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THE CONJECTURES ON CONFORMAL
TRANSFORMATIONS OF RIEMANNIAN MANIFOLDS

MORIO OBATA

Introduction

Let (M, g) be a Riemannian /t-manifold with Riemannian metric g. Through-
out this paper manifolds under consideration are always assumed to be con-
nected and smooth.

For a smooth function p on M, a Riemannian metric e2pg is said to be con-
formally related, or conformal, to g. Let h be a smooth map of (M, g) into
another Riemannian manifold (M\ g'). If the Riemannian metric h*g' induced
on M by h is conformal to g, then h is called a conformal map of (M, g) into
(M^gO It is well-known that h is conformal if and only if it preserves the
angle between any two tangent vectors, h remains conformal under any con-
formal changes of Riemannian metrics on M and M' as well. If h is a conformal
difϊeomorphism of (M,g) onto (M',gO, then it is called briefly a conformor-
phism of (M, g) onto (M', g'), and (M, g) is said to be conformorphic to (Mf, g')
Via /z. If furthermore (M, g) = (M',gO, then /ι is called a conformal trans-
formation or a conformorphίsm of (M, g).

It is known that the group C(M, g) of all conformorphisms of (M, g) is a Lie
group with respect to the compact-open topology. Let C0(M, g) denote the con-
nected component of the identity of C(M, g). If g and g are conformal to each
other, then C(M, g) = C(M, g). The group I(M, g) of all isometries of (M, g)
is a closed subgroup of C{M, g). A subgroup G of C(M, g) is said to be essen-
tial if G is not contained in I(M, e2pg) for any smooth function p on M, and is
said to be inessential otherwise.

In this paper, unless otherwise stated, we always assume dim M > 2, although
some of our propositions are valid even for dim M = 2.

There have been two conjectures:
Conjecture I. Let (M, g) be a compact Riemannian n-manifold. Then

C0(M,g) is essential if and only if (M,g) is conformorphic to a Euclidean n-
sphere Sn.

Conjecture II. Let (M, g) be a compact Riemannian n-manifold with con-
stant scalar curvature k. Then C0(M, g) is- essential if and only if k is positive
and (M, g) is isometric to a Euclidean n-sphere Sn(k) of radius 1 / \l k .
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In each of the conjectures, "if" part is obvious.
Conjecture I has been proved under some additional conditions, for example,

in the following cases:

(a) C0(M, g) contains a one-parameter subgroup generated by a gradient
vector field (Ishihara-Tashiro [11], Tashiro [33]).

(b) C0(M, g) is transitive on M (Nagano [21], Ba [2]).
(c) C0(M, g) contains a one-parameter subgroup generated by a vector field

with singular points at each of which its divergence does not vanish (Avez [1],
Obata [26]).

(d) (M, g) is conformally flat and has a finite fundamental group (Obata
[27]).

(e) (M, g) is analytic and has a finite fundamental group (Ledger-Obata
[16]).

Recently Lelong-Ferrand [17] has proved Conjecture I by using a technique
involving quasi-conformal transformations. In the present paper Conjecture I
will be proved along with the proof in [16] indeed, the assumptions of ana-
lyticity and finite fundamental group will be removed. Our method is different
from Lelong-Ferrand's in idea.

As for Conjecture II there have been also many results under some additional
conditions, for example, in the following cases:

(f) (M, g) is an Einstein space (Yano-Nagano [31]).

(g) (M, g) is a Riemannian manifold with parallel Ricci tensor (Tanaka [31],
Nagano [22]).

(h) (M, g) is homogeneous (Goldberg-Kobayashi [6], [7]).

(i) The magnitude of the Ricci tensor or the curvature tensor is constant
(Lichnerowicz [19], Barbance [3], Hsiung [9]).

(j) C0(M, g) contains a one-parameter subgroup generated by a gradient
vector field (Ishihara-Tashiro [11], Obata [24], [25], Lichnerowicz [19],
Tashiro [33], Yano-Obata [36], Bishop-Goldberg [4], Tanno-Weber [32]).

