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FUNCTION THEORY OF FINITE ORDER ON
ALGEBRAIC VARIETIES. I (A)

PHILLIP A. GRIFFITHS

1. Introduction

The purpose of this paper is to discuss the theory of analytic functions of
finite order on algebraic varieties. The proofs of our results are only sketched
as the complete arguments will appear in a more general setting at a later time.

There are two reasons for making this study. The first is that the classical
theory of meromorphic functions of finite order [19] and the extensions of this
theory to functions on C n , [18], [24], form a very pretty subject, and one which
furnishes us with the most important examples of entire transcendental func-
tions for use in analysis and number theory. As the natural domains of exist-
ence for functions of finite order are the algebraic varieties, it seems worthwhile
to develop the theory in this setting. The second, and more important, reason
is that on an affine algebraic variety A the functions of finite order give the
smallest class of functions which might allow one to realize the topological
Grothendieck ring KtoJ>(A). Or, to put matters another way, since A is a Stein
manifold, Grauerts' proof of the Oka principle [6] gives the isomorphism

Ktop(A) ς* KUΛ)

between the topological and analytic K-theories on A. What the examples and
partial results the author has seem to indicate is the refined isomorphism

(1.1) Ktop(A) ^ Kt,oXA)

between the topological and finite order K-theories on A. We are able to estab-
lish the isomorphism (1.1) in certain special cases, and in general are able to
reduce the problem to semi-local questions in several complex variables. If (1.1)
were established, then we could be able to measure the obstructions to making
an analytic cycle Γ <zH2q(A,Q) progressively more algebraic. Some examples
suggest (roughly) that the μth obstruction should be the projection of Γ in

2 Hr>s(A, C) (here we are using Deligne's mixed Hodge structure [5] on
\r-s\>μ
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H*(A, O ) . Since the analytic cycles generate all of HGΎen(A, Q), such a mecha-
nism would have obvious importance.

§§ 2, 3, and 4 of this paper contain definitions, some relatively easy proposi-
tions, examples, and heuristic comments about function theory of finite order.
The main theorems which we are able to prove deal with divisors and are
presented in § 5. In § 6 we discuss K-theory with growth conditions and attempt
to isolate the essential questions whose solution seems necessary in order that
the function theory of finite order should work in general.

2. Basic definitions

(a) Localization at infinity on algebraic varieties

Let A be a smooth, quasi-projective algebraic variety over C. A smooth
completion of A is given by a smooth, projective variety A containing A as the
Zariski open set obtained by removing a divisor D which has locally normal
crossings. Thus, given x e A — A there is a polycylindrical neighborhood P =
{z 6 Cn: \ZjI < 1} of x in A such that D Π P is given by an equation zx zk = 0.

D2(D = 0,1] D2)

We set P* = P Π A and refer to P* as a punctured poly cylinder. If Δ =
{z e C: |z| < 1} and J * = Δ - {0}, then obviously

(2.1) P* ^ ( J * ) * x Δn~k .

We shall sometimes write P*(k) for P* when we want to specify how many
locally irreducible branches of D pass through the center of P. Smooth comple-
tions exist by the fundamental theorem of Hironaka [13].

The smooth completions of A are not unique. For example, Pλ x Px and P2

are both smooth completions of C2. However, given two such smooth comple-
tions A and A', there are a third A" and a diagram of holomorphic mappings

(2.2)

A A;

such that π and πf are both the identity on A. Localizing in punctured
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cylinders at infinity, the mapping π in (2.2) will be given by

(2.3) Zj = (z^1 (zi'-)2''*" ( / = ! , • • • , * ) ,

where the λj>μ are integers.
If A and Λl' are smooth quasi-projective varieties, and /: A —>Ar is a rational

holomorphic mapping, then we can find smooth completions A and A' such
that / extends to a holomorphic mapping / : A—> A'.

Among the algebraic varieties we shall be especially interested in those which
are affine. Such a smooth affine variety A may always be realized as an alge-
braic subvariety of CN given by polynomial equations Pa(z19 , zN) = 0. By
projecting onto a generic Cn, we may also realize A as a finite algebraic cover-
ing π: A - > C \

(b) Function theory in punctured polycylinders

Let P*(k) be the punctured poly cylinder given by

{(z,w)eCk X C*-*: |z 7 | > 1, \wa\ < 1} .

Then P*(k) is of the form (2.1). Let η(z9w) be a holomorphic function in1

P*(Λ). In order to measure the order of growth of η(z9 w) as \z\ -+ oo, we define
the maximum modulus

(2.4) M0?,r) = max log|3?(z,w)| .
\zj\<,r
Itoβl^l

Other useful indicators of the order of growth are (i) the mean value

(2.5) m(η, r) = (1) " Jlog +1 tfre", e*') \ dθdφ ,

where (reiβ, eίφ) = (reίθ\ , reiθk, eίφ\ , β*^-*) and dθ = dθ,-- dθk, dφ =
d^i 'dφn_k; and (iii) the order function (spherical image)

where

(2.7)

is the Kahler form2 on P*(Λ).
1 By this we mean that η is defined and holomorphic in the slightly larger open poly-

cylinder {(z,w): \zj\ > 1 — e, \wa\ < 1 + ε} for some s > 0.
2 Observe that ω is the restriction to P*(k) of the Euclidean Kahler form^on the poly-

cylinder P c Cn.
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Similarly, if Z C P*(/c) is a purely ^-dimensional analytic subvariety, we let

(2.8)

where Z[t] = Z Π {(z, w): |z, | < ί}.
(2.9) Proposition3, (i) 77ze holomorphic junction η is holomorphic in the

whole polycylinder P φ=φ M(f, r) = 0(1) <==φ m(f, r) = 0(1). (ii) 77ze c/αywre
o/ Z w an analytic subvariety in P <=φ N(Z, r) = 0(log r).

