obtain (6.7).
Proposition 6.3. // aλ is a fixed unit vector in Em perpendicular to

a2, - - , ah, and aλ is a positive even integer, then

(6.8) Tn(x, < β l , ey> <ah, eY\ 1) = γTn(x, <α2, «>'• <*„ e>a\ 1) ,

where

(6.9) f — 2,cm+ai+...+ah_1/i<caicm+a2+...+ah_1) ,

and ck = 2πia+1) /Γ(^(k + 1)) is the area of the unit k-sphere.
Proof. Setting ah = 0 and a = ax in (6.7) we readily obtain

(6.1(J)

= (m + ttl + + ah - 2)Γ n (x, <α1 ? e>α j ••- <αΛ, e>α% 1) .

Repeating (6.10) for \ax — 1 times thus gives (6.8).
Proposition 6.4. Let χ(M) denote the Euler characteristic of M. Then

(6.11) ΓΛ(JC,l,l) = cTO.1χ(Af).

Proo/. If dimM = π is odd, then we have Gn(x,P, 1,1) = 0, so that
Tn(x, 1, 1) = 0. On the other hand, by the Poincare duality, we have χ(M)
= 0. Thus we obtain (6.11). Now assume n to be even. If the codimension
m — n is odd, then the normal bundle Bυ has dimension m — 1. Since Bv is
closed and oriented, from Gauss-Bonnet's formula we have

(6.12) Tn(x,l,l) = icm_lX(Bv).

Since Bv is a bundle space of (m — n — l)-dimensional sphere over M, we
have χ(M) = χ(Sm-n"1)χ(M) = 2χ(M). Hence (6.12) reduces to (6.11). If the
codimension m — n is even, then we define an immersion x: M -+ Em+1 by
JC(P) = X(P) for all P in M. By a direct computation, we obtain cmTn(x, 1,1)
= cm-iTn(x, 1, 1) = Cm-iCm%(̂ )> which implies (6.11).

The main purpose of this section is to prove the following generalization of
Gauss-Bonnet's formula.

Theorem 6.5. Let a19 , ah be h nonnegative integers, and a19 , αΛ be
h orthonormal vectors in Em. Then

(6.13) Γ»fc( β l , ί ) . . . . < S i , { ) M ) = MM) if ai,.. , a, are even,
10, otherwise,

where

(6.14) ί = 2hcm+ai+..,+ah_1/(cai . . c j .
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Proof. If a19 , ah are all even, then by applying Proposition 6.3 for h
times and using (6.11) we obtain (6.13).

If at least one of a19 , ah is odd, then without loss of generality we can
assume aλ to be odd. Application of (6.10) for \{aλ — 1) times thus gives

, , 1 C , Tn(x,<fi19ey*- <ah9ey*,l)
(ΌΛJ)

= cTn(x, < β l , e><«2, e>"° <αft, *>"», 1) ,

where c is a constant. On the other hand, by Proposition 6.1 we have

(6.16) Σ « Λ ( « , <*,«>•*•••<«*, >- i,l)

= (m + a2 + + ah — 1)TW(JC, <α2, e>"2 <αΛ, e>"Λe, 1) .

Thus by taking scalar product of (6.16) with ax we obtain

(6.17) Tn(x, <Λ l, *><α2, e}"* <αΛ, ey\ 1) = 0 .

Combination of (6.15) and (6.17) hence gives (6.13).
Remark 6.1. Theorem 6.5 is the well-known Gauss-Bonnet formula when

ax = ah = 0, and was proved in [3] when h = 1 and m — n = 1.