It should be remarked that in some of the above results, compactness is re-
placed by a weaker condition of completeness, and an essential conformal
vector field is replaced by a nonisometric conformal vector field. In most of the
above cases the additional conditions are made to reduce the problem to the
case of a conformal vector field which is a gradient of some function this situ-
ation is typical in an Einstein space. A gradient conformal vector field is essen-
tial in our terminology.

Once Conjecture I is proved, the manifold under consideration in Conjecture
II may be thought of as an π-sphere with a Riemannian metric which is con-
formal to the standard one and has constant scalar curvature. Thus Conjecture
II follows from a result on a conformal change of metrics, namely, in the above
case such a conformal metric is of constant (sectional) curvature (Proposition
6.1).
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This paper is divided into two parts, one for Conjecture I and the other for
Conjecture II.

§ 1 contains some preliminary facts about the conformal structure on a
Riemannian manifold. In particular, by following the theory of G-structures the
topology of the group C(M, g) of all conformorphisms will be given. Proofs are
omitted mostly because they are just translations of known results in the gen-
eral theory.

§ 2 contains several propositions on essential groups of conformorphisms,
each of which will be used later. Whenever the references are known, the proofs
are omitted.

In § 3, known results on conformorphisms of a Euclidean sphere will be
quoted mainly from [26], and an improvement of a theorem in [27] will be given
and proved.

In § 4, after showing that if C0(M, g) is essential then (M, g) is con-
formally flat, we shall prove Conjecture I by using the same idea as that given
in [16].

In Part II, after preparing general formulas for conformal changes of metric
in § 5, a special case for a Euclidean sphere will be considered in § 6, which
seems to be a clue for the solution of Conjecture II.

In Part I and consequently in Part II as well, the following theorem of Kuiper
[14] will be of essential use, in particular, in the proof of Proposition 3.4.

Theorem K. A conformally flat simply connected Riemannian n-manίfold
is conformorphic to an open submanifold of a Euclidean n-sphere.

An outline of this paper has been announced in [28].

PART I

1. Preliminary remarks

Let (M,g), or simply M, be a Riemannian ^-manifold with Riemannian
metric g. From the general theory of G-structures of finite type (Kobayashi [12],
[13], Sternberg [30]) it follows that the group C(M,g) of all conformor-
phisms of (M, g) is a Lie group with respect to the compact-open topology,
since a conformal structure is indeed of finite type for n > 2. We shall give
some necessary facts in our terminology. A conformal frame at a point p of M
is, by definition, a triple b — (λ, b0, μ), where λ is a positive number, bQ an
orthonormal frame with respect to the Riemannian structure on M, and μ a non-
zero tangent vector at p (Cartan [5]). The set P of all the conformal frames of
M is equivalent to a sub-bundle of the bundle P2(M) of 2-jects of M (Ogiue
[29]). The bundle P is called the conformal frame bundle of M, which is known
to be completely parallelizable, i.e., to enjoy an {e}-structure. A conformorphism
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of (M,g) is identified with a fibre preserving diίϊeomόrphism of P\M) leaving
P invariant, i.e., with an automorphism of the {e}-structure of P by a prolonga-
tion. By a theorem of Kobayashi (Kobayashi [12], [13]; Sternberg [30]) on
automorphisms of a manifold with complete parallelism, we can state the
following propositions.

Proposition 1.1. C(M,g) acts on the conformal frame bundle P without
fixed points.

Proposition 1.2. Let {fk} be a sequence of elements of C(M, g) such that
fk(b) —•/(&) for some conformal frame b on M and some f<εC(M,g). Then
/* -> / in the topology of C(M, g).

Proposition 1.3. Let {fk} be a sequence of elements of C(M, g) such that
fk(b) —* bf for some conformal frames b and bf on M. Then there exists an
f eC(M,g) such that f(b) = b'.

As an easy consequence of these propositions the following is obtained.

Proposition 1.4. Let Mf be an open submanifold of M, which is invariant
under the action of C(M, g). Then C(M, g) acts on (M', g') effectively as a closed
subgroup of (M', g'), where gf is the restriction of g to M''.

To close this section, for later use we give a condition for a group of iso-
metries to be compact.