We now introduce the notion of a Λ-πng [21]. This is given by a collection
A = {λ(r)} of real-valued functions of r e R+ such that: (i) each λ(r) is continu-
ous and increasing in r; (ii) if λλ, λ2 belong to A, then so do λλ + λ2, λιoλ2,
and cλγ for c > 0 and (iii) if λ e A, then Λλiβr) = 0(^'(r)) for some / € ^ί. The
following are the Λ-rings of which we shall make essential use:

Example 1. A — R+.
Example 2 A = {1, r}, the ring generated by the constant 1 and the func-

tion r. Thus A consists of all positive polynomials aLrι + - - + af + aQ(aμ > 0).
Example 3. A = all increasing, continuous, nonnegative functions of r.
Let A be a Λ-ring.
(2.10) Definition. The ring @Λ(P*) of holomorphic functions in P*, which

have finite Λ-order, is given by those η e Θ(P*) which satisfy M(η, r) = 0(λ(r))
for some λeA.

Referring to Examples 1, 2,3 above, we obtain respectively: (i) the holomor-
phic functions in P, (ii) the functions of finite order in P*, and (iii) all holomor-
phic functions in P*. These examples will be denoted by 0(P), 0 f.o.(P*), and

Let A be a Λ-ring, and Jt{P*} the field of meromorphic functions in P*. We
assume furthermore that P* = P*(l) is a punctured polycylinder with only one
branch having been deleted from the closed polycylinder P. (We shall do the
general case later.)

(2.11) Definition. The field JίΛ(P*) of meromorphic functions in P*
which have finite Λ-order is given by those meromorphic functions φ on P*
which admit a factorization φ = η/ψ, where η, ψ € 0 /P*) .

Remark. The reason that we have restricted P* to be a P*(l) is that, for
a general P*(£), it is flctf the case that Jl(P*(k)) is the quotient field of 0(P*(Λ)).
This restriction can be removed and will be discussed in § 4(/) below.

Referring to the three examples of Λ-rings given above, we see that JίA(P*)
is respectively: (i) the meromorphic functions on P (ii) the field of meromor-
phic functions of finite order and (iii) the field of all meromorphic functions
on P*. These cases will be denoted by Jί(P), u? f.o.(P*), and Jl(P*).

3 It may also be shown that η is meromorphic in P <z=> M{η, r) = 0(log r) <=> m(η, r) —
0(logr)<:^> T(/,r) = 0(logr). The reason for integrating with respect to dt/t in T(η,r)
and N(Z,r) comes from Jensen's theorem [19, p. 164].
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(c) Holomorphic mappings of finite order between algebraic varieties

Let A be an algebraic variety as in § 2(a) above. We denote by &(A) and
Jί(A) respectively the fields of rational and meromorphic functions on A. For
each Λ-ring A we shall define a sub-field JtA{A) of Jt{A). To do this we con-
sider a smooth completion A of A. Then a neighborhood of Ά — A in A may
be covered by finitely many punctured poly cylinders {P*}, and we say that
φ e Jt{A) is in JtΛ{A) if each restriction φ | P* is in JtΛ(P*) for all sufficiently
small P*.

Referring to Examples 1, 2, 3 in § 2(b) above, we obtain respectively (i) the
field &(A) of rational functions on A, (ii) the field Jtίo{A) of meromorphic
functions of finite order on A, and (iii) the field Jt(A) of all meromorphic func-
tions on A.

(2.12) Proposition, (i) JtA(A) is intrinsically defined by the algebraic
structure on A; (ii) if f\ A^> A' is a rational holomorphic mapping, then
f*{JίA{A')) is contained" in JtA(A).

Remark. In the "classical" case A = Cn, it is customary to define the order
p(η) of an entire holomorphic function by

= Γim
L logr

This definition then leads, as above, to the order ρ{η) of an entire meromorphic5

function η. In general, we may define ρ(jj) relative to a fixed smooth comple-
tion A of A. However, this is not an intrinsic notion, nor does it behavefunc-
torially, whereas the notion of η being of finite order does both.

(2.13) Definition. Let A and V be algebraic varieties, and /: A —> V a
holomorphic mapping. Then / has order A if f*[0l(V)] C JίA(A).

4 It may also be proved that JIA(A) is algebraically closed in J({A)y in the sense
that if we have a polynomial relation

where ηj e JIA{Λ) and φ e Jί{A\ then φ e JίΛ[A) (cf. [21]).
5 Actually, this is a little misleading. If φ is a meromorphic function on Cn, then one

defines the Nevanlinna order function ([19], [29])

1 + W) Λ dd°log |

In case φ is holomorphic, it turns out that

m

l o g r J r_ooL \Ogr

and this defines the order p(φ) of any meromorphic function φ. It is then a consequence
of [18] or [24] that every meromorphic function φ on Cn may be written globally as a
quotient 0 = f/η of holomorphic functions where p(ψ) = p(φ) = p(rj).
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Remarks. Taking V = C we recover the ring ΘA{A) of holomorphic func-
tions of order A on A. Taking V = P19 we recover the field JίΛ{A). In case
A = {1, r} is given by Example 2 above, then we simply say that / has finite
order if / has order A for this particular A.