7. Immersions with Lipschitz-Killing curvature > 0

For an immersion of an π-dimensional manifold M in Em, the n-th mean
curvature KW(P, e) is also called the Lipschitz-Killing curvature. In [10], S. S.
Chern and R. K. Lashof studied the n-th total absolute curvature of rank 1
with respect to 1, i.e., TAn(x, 1,1), and proved the following interesting
inequality for closed M:

(7.1) TAn(x, 1,1) > β{M)cm_x ,

where β(M) = max {Σΐ=o dim Ht(M; F): F fields}, and H^M.F) denotes
the i-th homology group of M over F. If we denote the i-th betti number of
M by bi(M), then it is obvious that β(M) > Σί=obi(M). In this paper, an
immersion of an n-dimensional closed manifold M in Em is called a minimal
imbedding if T^O*:, 1,1) = β(M)cm^. In the following, let

(7.2) J ( P ) = m a x { K n ( P , e);ee Srn~1} ,

(7.3) μ(P) = m i n { £ W ( P , e):ee ST71'1} ,

^ + = {(P, e) € 5 , : Kn(P, e)>0},

A_ = {(P,e)eBυ:Kn(P,e)<0}9

(7.5) Jl+(P) = max {J(P), 0} , /.-(P) = min W « , 0} ,
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(7.6) KM) = i\β(M) -
\

where S™~n~ι denotes the unit (m — n — l)-sphere of unit normal vectors to
x(M) at x(P) in Em. We call λ and μ the principal curvature and secondary
curvature of M in Em. If is clear that M has no torsion when and only when
t(M) = 0.

Proposition 7.1. Lei M be an n-dίmensional oriented closed manifold
imbedded in Em. Then

Σ(7.7) (λ+dV > (t(M) + Σ b2ί

(7.8) (μ-dV < - [t{M) + Σ

Equality sign of (7.7) /zoWs W/Ẑ AZ tffld c?«/j >v/zew /Λe codimension m — n = 1

and x: M—> Em is a minimal imbedding. Moreover, equality sign of (7.8)
holds when and only when either (a) dim M = n is even and the Lipschitz-
Killing curvature Kn(P, e) > 0 everywhere, or (b) the codimension m — n = 1
fl/zd x: M -+ Em is a minimal imbedding.

Proof. From Theorem 6.5 it follows that

(7.9) (κn(P, e)dV Λdσ+ fκn(P, e)dV A da = Σ {-l)%{M)cm_x .
J J i = 0
A+ A-

On the other hand, by (7.1) and (7.6) we have

JKn(P, e)dV Ada- Jκn(P, e)dV A da
(7.10) A+ A-

It
Combination of (7.9) and (7.10) yields

(7.11) (Kn(P, e)dV Λdσ> Uht) + Σ I
J \ ί = 0
A +

(7.12) JKn(P, e)dV A da < - (t(M) + |
A-

Therefore by (7.2), (7.3), (7.4) and (7.5) we obtain (7.7) and (7.8). Now
suppose that equality sign of (7.7) holds. Then the inequalities (7.10), (7.11)
and (7.12) are actually equalities, so that x: M -> Em is a minimal imbedding.
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Next suppose that the codimension m — n > 1. It is easy to see that if λ(P) > 0
at P <ε M, then Kn(P, e) = λ(P) for all (P, e) e Syn~ι. In particular, this implies
that dimM = n is even. Since the set {(P,e) εBυ: the second fundamental
form at (P, e) is positive definite} is of positive measure, by choosing a point
(P, e) in this set we have λ(P) > 0. Thus we obtain Kn(P, e) = λ(P) for all
e € S^~n~ι. On the other hand, by definition we see that the second fundamental
form at (P, —e) is negative definite, and the continuity of the second funda-
mental form implies that the Lipschitz-Killing curvature Kn(P, e) — 0 for some
points in S^'71'1. Since this is a contradiction, we get m — n = 1. Conversely,
if m — n — 1 and x: M —» Em is a minimal imbedding, then the equality sign
holds in (7.11) and (7.12). On the other hand, Kn(P, e) = λ+(P) on A+ and
Kn(P,e) = //-(P) on >ί_: Moreover, A+ = {PzM: λ+(P) Φ 0} and A_ =
{P e M: /r(P) ^ 0}. Consequently, the equality sign holds in (7.7) and (7.8).