Proposition 1.5 {Ledger-Obata [16]). A closed subgroup G of I(M,g) is
compact if and only if there exists a point p eM such that the orbit G(p) through
p is compact.

2. Essential groups of conformorphisms

A subgroup G of C(M, g) is said to be essential if G is not contained in
I(M, e2pg) for any smooth function p.

Proposition 2.1 (Ishihara [10]). An essential group of conformorphisms is
not compact.

Since the group of isometries of any compact Riemannian manifold is com-
pact, the converse is true for a compact Riemannian manifold. More precisely,
we can state in the following way.

Proposition 2.2. Let (M, g) be a compact Riemannian manifold. Then a
closed subgroup G of C(M, g) is essential if and only if it is not compact.

By a theorem of Montgromery and Zippin [20], any noncompact Lie group
of positive dimensions contains a closed one-parameter subgroup isomorphic
to the additive group of reals. Therefore by Proposition 2.2 we obtain

Proposition 2.3. // CQ(M, g) is essential on a compact Riemannian manifold
M, then it contains a closed essential one-parameter subgroup.

The conformal curvature tensor W of type (1,3) on (M, g) is a conformal
invariant and therefore is invariant under the action of C(M, g). It is well-known
that if W vanishes identically and dim M > 3, then (M, g) is conformally flat.
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If dim M = 3, then W automatically vanishes and it is known that there is a
tensor field W of type (0, 3) constructed from the Riemannian structure g such
that (M, g) is conformally flat if and only if W vanishes identically. W is a
conformal invariant and is invariant by the action of C(M, g) as well in case
dimM = 3 (see, for example, Yano [34]).

Proposition 2.4 (Hlavaty [8], Nagano [21]). // (M, g) has non-vanishing
conformal curvature tensor, then C(M, g) is inessential.

In fact, || W\\ g is invariant under the action of C(M,g), and so is ||PiH|2/3g
for dim M = 3, where \\W\\ denotes the magnitude of W with respect to g.

Let G be a one-parameter group of conformorphisms, and X the vector field
defined by G, which is called a conformal vector field. X is obviously invariant
under the action of G itself. A fixed point of G is a zero, or a singular point,
of X.

Proposition 2.5 (Avez [1], Obata [26]). An essential one-parameter group
of conformorphisms always has a fixed point.

In fact, if G has no fixed point, then X never vanishes. Since X is invariant
under the action of G, so is g = gj\\X\\2, which is conformal to g. Thus G is
a subgroup of I(M, g).

Proposition 2.6. Let (M, g) be a Riemannian manifold, (M, g) a Rieman-
nian covering manifold, and π'.M-^Mthe projection with π*g = g.

(i) Then C0(M, g) acts on M as a closed subgroup of C0(M, g).
(ii) // a closed one-parameter subgroup G is essential on M, then so is it

on M.

Proof, (i) By the covering homotopy theorem any one-parameter sub-
group of CQ(M, g) acts on M. Thus we have a map a: C0(M, g) -^ CQ(M, g)
with π o a(f) = f o π for all / e CQ(M, g). By Proposition 1.1, a is injective. By
Propositions 1.2 and 1.3 it is easy to see that a sequence {fk} converges in
CQ(M, g) if and only if {a(fk)} converges in C0(M, g). Thus a is continuous and
closed.

(ii) Let G be a closed one-parameter subgroup of C{M, g), which is essential
on M. To show that G is essential on M, assume the contrary, where we write
simply G instead of a(G). Let h be a Riemannian metric on M conformal to g
such that G C /0(M, h). By Proposition 2.5, G has a fixed point p on M, and
thus any point p of M covering p is a fixed point of G on M. Therefore G is
contained in the isotropy subgroup of I(M, h) at p, which is compact. Since G
is closed, it is compact, contrary to our assumption that G is non-compact.
Hence the proposition is proved.

