SINGULAR MANIFOLDS

MICHAEL MENN

1. Introduction

If $\phi: X \rightarrow Y$ is a map of topological spaces and $x \in X$, then ϕ_{x} will denote the germ of ϕ at x. Let $\mathfrak{F}(p, q)=\left\{\phi: \boldsymbol{R}^{p} \rightarrow \boldsymbol{R}^{q} \mid \phi\right.$ is \mathscr{C}^{∞} and $\left.\phi(0)=0\right\}$ and let $J(p, q)=\left\{\phi_{0} \mid \phi \in \mathfrak{F}(p, q)\right\}$. If $\phi \in \mathscr{F}(p, q)$ or $\phi \in J(p, q)$, then $[\phi]^{n}$ will denote the set of germs at the origin of elements of $\mathfrak{F}(p, q)$, which agree with ϕ up to and including order n at the origin. $[\phi]^{n}$ will occasionally be abbreviated to ϕ. Let $J^{n}(p, q)=\left\{[\phi]^{n} \mid \phi \in J(p, q)\right\}$.

Whenever m is an integer, \mathscr{L}_{m} will denote the set of invertible germs in $J(m, m) . \mathscr{L}_{m}$ is a group. Furthermore, there is a group action of $\mathscr{L}_{p} \times \mathscr{L}_{q}$ on $J^{n}(p, q):(\alpha, \beta)\left([\phi]^{n}\right)=\left[\beta \phi \alpha^{-1}\right]^{n}$. Suppose $\phi: U \rightarrow \boldsymbol{R}^{q}$ is \mathscr{C}^{∞} where U is an open subset of \boldsymbol{R}^{p}. Define $t_{\phi}: U \rightarrow J(p, q)$ by $t_{\phi}(x)$ is the germ at the origin of $y \rightarrow$ $\phi(x+y)-\phi(x)$. In the following all manifolds are \mathscr{C}^{∞} and paracompact, and all maps are \mathscr{C}^{∞}.

Let $\tilde{\mathscr{L}}_{m}$ be a subgroup of \mathscr{L}_{m}. Suppose M is an m-dimensional manifold and \mathscr{A} is an atlas of coordinate functions for M. The pair (M, \mathscr{A}) will be called a manifold of type $\tilde{\mathscr{L}}_{m}$ if for all $x \in M$ and coordinate functions $\alpha_{1}, \alpha_{2} \in \mathscr{A}$ whose domains contain $x, t_{\alpha_{2} \alpha_{1}^{1}}\left(\alpha_{1}(x)\right) \in \tilde{\mathscr{L}}_{m}$. The atlas \mathscr{A} will be suppressed from the notation.

Let X be a p-manifold and Y a q-manifold. $J^{n}(X, Y)$ will be the bundle with base $X \times Y$, fiber $J^{n}(p, q)$, and group $\mathscr{L}_{p} \times \mathscr{L}_{q}$. Let $\mathscr{\mathscr { L }}_{p}$ be a subgroup of \mathscr{L}_{p} and $\check{\mathscr{L}}_{q}$ a subgroup of \mathscr{L}_{q}. Suppose X is a manifold of type $\tilde{\mathscr{L}}_{p}$ and Y is a manifold of type $\tilde{\mathscr{L}}_{q}$. Then the group of $J^{n}(X, Y)$ is reducible to $\tilde{\mathscr{L}}_{p} \times$ $\tilde{\mathscr{L}}_{q} \cdot J^{n}(X, Y)$ may be looked at as the set of equivalence classes of germs of maps of X into Y where two germs are equivalent if they agree up to order n.

If $f: X \rightarrow Y$ and $x \in X$, then $f^{n}(x)$ will denote the equivalence class containing the germ of f at x. Thus a map $f: X \rightarrow Y$ induces a commutative triangle:

[^0]Let $A \subset J^{n}(p, q)$ and let A be invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$. Then $J_{A}^{n}(X, Y)$ will denote the bundle with base $X \times Y$, fiber A, and group $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$. Suppose A is as above and $f: X \rightarrow Y$. Define $A(f)$, the singular set of f of type A, to be the set $\left(f^{n}\right)^{-1} J_{A}^{n}(X, Y)$. If A is a manifold, then so is $J_{A}^{n}(X, Y)$. If A is a manifold and f is such that f^{n} is transversal to $J_{A}^{n}(X, Y)$, then f will be called A-transversal. If f is A-transversal, then $A(f)$ is a submanifold of X and, furthermore, the codimension of $A(f)$ in X is the codimension of A in $J^{n}(p, q)$.

Let $\mathscr{C}^{n+1}(X, Y)$ denote the set of \mathscr{C}^{∞} maps of X into Y, provided with the topology of compact convergence of all partials of order less than or equal to $n+1$.

The Thom transversality theorem states that if B ia a submanifold of $J^{n}(X, Y)$, then the set of maps $f: X \rightarrow Y$ such that f^{n} is transversal to B is a Baire set in $\mathscr{C}^{n+1}(X, Y)$. If X is compact, then this set is open and dense. (See [3] for a proof of the transversality theorem.) Thus, if $A \subset J^{n}(p, q)$ is a manifold and is invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}, X$ is a manifold of type $\tilde{\mathscr{L}}_{p}$ and Y is a manifold of type $\tilde{\mathscr{L}}_{q}$, then $A(f)$ is a manifold for a large class of functions $f: X \rightarrow Y$.

One thing which makes this interesting is that, in general, for A-transversal f there are connections between $A(f)$ and global properties of X and Y. For example, if $A=\left\{[0]^{1}\right\} \subset J^{1}(p, 1), X$ is a compact p-manifold, $Y=\boldsymbol{R}$ and f is A-transversal, then the Morse theory tells us how to predict global properties of X from the behavior of f in a neighborhood of $A(f)$. Other results in this direction are proven in [2], [4], and [5]. Further (rather incomplete) results will be presented here but the main result of this paper is the construction of submanifolds of $J^{n}(p, q)$ which are invariant under various subgroups $\check{\mathscr{L}}_{p} \times \check{\mathscr{L}}_{q}$ of $\mathscr{L}_{p} \times \mathscr{L}_{q}$.

2. Grassmann bundles

If E is a bundle over X and $x \in X$, then E_{x} will denote the fiber of E over x. If $A \subset X$, then the restriction of E to A will also be written E. If F is a bundle over Y and $h: E \rightarrow F$, then $h_{x}: E_{x} \rightarrow F$ will denote the restriction of h to E_{x}. If $f: X \rightarrow Y$ is a map of manifolds, then $T f: T X \rightarrow T Y$ will denote the corresponding map of tangent bundles. If A is a submanifold of X, then $T(X, A)$ will denote the normal bundle of A in X. Finally, if E is a vector bundle over X, then X will be identified with the image of the zero section of E. Propositions 2.1 and 2.2 are written up similarly in [5].

Proposition 2.1. Let $f: X \rightarrow Y$ and let N be a submanifold of Y. If f is transversal to N, then $T f$ induces a map $T\left(X, f^{-1} N\right) \rightarrow T(Y, N)$ which restricts to isomorphisms of fibers.

Proof. The desired mapping is given in the following exact commutative diagram:

$$
\begin{array}{cccl}
0 \rightarrow T\left(f^{-1} N\right) & \rightarrow T X & \rightarrow T\left(X, f^{-1} N\right) & \rightarrow 0 \\
\downarrow & \downarrow & \downarrow & \\
0 \rightarrow \quad T N & \rightarrow T Y & \text { over } f^{-1} N \\
0 & \rightarrow T(Y, N) & \rightarrow 0 & \text { over } N
\end{array}
$$

That the mapping induces epimorphisms of fibers is a restatement of the transversality of f, and that it is $1: 1$ on fibers follows from dimensional considerations. q.e.d.

Suppose E is a vector bundle over X and $\sigma: X \rightarrow E$ is a section. Then σ will be called a transversal section of E if it is transversal to X (the image of the zero section of E).

Let E be a vector bundle over X. Then $T(E, X)$ is equivalent to E over X. Thus, if $\sigma: X \rightarrow E$ is a transversal section of E, then $T\left(X, \sigma^{-1} X\right)$ is equivalent to E over X.

Let E be an m-dimensional vector bundle over X and let $a \leq m$. Define $G_{a}(E)=\{\underline{p} \mid \underline{p}$ is an a-dimensional subspace of some fiber of $E\}$. Structure for $G_{a}(E)$ as a bundle over X is induced by that of E. Let $\bar{\pi}: G_{a}(E) \rightarrow X$ be the bundle projection.

Define a vector bundle L_{a} over $G_{a}(E)$ by $L_{a}=\{(\underline{p}, v) \mid v \in \underline{p}\}$. Define M_{a}, an ($m-$ a)-dimensional bundle over $G_{a}(E)$, by the exactness of $0 \rightarrow L_{a} \rightarrow$ $\bar{\pi}^{*} E \rightarrow M_{a} \rightarrow 0$.

Proposition 2.2. Let Z be a submanifold of X and let $s: Z \rightarrow G_{a}(E)$ be a section. Then over $s Z, T\left(\bar{\pi}^{-1} Z, s Z\right) \approx L_{a}^{*} \otimes M_{a}$, where L_{a}^{*} denotes the dual of L_{a}.

Proof. Define a vector bundle F over $\bar{\pi}^{-1} Z$ (and a morphism ψ) by the exactness of $0 \rightarrow \bar{\pi}^{*} s^{*} L_{a} \rightarrow \bar{\pi}^{*} E \xrightarrow{\psi} F \rightarrow 0$. Over $\bar{\pi}^{-1} Z$ there is a bunble morphism $L_{a} \rightarrow F$ given by the composition $L_{a} \rightarrow \bar{\pi}^{*} E \rightarrow F$. This morphism induces a section η of $L_{a}^{*} \otimes F$ over $\bar{\pi}^{-1} Z$. Furthermore, $s Z$ is the zero set of η. If η is a transversal section of $L_{a}^{*} \otimes F$ then, by Proposition $2.1, T\left(\pi^{-1} Z, s Z\right)$ $\approx L_{a}^{*} \otimes F$ over $s Z$. Since $F=M_{a}$ over $s Z$, it suffices to demonstrate the transversality of η.