Now suppose that the equality sign of (7.8) holds, and the Lipschitz-Killing
curvature Kn(P, e) < 0 for some points (P, e) in Bv. Then μ~(P) < 0 for some
P in M, and Kn(P, e) = /i~(P) for all (P, *) 6 Syn~l whenever μ~(P) < 0. This
is impossible by the continuity of the second fundamental form on the fibre
Sp'71'1 if the codimension m — n > 1. Thus we get m = n + 1. On the
other hand, from the equality of (7.8) and the inequality of (7.10) it follows
that the equality sign holds in (7.11) and (7.12). This implies that the immer-
sion of M in Em is a minimal imbedding. Consequently, either the Lipschitz-
Killing curvature is nowhere negative, or m = n + 1 and JC : M —> Em is a
minimal imbedding. In the first case, we have t(M) = 0 and b^M) — 0 for all
odd /. Thus (a) if Kn(P,e) is nowhere negative, then by the inequality (7.8)
we have t(M) = 0 and b^M) — 0 for all odd /, and therefore by (7.3) and
(7.5) we get the equality sign of (7.8) and (b) if m = n + 1 and JC: M —» Em

is a minimal imbedding, then the equality sign of (7.8) follows immediately
from the equality sign of (7.10) and the definition of μ. This completes the
proof of the proposition.

Theorem 7.2. Let x: M —> Em be an imbedding of an n-dimensίonal
oriented closed manifold M in Em. (a) The Lipschitz-Killing curvature Kn(P, e)
> 0 everywhere if and only if (i) M has no torsion, (ii) all odd-dimensional
bettί numbers of M vanish, and (iii) the imbedding x\ M —> Em is minimal.
(b) // the Lipschitz-Killing curvature Kn(P, e) > 0 everywhere, then dim M is
even, and either d imM = 0 or the codimension m — n = 1, M has no
torsion, and x(M) is a convex hypersurface in En+1.

Proof, (a) If the Lipschitz-Killing curvature Kn(P, e) > 0 everywhere, then
μ-(P) = 0. Thus by Proposition 7.1, we obtain t{M) = 0 and b^M) = 0 for
all odd /. Moreover, A_ = 0. These imply that

TAn(x, 1,1) = Tn(x, 1,1) = χ(M)cm^ = i8(A0cm_1 ,

i.e., the imbedding x is minimal. Conversely, if x is a minimal imbedding, M
has no torsion, and odd-dimensional betti numbers of M vanish, then
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TAn(χ, 1,1) = χ{M)cm_x = Tn(x, 1 , 1 ) .

By the continuity of Kn(P, e) on the normal bundle Bv and the definitions of
TAn(x, 1,1) and Tn(x, 1,1), we thus obtain Kn(P, e) > 0 everywhere.

(b) Suppose that Kn(P, e) > 0 everywhere, and n > 0. Then from
Kn(P, -e) = (-l)nKn(P, e) it follows that d imM = n is even. Let (P, e) be
a point in Bυ such that the second fundamental form at (P, e) is positive
definite. Then the second fundamental form at (P, —e) is negative definite. By
the continuity of the second fundamental form on the fibre S7-'71'1 we see that
if the codimension m — n > 1, then the Lipschitz-Killing curvature Kn(P, e)
= 0 at some points in S[~~n~ι. This is impossible by the assumption. Thus we
have m ~ n — 1. In this case, the condition that Kn(P, e) > 0 everywhere
implies that Gauss-Kronecker curvature of M in En+ι is positive everywhere.
Hence x(M) is a convex hypersurface in En+1.

Remark 7.1. If the codimension m — n = 1, then the sufficiency of
Theorem 7.2, Part (a) was proved by Chern-Lashof [10, II], and Theorem
7.2, Part (b) was the well-known Hadamard theorem. In [10, II], Chern and
Lashof gave an example of nonconvex hypersurface in En+1 with Kn(P, e) > 0
everywhere. In [15], Kobayashi gave an example of a minimal imbedding of
complex projective spaces in higher dimensional euclidean space; in his
example, the Lipschitz-Killing curvature Kn(P, e) > 0 everywhere.