Next, we consider a sufficient condition for a one-parameter group G of
conformorphisms to be essential. Let X be the conformal vector field defined
by G, and assume that G has fixed points. It is known that the values of the
divergence φ of X at the fixed points are unchanged by any conformal change
of metric, even though φ itself changes as a scalar function. So, if G is in-
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essential, then the divergence must vanish at each of the fixed points of G, be-
cause any Killing vector field has vanishing divergence. Hence we have

Proposition 2.7 (Obata [26]). // a conformal vector field has non-vanishing
divergence at one of its singular points, then it is essential.

However, it should be remarked that on Sn there exists an essential conformal
vector field with vanishing divergence at each of its singular points.

The following has been proved.
Proposition 2.8 (Avez [1], Obata [26]). // a Riemannian manifold M ad-

mits a one-parameter group of conformorphisms with fixed points at each of
which the divergence of the corresponding vector field does not vanish, then M
is conformorphic to a Euclidean n-sphere Sn or a once-punctured n-sphere
Sn - {p.}.

3. Conformorphisms of Sn

As a model of Riemannian manifold admitting an essential group of con-
formorphisms, we consider a Euclidean ^-sphere Sn with standard metric and
list some known facts for later use.

Proposition 3.1 (Ledger-Obata [16]). A local one-parameter group of local
conformorphisms of Sn can be extended uniquely to a global one-parameter
group of global conformorphisms.

This is based on a fact that Sn is analytic and simply connected.
A classification of essential one-parameter groups of conformorphisms is

made by the following.
Proposition 3.2 {Obata [26]). Let G = {ft} be an essential one-parameter

group of conformorphisms of Sn, and X the vector field defined by G. Then G
has one of the following properties.

(i) G has exactly one fixed point p0 at which the divergence of X vanishes,
and the orbit G(p), for any p eSn, satisfies

lim ft(p) = p0

(ii) G has exactly two fixed points p0 and p^ at each of which the diver-
gence of X does not vanish and the orbit G(p), for p ζSn — {p0, p^}, connects
p0 and p^.

Proposition 3.3. Let M be an open submanίfold of Sn, which is invariant
by a one-parameter group G of conformorphisms of Sn. If G is essential on M,
then M is either Sn itself or Sn — {p^}.

Proof. Since G is essential on M, so is it on Sn. Then Proposition 3.2 im-
plies that G has at most two fixed points on Sn. On the other hand, G has at
least one fixed point on M by Proposition 2.5. Thus by Proposition 3.2, M is
either Sn or Sn - {p^}.

Proposition 3.4. Let (M, g) be a conformally fiat Riemannian n-manifold.
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It there is a closed essential one-parameter subgroup G of C0(M, g), then M is
conformorphic to either Sn or Sn — {p^}.

Proof. Take the universal Riemannian covering manifold (M, g) of (M, g).
Then (M, g) is a simply connected conformally flat Riemannian manifold, and
is therefore conformorphic to an open submanifold N of Sn by Theorem K
(Kuiper [14]). Since G is closed in C0(M, g) and essential on M, so is it on M
by Proposition 2.6. By the conformorphism between M and N, G acts on N,
and by Proposition 3.1 the action is extended to Sn. Then by Proposition 3.3,
N is Sn itself or Sn — {pM}. Thus (M, g) is conformorphic to either Sn or

Sn - {p.}.
The fixed points of G on M are exactly the points of M covering the fixed

points of G on M. Since G has at most two fixed points on M, M is M itself
or a double covering of M. We are going to show that M itself is simply con-
nected.

If M is a double covering of M, then G must have two fixed points on M,
both of which cover a single fixed point of G on M. Then by Proposition 3.2
the corresponding vector field X on M has nonvanishing divergence at each of
these fixed points on M, and so does the corresponding vector field X on M.
Thus by Proposition 2.8, M itself is conformorphic to Sn or Sn — {pTO}, each of
which is simply connected, a contradiction.

Proposition 3.5. Let (M, g) be a compact conformally flat Riemanniann
n-manifold. If CQ(M, g) is essential, then M is conformorphic to Sn.

Proof. Since M is compact, and CQ(M,g) is essential, by Proposition 2.3
there is a closed essential one-parameter subgroup. Then by Proposition 3.4,
M is conformorphic to Sn or Sn — {p^}. Since M is compact, it is conformorphic
to Sn.