Let $x \in Z$ and let $\alpha_{1}, \cdots, \alpha_{m}$ be a vector space basis for E_{x} such that $s(x)$ is the span of $\alpha_{1}, \cdots, \alpha_{a}$. Any a-plane \underline{p} in $G_{a}(E)_{x}$ near $s(x)$ is uniquely expressible as the span of a vectors, $\alpha_{1}+v_{1,1}(p) \alpha_{a+1}+\cdots+v_{1, m-a}(p) \alpha_{m}, \cdots$, $\alpha_{a}+v_{a, 1}(p) \alpha_{a+1}+\cdots+v_{a, m-a}(p) \alpha_{m}$. Thūs coordinates $\left\{v_{i, j}\right\}$ for $G_{a}(E)_{x}$ at $s(x)$ have been fixed.

$$
T \eta_{s(x)}\left(\frac{\partial}{\partial v_{i, j}}\right)=\frac{\partial}{\partial v_{i, j}}+\left((\mathrm{id} \otimes \psi)\left(s(x), \alpha_{i}^{*} \otimes \alpha_{a+j}\right)\right)_{s(x)}
$$

Since $\left\{(\operatorname{id} \otimes \psi)\left(s(x), \alpha_{i}^{*} \otimes \alpha_{a+j}\right) \mid 1 \leq i \leq a\right.$ and $\left.1 \leq j \leq m-a\right\}$ is a basis for $\left(L_{a}^{*} \otimes F\right)_{s(x)}$, the result follows.

3. Fixing the rank of vector bundle morphisms

Let A be a manifold, E_{1} a bundle over A, E_{2} and E_{3} be vector bundles over A, and $\gamma: E_{1} \rightarrow E_{2}^{*} \otimes E_{3}$ a morphism of fiber bundles over A, which induces the identity on A. Suppose $\pi: E_{1} \rightarrow A$ is the bundle projection. Whenever $e \in E_{1}, \gamma(e) \in\left(E_{2}^{*} \otimes E_{3}\right)_{\pi(e)}$ and therefore there is a linear map $\left(E_{2}\right)_{\pi(e)} \rightarrow\left(E_{2}\right)_{\pi(e)}$ which corresponds to $\gamma(e)$. Suppose a is not greater than the ffber dimension of E_{2} and let $A_{a}(\gamma)=\left\{e \in E_{1} \mid\right.$ kernel $\gamma(e)$ has dimension a $\}$. In this section we will study the set $A_{a}(\gamma)$.

Let $\bar{\pi}: G_{a}\left(\pi^{*} E_{2}\right) \rightarrow E_{1}$ be the bundle projection. Over $G_{a}\left(\pi^{*} E_{2}\right)$ there is an exact sequence $0 \rightarrow L_{a} \rightarrow \pi^{*} \pi^{*} E_{2} \rightarrow M_{a} \rightarrow 0$ as in $\S 2$. We define a section $\gamma_{a}: G_{a}\left(\pi^{*} E_{2}\right) \rightarrow L_{a}^{*} \otimes \pi^{*} \pi^{*} E_{3}$ as follows: An element of $G_{a}\left(\pi^{*} E_{2}\right)$ is a pair (e, \underline{p}) where $e \in E_{1}$ and \underline{p} is an a-dimensional subspace of $\left(E_{2}\right)_{\pi(e)}$. Let $\gamma_{a}(e, \underline{p})$ $=(e, \underline{p}, \eta(e, \underline{p}))$ where $\eta(e, \underline{p})$ is the restriction of $\gamma(e)$ to $\underline{p} . \gamma_{a}(e, \underline{p})$ may be viewed as an element of $\left(L_{a}^{*} \otimes \bar{\pi}^{*} \pi^{*} E_{3}\right)_{(e, p)}$.

Definition 3.1. Suppose that there are a vector space V and for each $x \in A$ a diffeomorphism $\theta_{x}: V \rightarrow\left(E_{1}\right)_{x}$ such that $\gamma_{x} \circ \theta_{x}$ is linear. γ will be called a-uniform if for all choices of $x_{i} \in A$ and $\underline{p}_{i} \in G_{a}\left(E_{2}\right) x_{i}, i \in\{1,2\}$, dimension $\left\{\eta\left(e, \underline{p}_{1}\right) \mid e \in\left(E_{1}\right)_{x_{1}}\right\}=$ dimension $\left\{\eta\left(e, \underline{p}_{2} \mid e \in\left(E^{1}\right)_{x_{2}}\right\}\right.$.
$\gamma: E_{1} \rightarrow E_{2}^{*} \otimes E_{3}$ induces $\gamma^{a}: \bar{\pi}^{*} \pi^{*} E_{1} \rightarrow L_{a}^{*} \otimes \bar{\pi}^{*} \pi^{*} E_{3}$ as follows: An element of $\pi^{*} \pi^{*} E_{1}$ is a triple $(e, \underline{p}, \tilde{e})$ where e and \tilde{e} are elements of E_{1} with $\pi(e)=\pi(\bar{e})$ and \underline{p} is an a-plane in $\left(E_{2}\right)_{\pi(e)}$. Define γ^{a} by $\gamma^{a}(e, \underline{p}, \bar{e})=(e, \underline{p}, \eta(\bar{e}, p))$.

Let $S_{a}=\gamma^{a}\left(\bar{\pi}^{*} \pi^{*} E_{1}\right)$, and note that the image of the section γ_{a} is contained in S_{a}. If γ is a-uniform, then S_{a} is a vector sub-bundle of $L_{a}^{*} \otimes \pi^{*} \pi^{*} E_{3}$.

If V is a vector space, $x, y \in V$, and $g: \boldsymbol{R} \rightarrow V$ is defined by $g(t)=x+t y$, then we define $y_{x} \in T V_{x}$ by $y_{x}=g^{\prime}(0) . T V=\left\{y_{x} \mid x, y \in V\right\}$.

Let V and θ_{x} be as in Definition 3.1. Since $\gamma_{x} \circ \theta_{x}$ is linear, $T\left(\gamma_{x} \circ \theta_{x}\right)\left(y_{z}\right)$ $=\left(\gamma_{x} \circ \theta_{x}(y)\right)_{r x^{\circ \theta} x_{x}(z)}$. Now, if $\underline{p} \in G_{a}\left(E_{2}\right)_{x}$, then $\left(S_{a}\right)_{\underline{p}}$ is the set of all restrictions to \underline{p} of maps of the form $\gamma_{x} \circ \theta_{x}(y)$ where $y \in V$. It follows that if γ is a uniform, then γ_{a} is a transversal section of S_{a}.

Define a vector bundle K_{a} over $A_{a}(\gamma)$ by the exactness of $0 \rightarrow K_{a} \rightarrow \pi^{*} E_{1}$ $\xrightarrow{\hat{\gamma}} \pi^{*} E_{3}$ where $\tilde{\gamma}$ is defined in the obvious way. (An element of $\pi^{*} E_{2}$ is a pair $\left(e_{1}, e_{2}\right)$ where $e_{1} \in E_{1}$ and $e_{2} \in\left(E_{2}\right)_{\pi\left(e_{1}\right)}$. Define $\tilde{\gamma}$ by $\tilde{\gamma}\left(e_{1}, e_{2}\right)=\left(e_{1}, \gamma\left(e_{1}\right) e_{2}\right)$, an element of $\pi^{*} E_{3}$.) Define a bundle N_{a} over $A_{a}(\gamma)$ by the exactness of $0 \rightarrow$ $K_{a} \rightarrow \pi^{*} E_{2} \rightarrow N_{a} \rightarrow 0$. Finally, define a section $s_{a}: A_{a}(\gamma) \rightarrow G_{a}\left(\pi^{*} E_{2}\right)$ by $s_{a}(e)$ $=(e$, kernel $\gamma(e))$.

Theorem 3.2. Let $\gamma: E_{1} \rightarrow E_{2}^{*} \otimes E_{3}$ be a-uniform. Then $A_{a}(\gamma)$ is a submanifold of E_{1}, and furthermore over $A_{a}(\gamma)$ there is an exact sequence

$$
0 \rightarrow K_{a}^{*} \otimes N_{a} \rightarrow s_{a}^{*} S_{a} \rightarrow T\left(E_{1}, A_{a}(\gamma)\right) \rightarrow 0
$$

Proof. The first statement is straightforward and will be treated first. Let W be the zero set of the section γ_{a}. Since γ_{a} is a transversal section of S_{a}, W is a submanifold of $G_{a}\left(\pi^{*} E_{2}\right)$. It is easily seen that $s_{a} A_{a}(\gamma)$ is an open subset
of W. $\left((e, \underline{p}) \in W\right.$ if and only if $\underline{p} \subset \operatorname{ker}\left(\gamma(e)\right.$, Thus $s_{a} A_{a}(\gamma) \subset W$. If $e \in A_{a}(\gamma)$ and if \bar{e} is sufficiently close to e, then dimension $\operatorname{ker} \gamma(\bar{e})$ is not larger than a. That $s_{a} A_{a}(\gamma)$ is open in W follows.) Thus $s_{a} A_{a}(\gamma)$ and therefore $A_{a}(\gamma)$ is a manifold. We now prove the second statement.

Since γ_{a} is transversal and $s_{a} A_{a}(\gamma)$ is open in W, Proposition 2.1 shows that there is an equivalence $T\left(G_{a}\left(\pi^{*} E_{2}\right), s_{a} A_{a}(\gamma)\right) \rightarrow S_{a}$ over $s_{a} A_{a}(\gamma)$ induced by $T_{\gamma_{a}}$, and also that over $s_{a} A_{a}(\gamma)$ we have an exact sequence $0 \rightarrow L_{a} \rightarrow \bar{\pi}^{*} \pi^{*} E_{2}$ $\rightarrow \bar{\pi}^{*} \pi^{*} E_{3}$ which determines a monomorphism $M_{a} \rightarrow \bar{\pi}^{*} \pi^{*} E_{3}$ and hence a monomorphism $L_{a}^{*} \otimes M_{a} \rightarrow L_{a}^{*} \otimes \pi^{*} \pi^{*} E_{3}$ over $s_{a} A_{a}(\gamma)$.