(2.14) Proposition, (i) If ίλ\ A-+Vι and f2:A-^V2 are of order A, then
so is the product mapping f1Xf2 A->V1 X V2. (ii) If f: A ^V is of order A,
and B C A is an an algebraic subvariety, then the restriction f: B ->V is of
order A. (iii) // /: A —> Af is rational and g: A/' —> V is of order A, then fog
is* of order A.

Remark. In appendix 2 to [9] we have defined the order function T(f, r)
for a holomorphic mapping /: A —> V into a compact Kahler manifold V. In
fact, from the definition given there it is clear that essentially

where Γf C A X V is the graph of /, and N(Γf9 r) is obtained by adding
up the local N(Γf Π P*,r) as defined by (2.8). Using Proposition (2.9) we
see that / is rational <—> T(f, r) = 0(log r). However, it is unknown whether
T(f, r) has the nice functoriality properties as given by Proposition (2.14). More-
over, it is not known whether the condition

T(f,r) = 0(λ(r)) (λeA)

is the same as /*[^(P0] C JtA(A) in case V is a projective algebraic variety,
although the author suspects that this must be the case. In conclusion, so far
as the author is aware we do not know how to define what it means for a map-
ping /: A -+V into a compact Kahler manifold to have order A in such a way
that Proposition (2.14) holds true and which recovers our old definition when
V is algebraic.

3. Algebraic, analytic, and topological K-theory

(a) The classical comparison theorems

Let A&lg be a smooth quasi-projective variety, and Ahol the underlying

6 Given smooth algebraic varieties A, V we shall denote the tangent bundles by T(A),
T(V) respectively. These tangent bundles are also algebraic varieties, and a holomorphic
mapping

f:A->V

induces the bundle mapping

/*: T(A) -> T(V) .

It should be that: / of order Λ^>f* is also of order Λ, although we have not tried to prove
this. The classical case is that p(dη/dz) < ρ(η) for an entire holomorphic function η(z)
(z 6 C).
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complex-analytic space.7 Then there are maps

(3.1) K&lg(A) -+ Khol(Λ) ,

(3.2) iϊ«(Λalg, ^ a l g ) -> #«G4h o l, <fhol) .

In (3.1), £ a l g 04) is the algebraic Grothendieck group generated by the algebraic
vector bundles on the quasi-projective AΆlg with the usual equivalence relation
[3], and Khol(A) is the corresponding object in the analytic category. In (3.2),
ίfalg is a coherent algebraic sheaf and Hq(AΆlg, *falg) is the cohomology in the
Zariski topology, while ghol is the corresponding coherent analytic sheaf and
cohomology is in the usual topology (cf. [22] and [11]).

The classical comparison theorems (G.A.G.A. [23]) state that both (3.1) and
(3.2) are isomorphisms in case A is complete ( — compact in the usual topolo-
gy). These results generalize such statements as "a meromorphic function on a
complete algebraic varietyjC is rational", and "an analytic subvariety of a
complete algebraic variety is itself an algebraic subvariety (Chow)".

Such statements are obviously false when A not complete. However, the
linear G.A.G.A. theorems relating to (3.2) seem to remain close to being valid.
To be more explicit, it is frequently, but not always, the case that we have
finiteness theorems

dim //«U a l g, ^aig) < oo (qφ q0) ,

such that (3.2) turns out to be an isomorphism for q Φ qQ, while the restriction

(3.4) HHAΆlg, <Talg) -> HHAhol, <fhol)

has dense image (Range theorem). For example, if A is affine, then both of
these results are8 true with qQ = 0.

However, the non-linear mapping (3.1) is considerably more subtle and is
generally very far from being either injective or surjective. One of the main
purposes of this work is to try and begin the development of a stepwise proce-
dure (an obstruction theory if you like) to try and analyze the mapping (3.1)
in case A is an affine variety.

(b) Oka's principle (following Graueri)

Let A be a smooth affine algebraic variety, which we may assume is given
7 In this section we wish to keep track of whether we consider A as an algebraic

variety, a complex manifold, or a topological space (actually, a finite CW complex).
8 Results of this sort are discussed by Hartshorne in [12]. Another example is where

A = A — S with A being smooth and projective, and where 5 is a smooth d-dimensional
sub-variety of A such that the normal bundle N-*S has signature (qfd — q). Then (3.3)
and (3.4) are true with q0 = q. On the other hand, there is an example, where A^oi is a
Stein manifold but AΆig is not an affine variety.
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by polynomial equations in CN. Thus A is a Stein manifold [11], and we may
apply the theorems9 of Grauert [6]. To state these, we let GL(m, Θ) be the sheaf
of holomorphic mappings of A into GL(m, C), and denote the corresponding
continuous sheaf by GL(m,&). Then it is well-known that we have isomor-
phisms

\ , G{m, Θ)) s

H\A, GL(m, V)) ^

where Vect£*ol04) is the set of isomorphism classes of holomorphic vector bun-
dles with fibre Cm over A, and similarly for VectgpG4). One basic result of
Grauert's is that the mapping

(3.6) H\A, GL(m, Θ)) -> H\A, GL(m, V))

is an isomorphism of sets. For example, in the "abelian" case m = 1, this
results from the cohomology sequences in the diagram

0 >Z • 0 > Θ* >1

(3.7) I
0 >Z ><€ >%* >1

together with the vanishing theorem

H«(A, 0) = 0 = W{A, V) (q>0) ,

and is expressed by the isomorphisms

H\A,O*) ^ HKA,^*) ^ H\A,Z) .