4. Conjecture I

Theorem I. Conjecture I is a true.
On account of Proposition 3.5 we have only to show that (M, g) under con-

sideration is conformally flat. Thus the following Proposition 4.1 together with
Proposition 3.5 gives the proof of Theorem 1.

Proposition 4.1. Let (M, g) be a compact Riemannian manifold with the
essential group C0(M, g) of conformorphisms. Then (M, g) is conformally flat.

Proof. Assume that (M, g) is not conformally flat, and let N={p e M: Wv

Φ 0}. In case dim M = 3, N = {p e M: Wp Φ 0}. Then N is an open subset
of M, and any connected component No of N is an open submanifold of M.
Since W, as well as W for dim M = 3, is invariant under the action of C(M, g),
it follows that N is fixed under this action. Hence No is fixed under the action
of C0(M,g). Let g0 be the restriction of g to No. Then by Proposition 1.4,
C0(M, g) acts on No effectively as a closed subgroup of C0(N0, g0), which is
identical with the group I0(N0, g0) of isometrics for some gQ conformal to g0 by
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Proposition 2.4. Since CQ(M,g) is essential, by Proposition 2.3 it contains a
closed essential one-parameter subgroup G. Then G is closed in 70(iV0, gQ),
and hence the orbit G(p), for p eNQ, is a closed submanifold of No. Since G is
closed in ίo(iΫfl) g0) and noncompact, it follows from Proposition 1.5 that G(p)
is noncompact for any p e No and is difϊeomorphic to G itself by the natural
projection G —• G(p).

Let X be the conformal vector field on (M, g) defined by G. Then X is no-
where zero in NQ, since G(p) is difϊeomorphic to G.

Now on M we put

(F(p) = \\X(g)X(g)X(g)W\\ if dim M = 3) ,

where we write | |Γ | | for the magnitude of a tensor Γ with respect to g.
Since ̂  and W (or PF if dim M = 3) are invariant under the action of G,

so is X®X(g)W (or X(g)X(g)X(g)W it dimM = 3). As F is ot type (3,3),
its magnitude is invariant by G as well. Thus F is a nonzero constant on G(p),
p e No. NOW take q e Cl G(p), /? e No, the closure of G(p) in M. Then, by the
continuity of F, F is a nonzero constant on Cl G(p) so that F(^) Φ 0. Thus
^ ^ 0 (or Wq Φ 0 if dim M = 3) and <gr e iV". Since G(p) is closed in No, we
have q e G(p). Thus G(/?) is closed in the compact manifold M and hence is a
compact submanifold of M and No as well. Since G is a closed subgroup of
Zo(iVo, f O)J it follows from Proposition 1.5 that G is compact and so we have a
contradiction. Thus W (and W if dim M = 3) must vanish identically and M
must be conformally flat.

Remark. A Euclidean π-sphere has the essential group of conformorphisms,
and so the "if" part of the conjecture is obvious.

PART II

5. General formulas for conformal changes of metric

Let M be a Riemannian ^-manifold. With respect to a local coordinate

system we use gij9 {»},Fί, KkJi\ KH = Khji

h,K = K3ίgi\ and k =

K/[n(n — 1)], to denote, respectively, the metric tensor, the Christoffel symbols

formed with gJi9 the operator of covariant differentiation with respect to j

the curvature tensor, the Ricci tensor, the contracted curvature scalar and the
scalar curvature of M. Put

(5.1) Gj^Kjt-KgjJn,
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which measures the deviation of M from being an Einstein space.
Consider a conformal change of metric

(5.2) g% = e^gjί .

When Ω is a quantity formed with g, we denote by β* the corresponding quan-
tity formed with g*. For later convenience, we put

(5.3) u = e~p , Ut = ViU .

Then the following formulas are known (Yano-Obata [37]):

(5.