It is not hard to show that the following diagram is communative:

$$
\begin{aligned}
T\left(\pi^{-1} A_{a}(\gamma), s_{a} A_{a}(\gamma)\right) & \rightarrow T\left(G_{a}\left(\pi^{*} E_{2}\right), s_{a} A_{a}(\gamma)\right) \\
\prod^{\downarrow} & \stackrel{1}{L_{a}^{*}} \otimes L_{a}^{*} \otimes \bar{\pi}^{*} \pi^{*} E_{3} \quad \text { over } s_{a} A_{a}(\gamma) .
\end{aligned}
$$

Since the image of $T\left(G_{a}\left(\pi^{*} E_{2}\right), s_{a} A_{a}(\gamma)\right) \rightarrow L_{a}^{*} \otimes \pi^{*} \pi^{*} E_{3}$ is contained in the sub-bundle S_{a} of $L_{a}^{*} \otimes \pi^{*} \pi^{*} E_{3}$, the image of $L_{a}^{*} \otimes M_{a}$ is contained in S_{a}. Thus over $s_{a} A_{a}(\gamma)$ we have an exact commutative diagram:

and hence an exact sequence $0 \rightarrow L_{a}^{*} \otimes M_{a} \rightarrow S_{a} \rightarrow T\left(G_{a}\left(\pi^{*} E_{2}\right), \bar{\pi}^{-1} A_{a}(\gamma)\right) \rightarrow 0$. Since $s_{a}^{*} L_{a}=K_{a}, s_{a}^{*} M_{a}=N_{a}$ and $s_{a}^{*} T\left(G_{a}\left(\pi^{*} E_{2}\right), \pi^{-1} A_{a}(\gamma)\right)=T\left(E_{1}, A_{a}(\gamma)\right)$, the result follows. q.e.d.

Suppose that X and Y are topological spaces and that a group H acts on both X and Y. Let $f: X \rightarrow Y$. Then f will be called equivariant if for each $h \in H, h f=f h$.

Definition 3.3. Suppose U is a vector bundle over X and there is a group H which acts on U and X in such a way that the bundle projection of U is equivariant. Suppose also that for each $h \in H$ and $x \in X, h_{x}: U_{x} \rightarrow U_{h(x)}$ is a vector space isomorphism. Then U will be called an H-bundle.

Proposition 3.4. Let U_{1} and U_{2} be H-bundles over X, and suppose H acts on a space Y and $f: Y \rightarrow X$ is equivariant.
a) Then there is a group action of H on U_{1}^{*}, which makes U_{1}^{*} an H-bundle;
b) similarly with $U_{1} \otimes U_{2}$;
c) similarly with $f^{*} U_{1}$.
d) If $U_{1} \subset U_{2}$ and the inclusion is equivariant, then the factor bundle of U_{2} by U_{1} is an H-bundle.
e) If a is not greater than the fiber dimension of U_{1}, then there is an action
of H on $G_{a}\left(U_{1}\right)$ which makes the projection $\bar{\pi}: G_{a}\left(U_{1}\right) \rightarrow X$ equivariant.
f) The action of H on $\bar{\pi}^{*} U_{1}$ restricts to an action on L_{a}, which makes L_{a} an H-bundle over $G_{a}\left(U_{1}\right)$.
g) If H acts differentiably on X (assumed to be a manifold), then TX may be given the structure of an H-bundle.
h) If H acts differentiably on Y and X, then $T f: T Y \rightarrow T X$ is equivariant.

Proof. a) The action of h on U_{1}^{*} is the dual of the action of h^{-1} on U_{1}.
b) The action of h on $U_{1} \otimes U_{2}$ is the tensor product of the actions of h on the U_{i}.
c) An element of $f^{*} U_{1}$ is a pair (y, u) where $u \in U_{1_{f(y)}}$. Define the action of h by $h(y, u)=(h y, h u)$.
e) Since $h \in H$ restricts to vector space isomorphisms of fibers, it takes a planes into a-planes.
g) The action of h on $T X$ is the derivative of the action of h on X.

Corollary 3.5. Let E_{2} and E_{3} be H-bundles over A, and let H act on E_{1} in such a way that $\pi: E_{1} \rightarrow A$ is equivariant. Suppose $\gamma: E_{1} \rightarrow E_{2}^{*} \otimes E_{3}$ is auniform and equivariant. Then $A_{a}(\gamma)$ is invariant under H. Furthermore the bundles $K_{a}, N_{a}, s_{a}^{*} S_{a}$ and $T\left(E_{1}, A_{a}(\gamma)\right)$ are all H-bundles over $A_{a}(\gamma)$, and the sequence $0 \rightarrow K_{a}^{*} \otimes N_{a} \rightarrow s_{a}^{*} S_{a} \rightarrow T\left(E_{1}, A_{a}(\gamma)\right) \rightarrow 0$ is an exact sequence of equivariant maps.

Proof. The equivalences $T\left(\bar{\pi}^{-1} A_{a}(\gamma), s_{a} A_{a}(\gamma)\right) \rightarrow L_{a}^{*} \otimes M_{a}$ and $T\left(G_{a}\left(\pi^{*} E_{2}\right)\right.$, $\left.s_{a} A_{a}(\gamma)\right) \rightarrow S_{a}$ over $s_{a} A_{a}(\gamma)$ are induced by derivatives of equivariant maps. The result is now trivial from Proposition 3.4 and the proof of Theorem 3.2.

4. Invariant submanifolds of $\mathrm{J}^{n+1}(p, q)$

Fix subgroups $\tilde{\mathscr{L}}_{p} \subset \mathscr{L}_{p}$ and $\tilde{\mathscr{L}}_{q} \subset \mathscr{L}_{q}$, and let $H=\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$.
Let A be a submanifold of $J^{n}(p, q)$ and suppose A is invariant under H. Let $E_{1}=\left\{[\phi]^{n+1} \mid[\phi]^{n} \in A\right\}$. H acts on E_{1} in such a way that the projection $\pi: E_{1} \rightarrow A$ is equivariant.

If U is an open subset of $\boldsymbol{R}^{p}, f: U \rightarrow \boldsymbol{R}^{q}$ and $x \in U$, then define a linear $\operatorname{map} D f: \boldsymbol{R}^{p} \rightarrow \boldsymbol{R}^{q}$ by $T f\left(v_{x}\right)=\left(D f_{x}(v)\right)_{f(x)}$. Df will abbreviate $D f_{0}$.
H acts on $A \times \boldsymbol{R}^{p} ;(\alpha, \beta)\left([\phi]^{n}, v\right)=\left(\left[\beta \phi \alpha^{-1}\right]^{n}, D \alpha(v)\right)$. Let E_{2} be a vector sub-bundle of $A \times \boldsymbol{R}^{p}$, invariant under $H . E_{2}$ is an H-bundle over A.

Note that $J^{0}(p, q)=\{0\}$. Define $\widetilde{J}^{0}(p, q)=\boldsymbol{R}^{q}$ and $\widetilde{J}^{m}(p, q)=\left\{[\phi]^{m} \mid[\phi]^{m-1}\right.$ $=0\}$ for $m \geq 1$. Define an action of H on $\widetilde{J}^{0}(p, q)$ by $(\alpha, \beta)(w)=D \beta(w)$ and an action of H on $\widetilde{J}^{m}(p, q), m \geq 1$, by $(\alpha, \beta)\left([\phi]^{m}\right)=\left[\beta \phi \alpha^{-1}\right]^{m}$.

Let B be a vector sub-bundle of $A \times \widetilde{J}^{n}(p, q)$ which is invariant under H. Define E_{3} by the exactness of $0 \rightarrow B \rightarrow A \times \tilde{J}^{n}(p, q) \rightarrow E_{3} \rightarrow 0 . E_{3}$ is an H^{-} bundle over A.

We now proceed to define a bundle morphism $\gamma: E_{1} \rightarrow E_{2}^{*} \otimes E_{3}$.
If m is an integer and $1 \leq \nu \leq m$, let $\delta(\nu)=(0, \cdots, 0,1,0, \cdots, 0) \in \boldsymbol{R}^{m}$ where the 1 occurs in the $\nu^{t h}$ position. Let $\omega=\left(i_{1}, \cdots, i_{p}\right)$ be a tuple of non-
negative integers. Define $|\omega|=i_{1}+\cdots+i_{p}$ and $\omega!=i_{1}!\cdots i_{p}!$. If $\phi \in \mathfrak{F}(p, 1)$, let $D_{\omega} \phi=\left(\partial^{|\omega|} \phi / \partial x_{1}^{i_{1}} \cdots \partial x_{p}^{i_{p}}\right)(0)$. If $1 \leq j \leq q$, define $u(\omega, j) \in \mathfrak{F}(p, q)$ by $u(\omega, j)\left(x_{1}, \cdots, x_{p}\right)=(1 / \omega!) x_{1}^{i_{1}} \cdots x_{p}^{i_{p}} \delta(j)$.

If $n \geq 0$, define $H^{n+1}: E_{1} \rightarrow A \times\left(\boldsymbol{R}^{p^{*}} \otimes \tilde{J}^{n}(p, q)\right)$ by

$$
H^{n+1}\left([\phi]^{n+1}\right)=\left([\phi]^{n}, \sum_{|\omega|=n, \nu=1, j=1}^{p, q} D_{\omega+\delta(\nu)} \phi_{j} \delta(\nu)^{*} \otimes u(\omega, j)\right),
$$

where ϕ_{j} denotes the $j^{t h}$ coordinate function of ϕ.
The injection $E_{2} \rightarrow A \times \boldsymbol{R}^{p}$ and the epimorphism $A \times \widetilde{J}^{n}(p, q) \rightarrow E_{3}$ together induce an epimorphism $\varepsilon: A \times\left(\boldsymbol{R}^{p^{*}} \otimes \widetilde{J}^{n}(p, q)\right) \rightarrow E_{2}^{*} \otimes E_{3}$. Define $\gamma: E_{1} \rightarrow$ $E_{2}^{*} \otimes E_{3}$ by $\gamma=\varepsilon H^{n+1}$.