We will discuss two variants of this result. For the first, we denote by Khol(A)
and Ktov(A) the Grothendieck rings10 associated respectively to the holomorphic
and continuous vector bundles over A.

(3.8) Proposition. On an affine variety A, the mapping

Khol(Λ) -> Ktov(A)

is a ring isomorphism.

To give the second, we let M be an arbitrary complex manifold, and use the
notations

[A,M]hol, [A,M]
top

9 The theorems discussed in this section depend only on A being a Stein manifold.
10 An excellent informal presentation of Ktov(A) which contains all the information we

shall need is the notes of Bott [4].
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for the holomorphic homotopy classes of holomorphic maps from A to M, and
continuous homotopy classes of continuous maps from A to M respectively.11

(3.9) Proposition. For large N, the mapping

[A, Grass (m, N)]hol —> [A, Grass (m, N)]
I top

is an isomorphism of sets.
Here Grass (ra, N) is the complex Grassmannian of (N — ra)-planes through

the origin in CN(cf. [14]). This proposition results from (3.6) and the set iso-
morphisms

V e c d U ) s [A, Grass (m,N)]hol , Vect£pU) ^ [A, Grass (m,Λ0]top .

A final consequence of the Oka principle, as proved by Grauert, is that the
natural mapping

(3.10) [A, GL(m, C)]hol — [A, GL(m, C)] t o p

is an isomorphism of groups. Thus, e.g., in the abelian case m = 1 we have

(3.11) [A, C*]h o l ^ [A, C*] t o p ^ H\A, Z) ,

where the map

is given by

(dlog/)
i2πi

for a holomorphic mapping /: A —> C*. This generalizes to give a homomorphism

U , GL(m, C ) L - ff-V, Z)

given by sending a mapping / = (j19 , fm): ^ -> GL(m, C) c Cm X - X Cm

m
into the cohomology class of the differential form

which is (essentially) the Martinelli kernel constructed from the first column of

the matrix /. Because the mapping

π2m_λ{GL(m, C)) S Z

11 Two holomorphic maps ff A —>MQ= 1,2) are holomorphically homotopic if there
are a connected analytic space T and a holomorphic map F: T x A -> M such that
F(/i, -) = /i and F(t2>.) = /2 for / l f /2 € T.
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given by sending [/] e [S2m~\ GL(m, C)] t o p into

is an isomorphism (Bott), one might look for some analogue of (3.11) using

the complex structure on Ahol.

(c) Analytic K-theory and algebraic de Rham cohomology

As above we consider a smooth affine variety A, on which we denote re-
spectively by Ωq(Ahol) and Ωq(A&lg) the global holomorphic g-forms and global
rational, regular g-forms. Thus a holomorphic g-form φ e Ωq(Ahol) may have
an essential singularity along Ά — A, but a φ e Ωq(ASLlg) has only a finite pole
on this divisor. The (de Rham) cohomology of the respective complexes

> Ωq(Ahol) - Λ Ωq+1(Ahol) • . . . ,

!
β«+1(A.g) —

will be denoted by

Since A is a Stein manifold, we have

(3.12) HUAjJ^H*(A9O,

and the Grothendieck comparison theorem [10] gives

(3.13) HUA&lg) = HUAhol) .

We now wish to define directly a map

(3.14) dlog: Vect- (Ahol) - H™»(Ahol) .

To do this, we denote by Ωq the analytic sheaf on A of holomorphic g-forms
and let Ωq

c be the sub-sheaf of closed forms. The holomorphic Poincare lemma
gives

0 >Ωq > Ωq -L> Ωq+1 > o ,

and the exact cohomology of this sequence together with Hp(A,Ωq) = 0 for
p > 0 gives the isomorphism



ALGEBRAIC VARIETIES. I ( A ) 295

(3.15) #«U,β?) = ^UAoi)

To define the map (3.14), we will use (3.15) and define directly a map

(3.16) d log: Vect&W) - 0 H*(A, Ω«) .
q = 0

Let {Ua} be a poly cylindrical covering of A and ξ e Vect^ (A) a holomorphic
vector bundle given by holomorphic transition functions12 faβ: Ua Π Uβ —>
GL(m, C). Then the matrix-valued 1 -forms d log /αi3 = dfaβf~j define a 1-cocycle
(cf. Atiyah [1])

Let Pq(Al9 ,Aq)(Aj βgl(ra,C)) be the invariant, symmetric multi-linear
form which corresponds to the invariant polynomial Pq(A) given by

Then we may form the cup-product

and subsequently define

Under the isomorphism (3.12), we simply obtain the total Chern class of the
complex vector bundle ξ (cf. Atiyah [1]).

Now we recall the standard isomorphism

(3.17) ch: Kt0Ώ(A) ®zC-> H™n(A, C)

given by taking the Chern character of continuous vector bundles over the CW
complex A. We may combine (3.8), (3.14), and (3.17) into a big commuta-
tive diagram

jViOp\Sl) γyz \*s > Π. v-̂ i, \s )

(3.18)

in which all arrows are isomorphisms.
12 By definition, a poly cylindrical covering {Ua} of A is a locally finite covering of A

by open sets Ua each of which is biholomorphic to a polycylinder or punctured poly-
cylinder.
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The validity of the diagram (3.18) only depends on A being a Stein mani-
fold. To put in the algebraic structure, we combine (3.13) together with bottom
row in (3.18) to obtain a commutative diagram

(3.19)

in which all the solid arrows are isomorphisms. It certainly makes sense to ask
what we should put in for (?) to make (3.19) into a commutative diagram of
isomorphisms. It is easily verified that, if ξ e Vect2g (A) is an algebraic vector
bundle, then dlog ξ eHggn(AΛ l g) has13 only a finite order pole along A — A.
However, and this is one of our main points, there will be very many holo-
morphic, but non-algebraic, vector bundles ξ such that d log ξ has only a finite
order pole along A — A.