(5,

.4)

.5)

where

(5

(5

(5

• 6)

•7)

From (5

• 8)

K* = u2K +

G%

T) _ _ 1I~^-(T7 ΊM

.7) we obtain

2(n — \)uΔu — n(n

= G3i + (n- 2)Pjx

Δu = gjψ'jUi ,

— Δugji/ή) , P

u'^FSuψjUi — (Δu

6. Conformal changes of metrics on Sn

On a Riemannian manifold one can consider a conformal change correspond-
ing to an arbitrarily given function p in (5.2), However, if there is given a
curvature condition for the changed metric, then in general the existence of a
conformal change satisfying the condition is not known. We are going to prove
the following proposition, which is a clue for the solution of Conjecture II.

Proposition 6.1. Let (Sn,g) be a Euclidean n-sphere of radius 1, and g*
another Riemannian metric on Sn conformal to g. Then g* is of constant scalar
curvature 1 // and only if it is of constant (sectional) curvature 1.

Proof. We have GH = 0 and K = n(n - 1) on (Sn, g), and K* = n(n-1)
on (Sn, g*). Therefore from (5.4) and (5.5) it follows that

(6.1) Δu = —u~\\ - u2 + uiu*) ,

(6.2) G% = (n- 2)PH .

By using (6.1) and (6.2) we shall show that P3i and therefore G% vanish iden-
tically. To do this, consider a nonnegative quantity

A = tp-iPjtPK = ^-"[FjUiFW - (Δu)2/n] ,
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and a vector field

μ - {Δu)uι\n\ .

A straightforward computation then gives

where

B = (1 - rήu-^uΨjUi + n ~ lu-n[uuΨj(Δu) + w^Jw]
(6.3) "

+ uι-nuj{ViV'μ - FjFiU1) .

Substituting (6.1) in the second term and applying the Ricci formula to the last
term on the right hand side of (6.3), we get

the second term = (n — l)u-n(ujuψjui — uutu
l) ,

the last term = (n — V)uλ~nuiu
i .

Thus B = 0, and therefore Ffl1 = A > 0. By the well-known Bochner's lemma
we obtain that A = 0, so that Pjit = 0 and therefore

(6.4) G% = 0,

which implies that (Sn, g*) is an Einstein space. Since g* is conformal to g,
(Sn, g*) is conformally flat. It is known that a conformally flat Einstein space
is always a space of constant (sectional) curvature. Hence g* has constant (sec-
tional) curvature 1.

Remark 1. A little more general argument, similar to this proof, may be
seen in Yano-Obata [37, Proposition 3.3].

Remark 2, In the proof of Proposition 6.1, one can see that GH = 0 im-
plies G% = (n — 2)Pji = 0 under the condition k = A* = 1. Since PH = 0
implies that the manifold under consideration is isometric to a unit sphere
(Lichnerowicz [19], Yano-Obata [36]), we obtain

Proposition 6.2. Let (M, g) be a compact Einstein space with scalar
curvature 1. // there is a Riemannian metric g* (φg) on M such that g* is
conformal to g and g* has a constant scalar curvature 1, then (M, g) and (M, g*)
are isometric to a unit n-sphere.

Remark 3. (Sn, g*) can be obtained by a conformorphism of (Sn, g). The
proof of this will be given in a forthcoming paper.

7. Cojecture II

Theorem II. Conjecture II is true.
Proof. It is known (Kurita [15], Lichnerowicz [18], Obata [23]) that if a

compact Riemannian manifold with constant scalar curvature admits a non-
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isometric conformorphism, then the constant scalar curvature is positive. There-

fore without loss of generality we may assume that the Riemannian manifold

(M, g) under consideration has constant scalar curvature 1. Since CQ(M, g) is

essential, it follows from Theorem I that there exists a conformorphism / of

(M, g) onto (Sn,g0) where gQ is a standard metric on a unit sphere Sn. Thus

(/-1)*g = g* is a Riemannian metric on Sn and /: (M, g) —• (Sn, g*) is an iso-

metry. Since g* is conformal to g0 and g* has scalar curvature 1, it follows

from Proposition 6.1 that (Sn,g*) is of constant (sectional) curvature. Thus

(M, g) is isometric to a Euclidean n-sphere (Sn, g*).

Remark. It is not difficult to show that the one-parameter subgroup of

C0(M, g) generated by the gradient of a certain function on M is a closed essen-

tial subgroup of CQ(M, g).
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