Motivational remarks. If $\phi \in \mathfrak{F}(p, q)$, let u_{ϕ} denote the projection of $\phi^{n}: \boldsymbol{R}^{p}$ $\rightarrow J^{n}\left(\boldsymbol{R}^{p}, \boldsymbol{R}^{q}\right)=\boldsymbol{R}^{p} \times \boldsymbol{R}^{q} \times J^{n}(p, q)$ onto $J^{n}(p, q) . J^{n}(p, q)$ is a vector space, so if $\psi, \tilde{\psi} \in J^{n}(p, q)$ then $\tilde{\psi}_{\phi} \in T J^{n}(p, q)$. Motivation for studying the map γ comes from the fact that if $\left(a_{1}, \cdots, a_{p}\right) \in \boldsymbol{R}^{p}$ then

$$
T u_{\phi}\left(a_{1}, \cdots, a_{p}\right)_{0}=\left(\sum_{1 \leq|\omega| \leq n, \nu, j} a_{2} D_{\omega+\delta(\nu)} \phi_{j} u(\omega, j)\right)_{[\phi]^{n}} .
$$

Thus γ is induced by $T u_{\phi}$ and hence $T \phi^{n}$ but somewhat artificially. Proper selection of A, E_{2} and E_{3} makes the correspondence $T \phi^{n} \rightarrow \gamma\left([\phi]^{n+1}\right)$ "natural". Theorem 4.3 and Proposition 4.4 establish criteria for this to be so. If ϕ is A-transversal then $T \phi^{n}$ determines $T A(\phi)_{0}$. Sometimes (see Proposition 4.5) γ will carry enough information to determine whether $\left([\phi]^{n}, v\right) \in E_{2}$ is such that $v_{0} \in T A(\phi)_{0}$. This is central to much of what follows and is the main idea of the proof of Boardman's result, Theorem 6.2.

If V is a vector space, then $\bigcirc_{m} V$ will denote the m-fold symmetric product of V with itself, and $\underset{m}{\otimes} V$ denotes the appropriate tensor product so that $\underset{m}{\bigcirc} V$ $\subset \underset{m}{\otimes} V$.

If $n \geq 0$, there is a vector space isomorphism $\mu_{n}: \tilde{J}^{n}(p, q) \rightarrow\left(\underset{n}{\bigcirc} \boldsymbol{R}^{p^{*}}\right) \otimes \boldsymbol{R}^{q}$ determined by the equations

$$
\mu_{n}\left(u\left(\left(i_{1}, \cdots, i_{p}\right), j\right)\right)=\sum_{x \in I} \delta(k(1))^{*} \otimes \cdots \otimes \delta(k(n))^{*} \otimes \delta(j)
$$

where $I=\left\{k:\{1, \cdots, n\} \rightarrow\{1, \cdots, p\} \mid k^{-1}\{\lambda\}\right.$ has i_{λ} elements whenever $1 \leq$ $\lambda \leq p\}$.

The notation in the following is as in § 3 .
Let $\varepsilon_{a}: G_{a}\left(\pi^{*} E_{2}\right) \times\left(\boldsymbol{R}^{p^{*}} \otimes \widetilde{J}^{n}(p, q)\right) \rightarrow L_{a}^{*} \otimes \pi^{*} \pi^{*} E_{3}$ be the epimorphism. Define $\hat{S}_{a}=\varepsilon_{a}\left(G_{a}\left(\pi^{*} E_{2}\right) \times\left(\mathrm{id} \otimes \mu_{n}\right)^{-1}\left(\left(\bigcirc_{n+1} \boldsymbol{R}^{p^{*}}\right) \otimes \boldsymbol{R}^{q}\right)\right)$.

Proposition 4.1. $S_{a}=\hat{S}_{a}$.
Proof. The result follows if $H^{n+1} E_{1}=A \times\left(\mathrm{id} \otimes \mu_{n}\right)^{-1}\left(\left(\bigcirc_{n+1} \boldsymbol{R}^{p^{*}}\right) \otimes \boldsymbol{R}^{q}\right)$.

That $H^{n+1} E_{1} \subset A \times\left(\mathrm{id} \otimes \mu_{n}\right)^{-1}\left(\left(\bigcirc_{n+1}^{\bigcirc} \boldsymbol{R}^{p^{*}}\right) \otimes \boldsymbol{R}^{q}\right)$ is apparent from the symmetries of $(n+1)^{s t}$ order derivatives. The opposite inclusion is equally simple.
q.e.d.

Thus there is a sense in which S_{a} is the "symmetric subset" of $L_{a}^{*} \otimes \bar{\pi}^{*} \pi^{*} E_{3}$. The condition that γ is a-uniform is the condition that the symmetric subspace of $\left(L_{a}^{*} \otimes \pi^{*} \pi^{*} E_{3}\right)_{\underline{p}}$ does not depend on the choice of $\underline{p} \in G_{a}\left(\pi^{*} E_{2}\right)$.

If $1 \leq m \leq n$, define $C_{m}: J^{n}(p, q) \rightarrow \widetilde{J}^{m}(p, q)$ by

$$
C_{m}\left([\phi]^{n}\right)=\sum_{|\omega|=m, j} D_{\omega} \phi_{j} u(\omega, j)
$$

Recall that if $\phi \in \mathscr{F}(p, q)$, then $t_{\phi}: \boldsymbol{R}^{p} \rightarrow J(p, q)$ is defined by: $t_{\phi}(x)$ is the germ at the origin of $\phi(x+\cdot)-\phi(x)$. If $m \geq 1$, then t_{ϕ} induces $t_{\phi} m: \boldsymbol{R}^{p} \rightarrow \boldsymbol{J}^{m}(p, q)$. Note that $\gamma\left([\phi]^{n+1}\right)\left([\phi]^{n}, v\right)$, is the projection of $\left([\phi]^{n}, C_{n} D t_{\phi} n(v)\right)$ on E_{3}.

Definition 4.2. Let $C \subset J(p, q)$ (or $\left.C \subset J^{m}(p, q)\right)$. C will be called translation invariant if, for all $\phi \in \mathscr{F}(p, q), t_{\phi}^{-1}(C)$ (or $t_{\phi}^{-1}(C)$) is an open subset of \boldsymbol{R}^{p}.

Whenever $m \geq 1$, there is a linear map inj $(m)=\operatorname{inj}: J^{m}(p, q) \rightarrow J^{m+1}(p, p)$ determined by the equations $\operatorname{inj}(u(\omega, j))=u(\omega, j)$.

Theorem 4.3. Let $\tilde{\mathscr{L}}_{p}, \tilde{\mathscr{L}}_{q}, A, B, E_{1}, E_{2}, E_{3}$ and $\gamma: E_{1} \rightarrow E_{2}^{*} \otimes E_{3}$ be as above, and suppose, in addition, that $\tilde{\mathscr{L}}_{p}$ and $\tilde{\mathscr{L}}_{q}$ are translation invariant. Then γ is equivariant if the following two conditions are met:
i) $n=0, n=1$ or $\left(\operatorname{inj}\left(D t_{\phi^{n-1}}(v)\right)_{[\phi]^{n}} \in T A\right.$, whenever $\left([\phi]^{n}, v\right) \in E_{2}$.
ii) $n=0$ or $\left([\phi]^{n}, C_{n}[\psi]^{n}\right) \in B$, whenever $\left([\phi]^{n}\right)_{[\phi]^{n}} \in T A$.

Proof. It suffices to show that whenever $\alpha \in \tilde{\mathscr{L}}_{p}$ and $\beta \in \tilde{\mathscr{L}}_{q}$ the following two squares are commutative:

We show that the first of these is commutative, the other demonstration being similar.

The commutativity of the square will follow if we can show that if $[\phi]^{n+1} \in E_{1}$ and $v=\left(a_{1}, \cdots, a_{p}\right)$ is such that $\left([\phi]^{n}, v\right) \in E_{2}$, then
(*)

$$
\begin{gathered}
\left([\phi \alpha]^{n}, \sum_{|\omega|=n, i, j, k} D_{\omega+\delta(k)}\left(\phi_{j} \alpha\right) D_{\partial(i)}\left(\alpha^{-1}\right)_{k} a_{i} u(\omega, j)\right. \\
\left.\quad-R_{\alpha} \sum_{|\omega|=n, i, j} D_{\omega+\delta(i)}\left(\phi_{j}\right) a_{i} u(\omega, j)\right) \in B
\end{gathered}
$$

where R_{α} denotes right composition with α; left composition will be written in the obvious way.

If $\eta=\left(i_{1}, \cdots, i_{p}\right)$ and $1 \leq j \leq p$, define $v(\eta, j): \boldsymbol{R}^{p} \rightarrow \boldsymbol{R}^{p}$ by $v(\eta, j)(x)=$ $\frac{1}{n!} x_{1}^{i_{1}} \cdots x_{p}^{i_{p}} \delta(j)$, so $v(\eta, j) \in J(p, p)$. If $1 \leq j \leq q$ and ω is a p-tuple of integers, define $P(\omega, j): J(p, q) \times J(p, p) \rightarrow \boldsymbol{R}$ by $P(\omega, j)(\psi, \rho)=D_{\omega}\left(\psi_{j} \rho\right)$. $\frac{\partial P(\omega, j)}{\partial u(\eta, k)}(\psi, \rho)$ and $\frac{\partial P(\omega, j)}{\partial v(\eta, k)}(\psi, \rho)$ denote the appropriate partial derivatives evaluated at (ϕ, ρ). It follows from the chain rule that

$$
\begin{aligned}
D_{\omega+\delta(k)}\left(\phi_{j} \alpha\right)= & \sum_{|\eta| \leq|\omega|, \nu} \frac{\partial P(\omega, j)}{\partial u(\eta, j)}(\phi, \alpha) D_{\eta+\delta(\nu)} \phi_{j} D_{\delta(k)} \alpha_{\nu} \\
& +\sum_{|\eta| \leq|\omega|, \nu} \frac{\partial P(\omega, j)}{\partial v(\eta, \nu)}(\psi, \alpha) D_{\eta+\delta(k)} \alpha_{\nu} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{|\omega|=n, i, j, k} & D_{\omega+\delta(k)}\left(\phi_{j} \alpha\right) D_{\partial(i)}\left(\alpha^{-1}\right)_{k} a_{i} u(\omega, j) \\
= & \sum_{|\omega|=n,|\eta| \leq n, i, j, k, \nu} \frac{\partial P(\omega, j)}{\partial u(\eta, j)}(\phi, \alpha) D_{\eta+\delta(\nu)} \phi_{j} D_{\partial(k)} \alpha_{\nu} D_{\partial(i)}\left(\alpha^{-1}\right)_{k} a_{i} u(\omega, j) \\
& +\sum_{|\omega|=n,|\eta| \leq n, i, j, k, \nu, \nu} \frac{\partial P(\omega, j)}{\partial v(\eta, \nu)}(\phi, \alpha) D_{\eta+\delta(k)} \alpha_{\nu} D_{\partial(i)}\left(\alpha^{-1}\right)_{k} a_{i} u(\omega, j) \\
= & (1) R_{\alpha} \sum_{|\eta|=n, i, j} D_{\eta+\delta(i)} \phi_{j} a_{i} u(\eta, j) \\
& \quad+(2) C_{n} R_{\alpha} \sum_{1 \leq|\eta| \leq n-1, i, j} D_{\eta \eta+(i)} \phi_{j} a_{i} u(\eta, j) \\
& \quad+(3) C_{n} D\left(L_{\psi}\right)_{\alpha} \sum_{1 \leq|\eta| \leq n, \nu, i, k} D_{\eta+\delta(k)} \alpha_{\nu} D_{\dot{\delta}(i)}\left(\alpha^{-1}\right)_{k} a_{i} v(\eta, \nu) .
\end{aligned}
$$