To obtain some idea of what (?) should be, we recall from classical function
theory the following elementary fact [19]:

Let /: C —> C* be an entire holomorphic function which omits the
(3.20) value zero. Then d log / is a rational differential form on C <=Φ / is

of finite exponential order.

Although we can only verify it in some very special cases, our main working
hypothesis is that (?) should be the ring Kf0(A) (x)z C constructed from holo-
morphic vector bundles of finite order. At any event, we can prove that (?)
must contain Kfm0 (A) (x)z C, so that finite exponential order is the least amount
of growth which we must have in order to have the refined Oka's principle with
growth conditions. To some extent then our main question is the following

(3.21) Problem. What natural conditions should be placed on a holo-
morphic vector bundle ξ e Vect™ol (A) in order that the Chern character
d log ξ € H%£n(Ahol) should, in a natural way, have only a finite order pole along
A-AΊ

Remark. Instead of defining Chern classes in cohomology, we may use
analytic Schubert cycles to define Chern classes in homology, in which case

13 This follows from the fact that an algebraic vector bundle ξ on an affine variety A
has an algebraic connection θ. The curvature Θ is a global, rational holomorphic 2-form
with values in End(£), and the equation

Σ Pq(d log ξ)**-* = άct(λlm + Θ)
Q = 0

shows that the Pq(d log ξ) have only finite poles along A — A.
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(3.17) becomes the isomorphism14

(3.22) ch: Ϊ M W ) ®zQ - Heγen(A,Q) .

Thus, over Q, all even-dimensional homology is represented by analytic cycles,
and furthermore homology is (essentially) the same as analytic equivalence (cf.
§4(e) below). Given an analytic cycle Z C A, the dual cohomology class
cl (Z) e Heγen(A, Q) is represented by a rational, holomorphic differential form
(cf. (3.20)). In this context, the problem (3.27) is:

. --. What (minimal) growth conditions on Z are consistent with this state-
ment concerning cl (Z)?

4. Some examples, comments, and questions

In this section we shall give several examples to illustrate how function theory
of finite order arises quite naturally from rather simple and basic problems in
algebraic geometry.

(a) Divisors on algebraic curves

Let A be an affine algebraic curve, and δ = nιxί + + nrxr (nj e Z) an

algebraic divisor on A. Then δ is always the divisor of a meromorphic func-

tion φ on A, but in general we cannot take φ to be a rational function.15 A

very natural question is how much growth must we allow on φ in order to have

(φ) = δΊ To answer this question, we first recall from § 2(c) that we may define

the order ρ(φ) of a meromorphic function φ e Jί{A) this is because there is a

unique smooth completion of A. If φ is rational, then p(φ) = 0 but not con-

versely. (The entire function 2 qn*zn, \q\ < 1, has order zero. Also, the entire
7i = 0

function cos V z has order 1/2, which shows that p(φ) need not be an integer
it may, in fact, be any nonnegative real number.)

14 Throughout this paper H^A) denotes homology with infinite chains (non-compact
support). The Poincare-Lefschetz duality is then the isomorphism

s Hq(A)

(any coefficients are O.K.).
15 This latter statement may be seen as follows: Let A be the unique smooth comple-

tion of A and write A = A — {zi,' ,ZJV} Denote by J(A) the Jacobian variety of A,
and let ψ: A —> J(A) be the usual mapping of A into 7(v4)(choose our base point to be
Zi). Then, by Abel's theorem, δ is the divisor of a rational function <=̂>

ψ(δ) = hψizύ + - - + INHZN)

for suitable integers /«. It follows that, if the genus g(A) > 1, then almost all 5 are not
divisors of rational functions on A.
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(4.1) Proposition, (i) We may always find φ € Jl{A) such that (φ) = δ
and the order p(φ) < 2g where g is the genus of A. This estimate is the best
possible, (ii) // φ is any junction of finite order such that (φ) = δ, then p(φ) is
an integer and ρ(φ) = 0 <=^> φ is rational.16

(4.2) Remark. This proposition may be thought of as suggesting two gen-
eral principles: (i) If, on an algebraic variety A, a Cousin-type problem is given
in the algebraic category and has a solution in the analytic category, then it has
a solution using function theory of finite order, (ii) Having solved the Cousin-
type problem in the finite-order category, the obstruction to solving it in the
algebraic category is measured by the Hodge structure on H*(A, C).

We shall be extensively discussing these two principles and variations on
them. The proofs of some special cases will be sketched in § 5.

(b) The Oka principle with growth conditions

Let A be an n-dimensional smooth affine algebraic variety, and V a A an
algebraic divisor. If the homology class

[V] € H2n_2(V, Z)

of V is zero, then V is the divisor of a meromorphic function φ on A. As be-
fore, we cannot in general take φ to be a rational function, and we have the

(4.3) Proposition, (i) We may find a meromorphic function φ of finite
order such that (φ) = V. (ii) We may always take φ to be a rational function
<=> H\A, C) = 0, where A is any smooth completion17 of A.