If C is a closed curve in E3, then we have the so-called curvature k and
torsion τ. If the torsion τ = 0 identically on C, then C is a plane curve in E\
Moreover, if the curvature k is constant and the torsion τ — 0 identically, then
C is a circle in a plane of Ez. By using Theorem 7.2 and a result of Chern-
Lashof [10, I], we have

Corollary 7.3. Let x\ M —> Em be an imbedding of an even-dimensional
topological sphere in Em with m — n > 1. Then the secondary curvature μ = 0
when and only when M is imbedded as a convex hypersurface in an (n + 1)-
dimensional linear subspace of Em. Moreover, the secondary curvature μ — 0,
and the principal curvature λ is constant when and only when M is imbedded
as a hyper sphere in an (n + l)-dimensional linear subspace of Em.

8. Product immersion and immersion with constant G-total curvature

Proposition 8.1. Let xλ: Mx —> Emi and x2: M2 -+ Em2 be immersions of
Mx and M2 in Emi and Em<ί respectively, and xx x χ2 be the product immersion
of xλ and x2. Then

= Gni(x19 P 1 ? 1, l)Gn2(x2, P 2 , 1, \)cmi+m2_x ,

for all (P19 P2) e Mx x M 2 , where dim Mλ = nx and dim M2 = n2.
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This proposition can be proved in the same way as Theorem 10 was proved
in [2, I], so we omit the proof.

Corollary 8.2. Let Mx and M2 be two oriented closed manifolds. Then the
Euler characteristics of Mx and M2 satisfy

(8.2) χ(Mλ X M2) = χ(Mx) X χ(M2) .

This corollary follows immediately from Theorem 6.5 and Proposition 8.1.
Proposition 8.3. Let x: M —» Em be an immersion of an oriented closed

even-dimensional manifold M in Em such that x(M) is contained in an (n + 1)-
dimensional linear subspace En+1 and the n-th G-total curvature Gn(x, P, 1,1)
> 0 everywhere on M. Then x(M) is a convex hyper sphere in En+1, and there
exists an oriented closed even-dimensional nonconvex submanifold in En+2 with
positive constant n-th G-total curvature Gn(x,P, 1,1).

Proof. The first part follows from Proposition 8.1 and Theorem 7.2. Let
S^n X S^n C En+2 be the natural product manifold of two unit ^-spheres in
£w+2 Then this product manifold in En+2 has constant n-th G-total curvature
Gn(x,P, 1,1) everywhere.

By Proposition 8.3 we have
Corollary 8.4. // M is an exotic n-sphere, then M cannot be immersed in

En+1 as a hypersphere with Gn(x, P, 1,1) > 0.
Remark 8.1. Every compact homogeneous space M can be immersed in a

euclidean space with constant i-th G-total curvature Gt(x, P, 1,1). This immer-
sion can be done by using equivariant immersion of M in the euclidean space.

Remark 8.2. Let M be an n-dimensional manifold immersed in Em. If i is
an even positive integer, 2 < i < n, then we have

G,(x, P, 1,1) = const. Σ δl!19 ' " ' \ )Rjlhklk2 RJt-lJikt-lkt ,

in which RJklh are the components of the Riemannian-Christoίϊel tensor
(relative to orthonormal frames) of the induced Riemannian metric on M, and

δ 11' " " ' # * ) does not vanish if and only if ]ί9 , j t are rearrangement of
\κί9 , Kij

kl9 - 9kt; its value is 1 if the permutation is even and — 1 if odd. Hence we
see that G^JC, P, 1,1) are isometric scalar invariants. In fact, G^JC, P, 1,1) are
among the most important scalar invariants of the Riemannian metric. For
example, G2(JC, P, 1,1) = const. 2 ΛyiiaΛlJfc9 is called the scalar curvature of the
Riemannian metric (see, for instance, Chern [7], Nagano [16]).
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