Now (2) $=C_{n} R_{\alpha}(\mathrm{inj}) D t_{\phi}{ }^{n-1}(v)$ and (3) $=C_{n} D\left(L_{\phi}\right)_{\alpha} D t_{\alpha} D \alpha^{-1} v$. Thus to demonstrate (*) it must be shown that

$$
\left([\phi \alpha]^{n}, C_{n} R_{\alpha}(\mathrm{inj}) D t_{\phi^{n-1}}(v)+C_{n} D\left(L_{\phi}\right)_{\alpha} D t_{\alpha} D \alpha^{-1} v\right) \in B .
$$

But, by i), $\quad\left(\operatorname{inj}\left(D t_{\phi^{n-1}}(v)\right)\right)_{[\phi]^{n}} \in T A$, so $\quad\left(R_{\alpha}(\operatorname{inj})\left(D t_{\phi^{n-1}}(v)\right)\right)_{[\phi \alpha]^{n}} \in T A$. Thus, by ii), $\left([\phi \alpha]^{n}, C_{n} R_{\alpha}(\mathrm{inj}) D t_{\phi_{n-1}}(v)\right) \in B$. Since $\tilde{\mathscr{L}}_{p}$ is translation invariant, $t_{\alpha}(x) \in \mathscr{\mathscr { L }}_{p}$ for small $x \in \boldsymbol{R}^{p}$. Since A is invariant under $\tilde{\mathscr{L}}_{p}$, $L_{\phi} \circ t_{\alpha}(x) \in A$ for small x. It follows that $\left(D\left(L_{\phi}\right)_{\alpha} D t_{\alpha} D \alpha^{-1} v\right)_{[\phi \alpha]^{n}} \in T A$. By ii), ($\left.[\phi \alpha]^{n}, C_{n} D\left(L_{\phi}\right)_{\alpha} D t_{\alpha} D \alpha^{-1} v\right) \in B$, and hence the result.

Proposition 4.4. Theorem 4.3 remains valid if $n=1, \tilde{\mathscr{L}}_{q}=\{\mathrm{id}\}$, and condition ii) is replaced by ii)' : B $\supset\left\{\left([\phi]^{1},[\psi]^{1}\right) \mid[\phi]^{1} \in A\right.$ and image $D \psi \subset$ image $\left.D \phi\right\}$.

Proof. A mild modification of the proof of Theorem 4.3.
Proposition 4.5. Let $n \geq 1$ and let $\gamma: E_{1} \rightarrow E_{2}^{*} \otimes E_{3}$ be as in Theorem 4.3. Suppose, in addition, that $B=\left\{\left([\phi]^{n},[\phi]^{n}\right) \mid[\phi]^{n} \in A,[\psi]^{n} \in \widetilde{J}^{n}(p, q)\right.$ and
$\left.\left([\phi]^{n}\right)_{[\phi]^{n}} \in T A\right\}$. If $[\phi]^{n} \in A$, let $U(\phi)=\left\{v \in \boldsymbol{R}^{p} \mid\left([\phi]^{n}, v\right) \in E_{2}\right.$ and $\left.T t_{\phi n}\left(v_{0}\right) \in T A\right\}$. Then $A_{a}(\gamma)=\left\{[\phi]^{n+1} \mid[\phi]^{n} \in A\right.$ and $U(\phi)$ is an a-dimensional vector space $\}$.

Proof. Trivial.
Let γ be a-uniform. It follows from Proposition 4.1 that

$$
\left.S_{a}=\bar{S}_{a}=\varepsilon_{a}\left(G_{a}\left(\pi^{*} E_{2}\right) \times\left(\mathrm{id} \otimes \mu_{n}\right)^{-1}\left(\bigcirc_{n+1} \boldsymbol{R}^{p^{*}}\right) \otimes \boldsymbol{R}^{q}\right)\right) .
$$

Thus S_{a} is a factor bundle of $G_{a}\left(\pi^{*} E_{2}\right) \times \widetilde{J}^{n+1}(p, q)$ and $s_{a}^{*} S_{a}$ is a factor bundle of $A_{a}(\gamma) \times \tilde{J}^{n+1}(p, q)$. It follows from Theorem 3.2 that there is an exact sequence $0 \rightarrow K_{a}^{*} \otimes N_{a} \rightarrow s_{a}^{*} S_{a} \rightarrow T\left(E_{1}, A_{a}(\gamma)\right) \rightarrow 0$. Thus $T\left(E_{1}, A_{a}(\gamma)\right)$ is a factor bundle of $A_{a}(\gamma) \times \widetilde{J}^{n+1}(p, q)$. In fact, if γ is equivariant, there is an exact sequence of H-bundles and equivariant maps $0 \rightarrow \bar{B} \rightarrow A_{a}(\gamma) \times \widetilde{J}^{n+1}(p, q) \rightarrow$ $T\left(E_{1}, A_{a}(\gamma)\right) \rightarrow 0$ over $A_{a}(\gamma)$, where $\bar{B}=\left\{(\phi, \psi) \in A_{a}(\gamma) \times \widetilde{J}^{n+1}(p, q) \mid \psi_{\phi} \in T A_{a}(\gamma)\right\}$.

Note. Let $\gamma: E_{1} \rightarrow E_{2}^{*} \otimes E_{3}$ be as in Theorem 4.3 with $n=0$ or $B=$ $\left\{(\phi, \phi) \in A \times \tilde{J}^{n}(p, q) \mid \psi_{\phi} \in T A\right\}$. Let $E=\left\{[\phi]^{n+2} \mid[\phi]^{n+1} \in A_{a}(\gamma)\right\}$ and let $\gamma^{\prime}: E \rightarrow K_{a}^{*} \otimes T\left(E_{1}, A_{a}(\gamma)\right)$ be the map induced by $H^{n+2}: E \rightarrow A_{a}(\gamma) \times$ $\left(\boldsymbol{R}^{p^{*}} \otimes \widetilde{J}^{n+1}(p, q)\right)$. Then γ^{\prime} obeys the conditions of Theorem 4.3.

Suppose V and W are vector spaces and $\eta: V \rightarrow W$. Then η will be called a polynomial function if, relative to some choice of bases, each coordinate function of η is a polynomial in the coordinate functions of V. This condition does not depend on the choice of bases.

Let V and W be vector spaces, X a subset of V, and C a vector subbundle of $X \times W$. Suppose X is determined by polynomial equalities and inequalities. C will be called polynomially determined if there are an integer b and a polynomial $\eta: V \rightarrow \operatorname{Lin}\left(W, \boldsymbol{R}^{b}\right)$ such that $(x, w) \in C$ for $x \in X$ if and only if $\eta(x)(w)$ $=0$.

Proposition 4.6. Let all notation be as in Theorem 4.3. Suppose $E_{2} \subset$ $J^{n}(p, q) \times \boldsymbol{R}^{p}$ and $B \subset J^{n}(p, q) \times \widetilde{J}^{n}(p, q)$ are both polynomially determined. Then $A_{a}(\gamma)$ is determined by polynomial equalities and inequalities.

Proof. Let $\sigma: \boldsymbol{J}^{n}(p, q) \rightarrow \operatorname{Lin}\left(\boldsymbol{R}^{p}, \boldsymbol{R}^{b}\right)$ be a polynomial such that $\left([\phi]^{n}, v\right) \in E_{2}$ if and only if $[\phi]^{n} \in A$ and $\sigma\left([\phi]^{n}\right)(v)=0$. Let $\tau: J^{n}(p, q) \rightarrow$ Lin $\left(\tilde{J}^{n}(p, q), \boldsymbol{R}^{c}\right)$ be a polynomial such that $\left([\phi]^{n},[\phi]^{n}\right) \in B$ if and only if $[\phi]^{n} \in A$ and $\tau\left([\phi]^{n}\right)\left([\phi]^{n}\right)=0$. Let $[\phi]^{n} \in A$. Then $[\phi]^{n+1} \in A_{a}(\gamma)$ if and only if $\left\{\left(a_{1}, \cdots, a_{p}\right) \mid \sigma\left([\phi]^{n}\right)\left(a_{1}, \cdots, a_{p}\right)=0\right.$ and $\left.\tau\left([\phi]^{n}\right)\left(\sum_{|\omega|=n, \nu, j} a_{\nu} D_{\omega+\delta(\nu)} \phi_{j} u(\omega)\right)=0\right\}$
is an a-dimensional vector space. Thus there is a polynomial $\eta: J^{n+1}(p, q) \rightarrow$ $\operatorname{Lin}\left(\boldsymbol{R}^{p}, \boldsymbol{R}^{b+c}\right)$ such that $[\phi]^{n+1} \in A_{a}(\gamma)$ if and only if $[\phi] \in A$ and $\eta\left([\phi]^{n+1}\right)$ has rank $p-a$. Since determinant functions are polynomials, the result follows.

Proposition 4.7. Assume the hypothesis of Proposition 4.6. Then K_{a} and \bar{B} are polynomially determined.