This proposition raises the following question: Suppose that A is a Λ-ring
(§ 2(b)) and that V C A is an analytic divisor which is of finite Λ-order; i.e.,
we have

iV(F,r) = 0«(r)) «<= Λ)

(cf. (2.8)). Suppose furthermore that the Cousin problem for V has a topolo-
gical solution, by which we mean that V = (φ) is the divisor of a continuous
function on A. (This is the same as saying that [V] = 0 in H2n_2(V, Z).) Then
can we write V = (φ) where φ € JίA(A) is a meromorphic function having finite
il-order? In other words, what we are asking is a special case of whether the
Oka principle with A-growth conditions is valid for A ? Referring to Examples
1-3 in § 2(b) of Λ-rings, we see that this special case of the Oka principle is
false in the first case (the algebraic category), and by Grauert is true in the
third case (the analytic category). We shall see later (§5) that this Oka

16 The results given in this section follow from Theorems I-III in §5.
17 The group H\A,C) is independent of the particular smooth completion A of A.

In general, the vector space H*\A) of everywhere holomorphic g-forms is independent
of Z, and H\A, C) s
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principle is also valid in the second case (finite order category). From (4.3) we
have the

(4.4) Proposition. On an affine algebraic variety A, the function theory
of finite order is the smallest category which contains the algebraic function
theory and for which the Oka principle with Λ-growth conditions might be true.

This whole business is a little reminscent of taking the algebraic closure of
ordinary fields. Thus every polynomial equation with coefficients in Q has roots
in C, but there are certainly algebraically closed fields containing Q which are
much smaller than C. To some extent, the author's working hypothesis may
be stated as saying that the Oka principle with Λ-growth conditions is valid
provided that there are no Hodge conditions in HξR(AdlosΛ). In other words,
once we go up to function theory of order A for which the Hodge conditions
disappear, then this function theory should admit solutions to all Cousin type
problems which may be solved topologically. It is also the author's feeling that
the function theory of finite order is, so to speak, the Cousin-closure (like alge-
braic closure) of algebraic function theory. The rough parallel with ordinary
fields is therefore

Q <-> {algebraic category} ,

Q <-> {finite order category} ,

C <-> {analytic category} .

(c) Homotopy classes of mappings into C*

Let A be an affine variety, and M a projective variety. Then we have defined
what it means for a holomorphic mapping /: A —> M to have order A for a λ-
ring A (§ 2). Two such mappings f19 f2 will be said to be Λ-homotopic if there
are an algebraic variety T and a holomorphic mapping F: T x A —> M such
that F has order A and specializes to fλ and f2 at points tx and t2 in T. We denote
by [A,M]Λ the Λ-homotopy classes of mappings of order A from A to M.
Referring to Examples 1-3 of §2(b), we will use the notations [^4,M]alg,
[A,M]ίmOm, and [A,M]hol for the three examples18 of brings A. We recall from
(3.11) the isomorphisms

[A, C*]h o l = [A, C*] t o p ςz H\A, Z) .

(4.5) Proposition, (i) The mapping [A, C*] f.o. —> [A, C*]h o l is always an

isomorphism, (ii) If A —Ά — D where D is sufficiently ample smooth divisor,

then the mapping [A, C*]aig-> [A, C*] f.o. is an isomorphism φ=^> Hι(A, C) = 0.

Remarks. We will explain what it means for D to be "sufficiently ample".

Letting L —> A be the line bundle determined by D, we should have that

18 It is not at all clear that this definition of [̂ 4,M]hoi coincides with the one given in
§3(b). However, for the cases M = GL(m,C) and M = Grass (m,N), these definitions
agree (using Grauert's result again), and these are the only situations which we shall consider.
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H\A,Ω\(kL)) = 0 for k > 1. This proposition gives another example where
the finite order Oka principle holds, and where the obstruction to dropping
down to the algebraic category is measured by the Hodge structure on
H*(A, C). The author does not know if Proposition (4.5) remains valid with
GL(m, C) replacing C* (cf. (3.10)). It is true if we replace C* by a solvable
algebraic group, as follows from (4.5) together with the results in § 4 below.

(d) Analytic curves on algebraic surfaces

Let D be a nonsingular plane curve of genus g, and A — P2 — D the affine
algebraic surface obtained by deleting D from P2. Then

(4.6) H\A, Z)9Z ZΘ Θ Z® Z/dZ ,

where d is the degree of D (thus g = \{d — \){d — 2)). The following is easy
to verify:

(4.7) Lemma. In (4.6), the only part of H2(A,Z) which is represented
by an algebraic curve is the torsion piece Z/dZ.

Thus, on the very simple affine surface A, there are 2g independent classes
in H2(A,Z) which are carried by analytic, but not algebraic, curves (cf. the
cohomology sequences arising from (3.7) which give the isomorphism

(4.8) Proposition. The free part of H2(A,Z) is represented by curves
having finite order.

We will not give a proof of (4.8) here (cf. § 5 below), but we will outline a
proof of an analogous example which illustrates very well why we may realize
all of the homology by analytic curves of finite order. Thus, suppose that Ά is
an algebraic elliptic surface (cf. Kodaira [16]) which is represented as a fibre
space of elliptic curves over P1 by a mapping

Let Et = π~\t), and assume for simplicity that the singular fibres are irreducible
and have as singularity only a single node (they are singular fibres of type /x

in Kodaira's list). Assume also that E^ is nonsingular, and let A = A — E^
so that we have the representation

(4.9) π:A-*C.

There is an exact sequences of sheaves over Pγ (cf. [16, Theorem 11.2]):

(4.10) 0 • R\JiZ) >f ^9 > 0
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whose terms have the following interpretation: ^ is the sheaf of groups19 over
C of holomorphic cross-sections of the fibre space of complex Lie groups as-
sociated to (4.9); β is the corresponding locally free coherent analytic sheaf
of Lie algebras and RlJiZ) is the Leray direct image sheaf for the constant
sheaf Z over A. It β{k) are the sections of β which have a pole of order k
at t = oo, then H\PX, f(k)) = 0 for k > k0. Using this, the exact cohomology
sequence of (4.10), together with the degeneracy of the Leray spectral sequence
of (4.9), gives the exact sequence

(4.11) H\A, Z) -» 0 > k0)

The geometric interpretaton of (4.11) is the following: Every cohomology
class in H\A, Z) comes from an analytic curve C traced out by a section a of
^ —• Px such that: (1) a is holomorphic over C, and (ii) near t = oo, σ is the
exponential of a section of β which has a pole of order k at t = oo.

Fig. 2

We may use the Weierstrass functions p and pf to write out explicitly what all
of this means, and it turns out exactly that the graph of σ is a curve of finite
order on A.

By refining this argument a little, we find that, in general, the best possible
estimate is that C should have finite order zero if h2^(A) = 0, and finite order
one if h2>°(Ά)Φθ (cf. § 5 for general results which explain this).

(e) Algebraic, analytic, and homologίcal equivalence

Let A be a smooth affine variety. The notion of algebraic cycles on A and
algebraic equivalence between such cycles is well known.20 The graded group
of algebraic equivalence classes of algebraic cycles will be denoted by

n

19 Thus the fibre ^ is the elliptic curve Et in case the latter is nonsingular, while <gt

is a multiplicative group C* in case Et has a node. There is a general discussion of
this situation in [7].

20 The fact that A is not complete means, among other things, that an effective algebraic
cycle may be algebraically equivalent to zero. In particular, a 0-cycle is always alge-
braically (but usually not rationally) equivalent to zero. A discussion of homological vs.
algebraic equivalence is given in [7].
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the grading being by codimension of cycles. Similarly, we may define

to be the analytic cycles modulo analytic equivalence.
In general, if A is a Λ-ring, then we have defined what it means for an ana-

lytic sub-variety V C A to have order A. We may define analytic equivalence
of order A by considering analytic cycles on the product T X A of A with an
algebraic variety T (the parameter variety). This leads to the graded group

of analytic cycles of order A modulo analytic equivalence of order A. Referring
to Examples (i)-(iii) of Λ-rings in § 2(b), we obtain, respectively,

^ * 0 4 alg) 5 ^*04f .o. ) 9 ^ * 04hoi)

If A c A', there is an obvious map

which in the above cases leads to the following maps

(4.12) ^*04aig) >V*(Af.o.) ,

V (Afo)-^UV 04hoi) ,

^*Whoi) ®ZQ —^ HeΎen(A,Q) .

Regarding these maps, the following is known:

(i) βλ: tf^A^g) —> ̂ ι{Aί0) is injective but not surjective (cf. § 4(a))
(ii) γ1: ^ι(A{o) —> ̂ ι(Ahol) is an isomorphism (cf. § 5)

,* , ̂  (iii) ^^α:^: ^*04aig) ® z δ ~> Heyen(A,Q) is, in general, neither injec-
tive nor surjective (cf. [7] this is essentially the statement that
homological and algebraic equivalences differ if codim > 1): and

(iv) δ*: ^*04h oi) ®zQ -> HβΎen(A,Q) should be an isomorphism.21

21 This would follow from (3.8) if we know that every analytic sub-variety Z' on A
was analytically equivalent to a sub-variety Z such that a bounded number of holomor-
phic functions locally generate the ideal sheaf Jz of Z. In this case we could make a
finite resolution of Jz by locally free sheaves. It seems possible to the author that a
category argument might be used to prove this statement about Z'.
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Example. Referring to (iii) and (iv), we may find a 3-dimensional affine
variety A and two smooth algebraic curves and Q and C2 on A such that C1 is
analytically, but not algebraically, equivalent to C2. It is certainly an intriguing
question as to just how transcendental we must allow the analytic curves used
to deform Cλ into C2 to be.

At this point we may give one of the main problems which has arisen in
function theory of finite order. Namely, both of the graded groups

are graded rings, the product being induced by putting cycles in general posi-
tion and then intersecting them. However, it seems to be unknown whether the
intersection V- V of two sub-varieties V and V, which are assumed to be in
general position and each of which has order A, again has order A.

Problem A. Does the intersection of cycles induce a ring structure on

Remarks. This question has been discussed in appendix 2 to [9], where it
is observed that it will suffice to take either V or V to be algebraic. Assuming
that V is algebraic, we may find a smooth algebraic embedding A a CN such
that V is contained in the intersection of A with a linear space. Utilizing a
generic projection π: A —> Cn, we may reduce our problem (in the finite order
case) to the following

(4.14) Question. Let V c Cn be a purely /:-dimensional analytic sub-
variety such that the Euclidean area

where V[r] = {ze V: \\z\\ < r} and φ = ( Σ ^ Λ dl\ is the standard
2 A\J = I I

Kahler form on Cn. Suppose that the residual intersection W — V Ό has pure
dimension k + I — n. Then do we have

for some vΊ

Along the lines of the above discussion, the author would like to recall here

the problem posed by Serre [22]: Let E&lg —> Cn be an algebraic bundle. Then

is EΆlg algebraically trivial? Now there will be a holomorphίc mapping

F: Cn X C -> Grass (m, N)

such that: (i) F( , 0) is rational and realizes Z?alg, and (ii) F(>, 1) is a constant
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map. We may then ask how transcendental F must be?