Proof. Let η be the polynomial of the proof of Proposition 4.6. Then $\left([\phi]^{n+1}, v\right) \in K_{a}$ if and only if $[\phi]^{n+1} \in A_{a}(\gamma)$ and $\eta\left([\phi]^{n+1}\right)(v)=0$. We now show
that \check{B} is polynomially determined. If $\phi \in A_{a}(\gamma)$, let $B_{\phi}=\left\{\psi \in \widetilde{J}^{n}(p, q) \mid\left([\phi]^{n}, \psi\right) \in B\right\}$ and $F_{\phi}=\left\{\boldsymbol{w} \in \boldsymbol{R}^{p^{*}} \mid \boldsymbol{w}(v)=0\right.$ whenever $\left.(\phi, v) \in K_{a}\right\}$. Let

$$
C_{\phi}=\mu_{n+1}^{-1}\left(\left(\left(\mathrm{id} \otimes \mu_{n}\right)\left(\boldsymbol{R}^{p^{*}} \otimes B_{\phi}+F_{\phi} \otimes \tilde{J}^{n}(p, q)\right)\right) \cap\left(\left(\bigcirc_{n+1} \boldsymbol{R}^{p^{*}}\right) \otimes \boldsymbol{R}^{q}\right)\right) .
$$

Let $C=\left\{(\phi, \psi) \mid \phi \in A_{a}(\gamma)\right.$ and $\left.\psi \in C_{\phi}\right\}$. The bundle C is polynomially determined. It follows from Proposition 4.1 and the exactness of $0 \rightarrow B \rightarrow A \times$ $\tilde{J}^{n}(p, q) \rightarrow E_{3} \rightarrow 0$ that there is an exact sequence $0 \rightarrow C \rightarrow A \times \tilde{J}^{n+1}(p, q) \rightarrow$ $s_{a}^{*} S_{a} \rightarrow 0$.

If $\phi \in A_{a}(\gamma)$, let

$$
P_{\phi}=\left\{\sum_{|\omega|=n, \nu, j} a_{\nu} D_{\omega+\delta(\nu)} \phi_{j} u(\omega, j) \mid\left([\phi]^{n},\left(a_{1}, \cdots, a_{p}\right)\right) \in E_{2}\right\} .
$$

Each P_{ϕ} may be described in terms of polynomials in the coordinates of ϕ. Since $0 \rightarrow K_{a}^{*} \otimes N_{a} \rightarrow s_{a}^{*} S_{a} \rightarrow T\left(E_{1}, A_{a}(\gamma)\right) \rightarrow 0$ is exact, so is $K_{a}^{*} \otimes s_{a}^{*} S_{a} \rightarrow$ $T\left(E_{1}, A_{a}(\gamma)\right) \rightarrow 0$. It follows that
$\bar{B}=\left\{(\phi, \phi) \mid \phi \in A_{a}(\gamma), \psi \in C_{\phi}+\mu_{n+1}^{-1}\left(\left(\left(\mathrm{id} \otimes \mu_{n}\right)\left(\boldsymbol{R}^{p^{*}} \otimes P_{\phi}\right)\right) \cap\left(\left({ }_{n+1}^{\bigcirc} \boldsymbol{R}^{q^{*}} \otimes \boldsymbol{R}^{q}\right)\right)\right\}\right.$
and is therefore polynomially determined.

5. Singularities of mappings

Let V be a manifold of type G, and suppose G acts on F. \underline{F} will denote the bundle with base V, fiber F and group G. If U is a subset of F, which is invariant under G, then \underline{U} is a sub-bundle of \underline{F}. Let W be a bundle over U, and suppose G acts on W in such a way that the bundle projection $W \rightarrow U$ is equivariant. Then W induces a bundle \underline{W} over \underline{U} with group G and fiber that of W. Suppose G acts on bundles W_{1} and W_{2} over U in such a way that the bundle projections are equivariant. If $\phi: W_{1} \rightarrow W_{2}$ is an invariant bundle morphism, then ϕ induces a morphism $\phi: \underline{W}_{1} \rightarrow \underline{W}_{2}$. If W_{1} and W_{2} are G bundles and $\phi: W_{1} \rightarrow W_{2}$ is an equivariant morphism of vector bundles, then ϕ is a morphism of vector bundles. Furthermore, - takes commutative dia$\overline{\text { grams into commutative diagrams and exact sequences into exact sequences. }}$

Let all notation be as in $\S 4$, and $\tilde{\mathscr{L}}_{p}$ and $\tilde{\mathscr{L}}_{q}$ translation invariant subgroups of \mathscr{L}_{p} and \mathscr{L}_{q} respectively. Suppose $\gamma: E_{1} \rightarrow E_{2}^{*} \otimes E_{3}$ is a-uniform and satisfies the hypotheses of either Theorem 4.3 or Proposition 4.4 (so γ is equivariant). Let X be a manifold of type $\tilde{\mathscr{L}}_{p}$ and Y a manifold of type $\tilde{\mathscr{L}}_{q}$. It follows from Corollary 3.5 that over $J_{A_{a}(\gamma)}^{n+1}(X, Y)$ there is an exact sequence

$$
0 \rightarrow \underline{K_{a}^{*} \otimes N_{a}} \rightarrow \underline{s_{a}^{*} S_{a}} \rightarrow T\left(J_{E_{1}}^{n+1}(X, Y), J_{A_{a}(\gamma)}^{n+1}(X, Y)\right) \rightarrow 0 .
$$

Note also that $\underline{K}_{a}^{*} \otimes \underline{N_{a}} \approx\left(K_{a}\right)^{*} \otimes \underline{N_{a}}$. In the furture, underlines will be dropped, $s_{a}^{*} S_{a}$ will be abbreviated to F_{a}, and $T\left(J_{E_{1}}^{n+1}(X, Y), J_{A_{a}(\gamma)}^{n+1}(X, Y)\right)$ to R_{a}. Thus the above sequence becomes $0 \rightarrow K_{a}^{*} \otimes N_{a} \rightarrow F_{a} \rightarrow R_{a} \rightarrow 0$ over $J_{A_{a}(r)}^{n+1}(X, Y)$.

Let $r_{n}: J^{n}(X, Y) \rightarrow J^{n-1}(X, Y), r^{n}: J^{n}(X, Y) \rightarrow X \times Y$ for $n \geq 1$, and $\varepsilon_{1}: X \times Y \rightarrow X$ and $\varepsilon_{2}: X \times Y \rightarrow Y$ be the projections. For $n \geq 1$, define $\widetilde{J}^{n}(X, Y)=\left\{\phi \in J^{n}(X, Y) \mid \phi\right.$ is $(n-1)$-equivalent to a constant germ $\} . \widetilde{J}^{n}(X, Y)$ is a vector bundle over $X \times Y$ and, in fact, $\tilde{J}^{n}(X, Y) \approx\left(\bigcirc_{n} \varepsilon_{1}^{*} T X^{*}\right) \otimes \varepsilon_{2}^{*} T Y$ $\approx\{0\} \times \widetilde{J}^{n}(p, q)$.
E_{3} is a factor bundle of $r^{n^{*}} \tilde{J}^{n}(X, Y)$ over $J_{A}^{n}(X, Y)$ because of the exactness of $0 \rightarrow B \rightarrow A \times \widetilde{J}^{n}(p, q) \rightarrow E_{3} \rightarrow 0$ over A. Thus if $n=1$, then E_{3} is a factor bundle of $T J^{1}(X, Y)=\operatorname{Tr}_{1}^{-1} T r_{1} J_{A}^{1}(X, Y)$ over $J_{A}^{1}(X, Y)$. Note that for $n \geq 1$ there is an exact sequence $0 \rightarrow r^{n^{*}} \widetilde{J}^{n}(X, Y) \rightarrow T J^{n}(X, Y) \rightarrow r_{n}^{*} T J^{n-1}(X, Y) \rightarrow 0$, so B is a sub-bundle of $T J^{n}(X, Y)$ over $J_{A}^{n}(X, Y)$. If $n \geq 2$, it follows from the hypotheses of Theorem 4.3 that there is an exact sequence $0 \rightarrow T J_{A}^{n}(X, Y)$ $+B \rightarrow \operatorname{Tr}_{n}^{-1} \operatorname{Tr}_{n} T J_{A}^{n}(X, Y) \rightarrow E_{3} \rightarrow 0$. Therefore for $n \geq 1$ there is an epimorphism $\varepsilon: T r_{n}^{-1} T r_{n} T J_{A}^{n}(X, Y) \rightarrow E_{3}$. If $n=0$, then E_{3} is a factor bundle of $T Y$ over Y. The epimorphism $T Y \rightarrow E_{3}$ will also be denoted ε.

Let $f: X \rightarrow Y . A_{a}(\gamma)(f)$ will be abbreviated to $A_{a}(f)$. Note finally that if $n \geq 1$, then $f^{n^{*}} E_{2}$ is a sub-bundle of $T X$ over $A(f)$. In the case $n=0, E_{2}$ is a subbundle of $T X$.

Proposition 5.1. Let $n=0$ and $f: X \rightarrow Y$. Then $A_{a}(f)=\{x \in X \mid$ dimension kernel $\left.(\varepsilon \circ T f) \mid\left(E_{2}\right)_{x}=a\right\}$.

Proof. Trivial.
Proposition 5.2. Let $n \geq 1$ and $f: X \rightarrow Y$. Then $A_{a}(f)=\{x \in A(f) \mid$ dimension kernel $\left.\left(\varepsilon \circ T f^{n}\right) \mid\left(f^{n^{*}} E_{2}\right)_{x}=a\right\}$.

Proof. This is a local question. Assume $X=\boldsymbol{R}^{p}, Y=\boldsymbol{R}^{q}, x=0, f(0)=0$, and $0 \in A(f) . J^{n}\left(\boldsymbol{R}^{p}, \boldsymbol{R}^{q}\right)=\boldsymbol{R}^{n} \times \boldsymbol{R}^{q} \times J^{n}(p, q)$. Let \bar{f}^{n} be the projection of f^{n} on $J^{n}(p, q) . T \bar{f}^{n}\left(v_{0}\right)=\left(D t_{f n}(v)\right)_{[f]^{n}}$. Let $v_{0} \in f^{n^{*}} E_{2}$, implying $\left([f]^{n}, v\right) \in E_{2}$ so $\left((\mathrm{inj}) D t_{f n-1}(v)\right)_{\left[f \jmath^{n}\right.} \in T A$. It follows that for $v=\left(a_{1}, \cdots, a_{p}\right),\left(\varepsilon \circ T f^{n}\right)\left(v_{0}\right)=0$ if and only if $\left([f]^{n}, \sum_{|\omega|=n, \nu, j} a_{\nu} D_{\omega+\delta(\nu)} f_{j} u(\omega, j)\right) \in B$. Thus $0 \in A_{a}(f)$ if and only if kernel $\left(\varepsilon \circ T f^{n}\right) /\left(f^{n^{*}} E_{2}\right)_{0}$ has dimension a. q.e.d.
R_{a} is a factor bundle of $r^{n+1^{*}} \widetilde{J}^{n+1}(X, Y)$ over $J_{A_{a}(r)}^{n+1}(X, Y)$. Thus, if $f: X \rightarrow Y$, then $f^{n+1^{*}} R_{a}$ is a factor bundle of $\left(\underset{n+1}{\bigcirc} T X^{*}\right) \otimes f^{*} T Y$.