(f) The K-ring of a punctured polycylinder

Perhaps the simplest affine algebraic variety for which KΆlg(A) Φ Khol(A) is
the rational variety

Λn = C* x . . . x c * , or equivalently ,

A n = { ( z l 9 '",zn)eCn: z ^ - Z n Φ O ) .

In this case, KΆlg(An) = O,22 but

(4.16) Khol(Λn) = H°™(An, Z)ΦO (n > 2) .

To describe Khol(An), we observe that Heγen(An, Z) is generated by H\An, Z)

^ Z ® . For i < j , the differential form

(4.17) ωi]=

gives a class in H2(An, Z), and indeed the ω o (/ < j) give a basis for this group.

Let F c C b e the lattice of Gaussian integers {m + n«J — 1: m,ne Z}.

(4.18) Definition. The divisor Dtj on An is defined by the equations23

(4.19) Proposition. The dual cohomology class of

is
22 This follows from the well-known fact (cf. Hodge-Pedoe [14]) that every algebraic

sub-variety of Pn is rationally equivalent to a linear subspace (counted multiply). Thus
every algebraic cycle on An may be rationally * 'pushed to infinity".

23 A more geometric description of Dij ts the following: Let E = C/Γ be the elliptic
curve with complex multiplication "V^A" given by the Gaussian lattice Γ. Then there
is a commutative diagram of holomorphic mappings

C*

where π(z) = (log z)/2πi(Γ) (z e C*). Let Zij C Ex-.-xE be the graph of multiplication
n

"V^T" between the ith and j t h factors (thus Zυ = {(zi, , z\, - , V^ϊz{, , zw) mod
ΓX XΓ}). Then £>iy = π-



ALGEBRAIC VARIETIES. l(A) 305

Using this proposition, we see that the divisors Dίό generate Khol(An), and
the relations are exactly those of the {ωiS} in Heγen(An, Z) . The order function
N(Dij9 r), which we recall was defined by (2.8) and which measures the amount
of transcendence of the analytic variety Dij9 is given by

(4.20) Proposition, (i) N(Dij9 r) ~ (log r)\ and (ii) // D'tJ is any analytic

divisor on An with [D^] = [ D o ], then

lim
^ (logr)2

Remarks. We recall from (2.9) that an analytic sub-variety V C An is
algebraic 4=> N(V, r) = 0(log r). Thus, (i) says that Dtj is transcendental and
has finite order zero, and (ii) states that any other divisor in the same homology
class as DtJ must be "at least as transcendental" as Dtj.

In the case of a punctured polycylinder

P*(k) = {(z,w)eCk X Cn~k: 0 < \Zj\ < 1, |wβ| < 1} ,

we may let Dfj be the divisor

and obtain
(4.21) Proposition. The groups Khol(P*(k)) ^ Jf/even(F*(A:)? Z) are gen-

erated by the divisors Dfj (I < i < j < k).
Remark. This proposition is somewhat analogous to the lemma of Atiyah-

Hodge [2] concerning the local analytic de Rham group Hξn(Pξol). Roughly
speaking their lemma states that the natural mappings24

(4.22) iϊ&(P2g) - HUPD -> H*(P*, C)

are isomorphisms. Our lemma suggests that the natural mappings

(4.23) KimOXP*) -> i^hol(P*) -> i^top(P*)

should be isomorphisms, even though we have not yet defined the group

κt.oχp*).
Using Proposition (4.18), we may complete our definition of the groups

J(Jf*(k)) for a general punctured polycylinder (cf. Definition (2.11) for the
case k = 1). For simplicity we shall only consider the Λ-rings given by Exam-

ples (i)-(ϋi) in § 2(b). In the first case, φ e J((P*(k)) will be in JίΛ{P*(k)) <=φ

(i) the divisor (φ) extends to analytic sub-variety in the whole polycylinder P
24 Hr>R(.pΐig) means cohomology computed from the holomorphic differentials on P*

which have finite poles along the divisor ZI ZΛ; = 0.
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and (ii) because of (i) we will have a factorization φ == η/ψ where η, ψ are

holomorphic in P*(k), and we may proceed as before. To give the finite order

case, we let p(w) be the Weierstrass p-function for the lattice 2KΛ/ — 1Γ; and

we define meromorphic functions pi3 on P*(k) by

Pij(z,w) = pQog Zt — \l — 1 log zj) (i < j) .

It follows from Proposition (4.21) that any meromorphic function
φeJ?(P*(k)) has a factorization

(4.24) <s»=Π(P«)ι"(-?-

where η, ψ€0(P*(Λ)). For any ^-ring τl which contains {l,r}, we say that
0 e ^T(P*(*)) is in JlA{P*{Ji)) <=^> ̂  and ψ € ΘΛ(P*(k)) in the factorization
(4.24).

(4.25) Proposition. For the three λ-rings in § 2(b), a meromorphic func-
tion φ on P*(k) is in JίΛ(P*(k)) φ=> the order function (2.6) satisfies25

Added in proof. Question (4.14) has recently been shown to be false by
M. Cornalba and B. Shiftman.

PRINCETON UNIVERSITY

25 Observe that (2.6) is well-defined even if η is meromorphic. This is because locally

η = ξ/ζ is the quotient of holomorphic functions and dii A ^ = 3§log(|£|2 + |ζ | 2).
(1 + 13? | 2) 2