Suppose f is A-transversal; so $A(f)$ is a manifold. $T f^{n}(T A(f)) \subset T J_{A}^{n}(X, Y)$ so $T f^{n+1}(T A(f)) \subset \operatorname{Tr}_{n+1}^{-1} T J_{A}^{n}(X, Y)=T J_{E_{1}}^{n+1}(X, Y)$. Since there is a map $T J_{E_{1}}^{n+1}(X, Y) \rightarrow R_{a}$ over $A_{a}(\gamma), T f^{n+1}$ induces a map $T A(f) \rightarrow R_{a}$ over $A_{a}(f)$ and hence a map $\psi: T A(f) \rightarrow f^{n+1^{*}} R_{a}$ over $A_{a}(f)$.

Since f is A-transversal, $T f^{n+1}$ induces an exact commutative diagram

over $A_{a}(f) . f$ is $A_{a}(\gamma)$-transversal if and only if η is an epimorphism if and only if ψ is an epimorphism. Hence we have shown

Proposition 5.3. Let $f: X \rightarrow Y$. Then $f^{n+1^{*}} R_{a}$ is a factor bundle of $\left(\bigcirc_{n+1}^{\bigcirc} T X^{*}\right) \otimes f^{*} T Y$ over $A_{a}(f)$. If f is A-transversal, then $T f^{n+1}$ induces a map $T A(f) \rightarrow f^{n+1^{*}} R_{a}$ over $A_{a}(f)$. f is $A_{a}(\gamma)$-transversal if and only if this map is an epimorphism.

Let f be $A_{a}(\gamma)$-transversal, $x \in A(f)$ and $v \in T X_{x}$. Then $v \in T A_{a}(f)$ if and only if $T f^{n+1}(v) \in T J_{A_{a}(\gamma)}^{n+1}(X, Y)$. Thus

Proposition 5.4. Let f be $A_{a}(\gamma)$-transversal. Then, over $A_{a}(f), T A_{a}(f)$ is the kernel of $T A(f) \rightarrow{ }^{n+1^{*}} R_{a}$.

6. Examples and applications

Let V be a vector bundle over X, and suppose W_{1} is a factor bundle of $\bigcirc_{m} V$ and W_{2} is a factor bundle of $\bigcirc_{n} V$. Then $W_{1} \otimes W_{2}$ is a factor bundle of $\left(\bigcirc_{m}^{\bigcirc} V\right) \otimes\left(\bigcirc_{n}^{\bigcirc} V\right) \rightarrow W_{1} \otimes W_{2}$. Define $W_{1} \circ W_{2}$ to be the image of $\underset{m+n}{\bigcirc} V$. Since the fiber dimension of $W_{1} \circ W_{2}$ may vary from point to point of $X, W_{1} \circ W_{2}$ is not necessarily a bundle.

If W_{1} is a factor bundle of $X \times\left(\bigcirc_{m} \boldsymbol{R}^{p^{*}}\right)$ and W_{2} is a factor bundle of $X \times \tilde{J}^{n}(p, q)$, then $W_{1} \otimes W_{2}$ is a factor bundle of $X \times\left(\left(\bigcirc_{m} \boldsymbol{R}^{p^{*}}\right) \otimes \tilde{J}^{n}(p, q)\right)$ $=X \times\left(\left(\bigcirc_{m} \boldsymbol{R}^{p^{*}}\right) \otimes\left(\bigcirc_{n} \boldsymbol{R}^{p^{*}}\right) \otimes \boldsymbol{R}^{q}\right)$. Define $W_{1} \circ W_{2}$ to be the image of $X \times\left(\left(\underset{m+n}{\bigcirc} \boldsymbol{R}^{p^{*}}\right) \otimes \boldsymbol{R}^{q}\right)=X \times \tilde{J}^{m+n}(p, q)$. Once again, $W_{1} \circ W_{2}$ need not be a bundle.

Consideration of the special case, where X is a point, yields similar definitions for the symmetric product of appropriate vector spaces.

Let W_{1}, W_{2} and W_{3} be factor bundles of $X \times(\underset{k}{\bigcirc} V), X \times(\underset{m}{\bigcirc} V)$, and $X \times\left(\bigcirc_{n}^{\bigcirc} V\right)$ respectively, and suppose $W_{1} \circ W_{2}$ and $W_{2} \circ W_{3}$ are bundles. Then $W_{1} \circ\left(W_{2} \circ W_{3}\right)=\left(W_{1} \circ W_{2}\right) \circ W_{3}$, so parentheses may be removed without introducing ambiguity. Similarly, if W_{1}, W_{2} and W_{3} are factor bundles of $X \times\left(\bigcirc_{k} \boldsymbol{R}^{p^{*}}\right), X \times\left(\bigcirc_{m}^{\bigcirc} \boldsymbol{R}^{p^{*}}\right)$, and $X \times \tilde{J}^{n}(p, q)$ respectively.

If $0 \leq p \leq q$, there is an epimorphism $\boldsymbol{R}^{q} \rightarrow \boldsymbol{R}^{p}$ defined by $\left(x_{1}, \cdots, x_{q}\right) \rightarrow$
$\left(x_{1}, \cdots, x_{p}\right)$. Suppose $I^{m}=\left(a_{1}, \cdots, a_{m}\right)$ is such that each a_{i} is a non-negative integer and $a_{1} \geq \cdots \geq a_{m}$. Since each of the vector spaces $\boldsymbol{R}^{a_{i}}$ is a factor space of $\boldsymbol{R}^{a_{1}}, \boldsymbol{R}^{a_{m}} \circ \cdots \circ \boldsymbol{R}^{a_{1}}$ is defined. Define $P\left(\boldsymbol{I}^{m}\right)=$ dimension $\left(\boldsymbol{R}^{a_{m}} \circ \cdots \circ \boldsymbol{R}^{a_{1}}\right)$.

Lemma 6.1. Let W_{1}, \cdots, W_{m} be vector bundles over X, and suppose that for each i there is an epimorphism $W_{i} \rightarrow W_{i_{+1}}$. Then $W_{m} \circ \cdots \circ W_{1}$ is a vector bundle. If, for each i, $\operatorname{dim} W_{i}=a_{i}$, then $\operatorname{dim}\left(W_{m} \circ \cdots \circ W_{1}\right)=P\left(a_{1}, \cdots, a_{m}\right)$.

Proof. Straightforward.
Let p and q be given. Define an admissible sequence of length n to be a tuple (a_{1}, \cdots, a_{n}) of non-negative integers such that $a_{1} \geq p-q$ and $p \geq a_{1}$ $\geq \cdots \geq a_{n}$. If $I^{n}=\left(a_{1}, \cdots, a_{n}\right)$ is an admissible sequence of length n and $0 \leq m \leq n$, then $I^{m}=\left(a_{1}, \cdots, a_{m}\right)$ is an admissible sequence of length m.

Fix an admissible sequence $I^{n}=\left(a_{1}, \cdots, a_{n}\right)$. If $0 \leq i \leq j$, let $r_{i}^{j}: J^{j}(p, q)$ $\rightarrow J^{i}(p, q)$ be the projection.

Define $Z(\phi)=\{0\}=J^{0}(p, q)$. Let $E_{2}^{0}=Z(\phi) \times \boldsymbol{R}^{p}$ and $E_{3}^{0}=Z(\phi) \times \boldsymbol{R}^{q}$. Now suppose that whenever $1 \leq m \leq n-1, Z\left(I^{m}\right)$ is a submanifold of $J^{m}(p, q)$. If $1 \leq m \leq n$, let $E_{1}^{m}=\left\{\phi \in J^{m}(p, q) \mid[\phi]^{m-1} \in Z\left(I^{m-1}\right)\right\}$. If $1 \leq m \leq n-1$, let $B^{m}=\left\{(\phi, \phi) \in Z\left(I^{m}\right) \times \tilde{J}^{m}(p, q) \mid \psi_{\phi} \in T Z\left(I^{m}\right)\right\}$ and assume it to be a bundle over $Z\left(I^{m}\right)$. If $1 \leq m \leq n-1$, define E_{3}^{m} over $Z\left(I^{m}\right)$ by the exactness of $0 \rightarrow B^{m}$ $\rightarrow Z\left(I^{m}\right) \times \widetilde{J}^{m}(p, q) \rightarrow E_{3}^{m} \rightarrow 0$. If $0 \leq m \leq n-1$, let E_{2}^{m} be a vector subbundle of $Z\left(I^{m}\right) \times \boldsymbol{R}^{p}$. If $0 \leq m \leq n-1, H^{m+1}: E_{1}^{m+1} \rightarrow Z\left(I^{m}\right) \times\left(\boldsymbol{R}^{p^{*}} \otimes \widetilde{J}^{m}(p, q)\right)$ induces $\gamma^{m+1}: E_{1}^{m+1} \rightarrow E_{2}^{m *} \otimes E_{3}^{m}$. If $0 \leq m \leq n-2$, suppose γ^{m+1} is $a_{m+1^{-}}$ uniform and $Z\left(I^{m+1}\right)=Z\left(I^{m}\right)_{a_{m+1}}\left(\gamma^{m+1}\right)$. Define $Z\left(I^{n}\right)=Z\left(I^{n-1}\right)_{a_{n}}\left(\gamma^{n}\right)$. If $0 \leq m \leq n-1, r^{m+1}$ induces a map $r_{m}^{m+1 *} E_{2}^{m} \rightarrow r_{m}^{m+1 *} E_{3}^{m}$ over E_{1}^{m+1}. If $0 \leq$ $m \leq n-2$, suppose this map induces an exact sequence $0 \rightarrow E_{2}^{m+1} \rightarrow r_{m}^{m+1^{*}} E_{2}^{m}$ $\rightarrow r_{m}^{m+1^{*}} E_{3}^{m} \rightarrow Q^{m+1} \rightarrow 0$ over $Z\left(I^{m+1}\right)$ defining Q^{m+1}. (Note that the bundles E_{2}^{m} and the sets $Z\left(I^{m}\right)$ are defined inductively.) Define bundles E_{2}^{n} and Q^{n} over $Z\left(I^{n}\right)$ by the exactness of $0 \rightarrow E_{2}^{n} \rightarrow r_{n-1}^{n}{ }^{*} E_{2}^{n-1} \rightarrow r_{n-1}^{n}{ }^{*} E_{3}^{n-1} \rightarrow Q^{n} \rightarrow 0$. If $1 \leq m \leq n$, define a bundle N^{m} over $Z\left(I^{m}\right)$ by the exactness of $0 \rightarrow E_{2}^{m} \rightarrow$ $r_{m-1}^{m}{ }^{*} \rightarrow E_{2}^{m-1} \rightarrow N^{m} \rightarrow 0$.

Let $\bar{\pi}: G_{a_{n}}\left(r_{n-1}^{n} * E_{2}^{n-1}\right) \rightarrow E_{1}^{n}$ be the bundle projection, and $0 \rightarrow L_{a_{n}} \rightarrow$ $\bar{\pi}^{*} r_{n-1}^{n} * E_{2}^{n-1} \rightarrow M_{a_{n}} \rightarrow 0$ the usual sequence as in §2. If $s^{n}: Z\left(I^{n}\right) \rightarrow$ $G_{a_{n}}\left(r_{n-1}^{n}{ }^{*} E_{2}^{n-1}\right)$ is the standard section, then $s^{n^{*}} L_{a_{n}}=E_{2}^{n}$ and $s^{n^{*}} M_{a_{n}}=N^{n}$.

If $1 \leq i \leq n-1, \gamma^{i}: E_{1}^{i} \rightarrow E_{2}^{i-1^{*}} \otimes E_{3}^{i-1}$ over $Z\left(I^{i-1}\right)$ induces a monomorphism $N^{i} \rightarrow r_{i-1}^{i} * E_{3}^{i-1}$ and hence, over $G_{a_{n}}\left(r_{n-1}^{n} * E_{2}^{n-1}\right)$, a monomorphism

$$
\begin{aligned}
L_{a_{n}}^{*} \circ & \pi^{*}\left(r_{n-1}^{n} * E_{2}^{n-1^{*}} \circ \cdots \circ r_{i}^{n^{*}} E_{2}^{i *}\right) \otimes \pi^{*} r_{i}^{n^{*}} N_{i} \\
& \rightarrow L_{a_{n}}^{*} \circ \bar{\pi}^{*}\left(r_{n-1}^{n} * E_{2}^{n-1^{*}} \circ \cdots \circ r_{i}^{n^{*}} E_{2}^{i *}\right) \otimes \bar{\pi}^{*} r_{i-1}^{n} * E_{3}^{i-1} .
\end{aligned}
$$

It is annoying but straightforward to show that the image of this map is contained in the symmetric subset $L_{a_{n}}^{*} \circ \bar{\pi}^{*}\left(r_{n-1}^{n} * E_{2}^{n-1^{*}} \circ \ldots \circ r_{i}^{n *} E_{2^{*}}^{i} \circ r_{i-1}^{n}{ }^{*} E_{3}^{i-1}\right)$. $0 \rightarrow N^{i} \rightarrow r_{i-1}^{i} * E_{3}^{i-1} \rightarrow Q^{i} \rightarrow 0$ and $0 \rightarrow E_{2}^{i^{*}} \otimes N^{i} \rightarrow E_{2}^{i *} \circ r_{i-1}^{i} * E_{3}^{i-1} \rightarrow E_{2}^{i^{*}} \circ Q^{i} \rightarrow 0$ are exact. But for $1 \leq i \leq n-1, E_{2}^{i^{*}} \circ Q^{i} \approx E_{3}^{i}$ by Proposition 4.1 and Theorem 3.2. Thus over each point of $G_{a_{n}}\left(r_{n-1}^{n}{ }^{*} E_{2}^{n-1}\right)$ there are exact sequences:

$$
\begin{aligned}
& 0 \rightarrow L_{a_{n}}^{*} \circ \bar{\pi}^{*} r_{n-1}^{n} * E_{2}^{n-1^{*}} \otimes \bar{\pi}^{*} r_{n-1}^{n}{ }^{*} N^{n-1} \\
& \rightarrow L_{a_{n}}^{*} \circ \bar{\pi}^{*} r_{n-1}^{n}{ }^{*} E_{2}^{n-1^{*}} \circ \bar{\pi}^{*} r_{n-2}^{n}{ }^{*} E_{3}^{n-2} \rightarrow L_{a_{n}}^{*} \circ \bar{\pi}^{*} r_{n-1}^{n}{ }^{*} E_{3}^{n-1} \rightarrow 0, \\
& 0 \rightarrow L_{a_{n}}^{*} \circ \bar{\pi}^{*} r_{n-1}^{n}{ }^{*} E_{2}^{n-1^{*}} \circ \bar{\pi}^{*} r_{n-2}^{n} * E_{2}^{n-2^{*}} \otimes \bar{\pi}^{*} r_{n-2}^{n} * N^{n-2} \\
& \rightarrow L_{a_{n}}^{*} \circ \bar{\pi}^{*} r_{n-1}^{n}{ }^{*} E_{2}^{n-1^{*}} \circ \bar{\pi}^{*} r_{n-2}^{n}{ }^{*} E_{2}^{n-2^{*}} \circ \bar{\pi}^{*} r_{n-3}^{n}{ }^{*} E_{3}^{n-3} \\
& \rightarrow L_{a_{n}}^{*} \circ \bar{\pi}^{*} r_{n-1}^{n}{ }^{*} E_{2}^{n-1^{*}} \circ \bar{\pi}^{*} r_{n-2}^{n} E_{3}^{n-2} \rightarrow 0, \\
& 0 \rightarrow L_{a_{n}}^{*} \circ \bar{\pi}^{*} r_{n-1}^{n}{ }^{*} E_{2}^{n-1^{*}} \circ \ldots \circ \bar{\pi}^{*} r_{1}^{n^{*}} E_{2}^{1 *} \otimes \bar{\pi}^{*} r_{1}^{n^{*}} N^{1} \\
& \rightarrow L_{a_{n}}^{*} \circ \bar{\pi}^{*} r_{n-1}^{n}{ }^{*} E_{2}^{n-1 *} \circ \cdots \circ \bar{\pi}^{*} r_{1}^{n^{*}} E_{2}^{* *} \otimes \bar{\pi}^{*} r_{0}^{n^{*}}\left(\{0\} \times \boldsymbol{R}^{q}\right) \\
& \rightarrow L_{a_{n}}^{*} \circ \bar{\pi}^{*} r_{n-1}^{n} * E_{2}^{n-1^{*}} \circ \cdots \circ \bar{\pi}^{*} r_{2}^{n *} E_{2}^{* *} \circ \bar{\pi}^{*} r_{1}^{n *} E_{3}^{1} \rightarrow 0 .
\end{aligned}
$$

Note that the fiber dimension of N^{1} is $p-a_{1}$, and the fiber dimension of N^{i} is $a_{i-1}-a_{i}$ for $i>1$. Thus from Lemma 6.1 and the exactness of the above sequences, the fiber dimension of $L_{a_{n}}^{*} \circ \bar{\pi}^{*} r_{n-1}^{n}{ }^{*} E_{3}^{n-1}$ at each point of $G_{a_{n}}\left(r_{n-1}^{n}{ }^{*} E_{2}^{n-1}\right)$ is $P\left(a_{1}, \cdots, a_{n}\right)\left(q-p+a_{1}\right)-\sum_{i=2}^{n-1} P\left(a_{i}, \cdots, a_{n}\right)\left(a_{i-1}-a_{i}\right)$. Consequently, γ^{n} is a_{n}-uniform and therefore $Z\left(I^{n}\right)$ is a manifold. Furthermore, $0 \rightarrow E_{2}^{n^{*}} \otimes N^{n} \rightarrow E_{2}^{n *} \circ r_{n-1}^{n}{ }^{*} E_{3}^{n-1} \rightarrow T\left(E_{1}^{n}, Z\left(I^{n}\right)\right) \rightarrow 0$ is exact. Thus $T\left(E_{1}^{n}, Z\left(I^{n}\right)\right)$ $\approx E_{2}^{n^{*}} \circ Q^{n}$ and has dimension $P\left(a_{1}, \cdots, a_{n}\right)\left(q-p+a_{1}\right)-\sum_{i=2}^{n} P\left(a_{i}, \cdots, a_{n}\right)$ $\left(a_{i-1}-a_{i}\right)$.

That $Z\left(I^{n}\right)$ is invariant under $\mathscr{L}_{p} \times \mathscr{L}_{q}$ is immediate from Theorem 4.3. If U and V are manifolds and $\phi: U \rightarrow V$, let $Z_{a}(\phi)=Z(a)(\phi)=\{x \in U \mid$ dimension kernel $\left.T \phi_{x}=a\right\}$. Let X be a p-manifold, Y a q-manifold, and let $f: X \rightarrow Y$ be $Z\left(I^{m}\right)$-transversal for each $m \leq n-1$. It follows from Proposition 5.4 that, for each $m, Z\left(I^{m+1}\right)(f)=Z_{a_{m+1}}\left(f / Z\left(I^{m}\right)(f)\right)$.

We now summarize:
Theorem 6.2 (Boardman). Let X be a (compact) p-manifold, Y a q-manifold and $I^{n}=\left(a_{1}, \cdots, a_{n}\right)$ an admissible sequence. If $f: X \rightarrow Y$, define $Z(\phi)(f)$ $=X$, and if $Z\left(I^{m}\right)(f) \subset X$ is defined and is a manifold, define $Z\left(I^{m+1}\right)(f)=$ $Z_{a_{m+1}}\left(f / Z\left(I^{m}\right)(f)\right)$. Then for a (open and dense) dense set of functions f in $\mathscr{C}^{n+1}(X, Y), Z\left(I^{m}\right)(f)$ is a manifold for $1 \leq m \leq n$, and furthermore, for such f,

$$
\begin{aligned}
& \text { dimension } T\left(Z\left(I^{n-1}\right)(f), Z\left(I^{n}(f)\right)\right) \\
& \quad=P\left(I^{n}\right)\left(q-p+a_{1}\right)-\sum_{i=1}^{n} P\left(a_{i}, \cdots, a_{n}\right)\left(a_{i-1}-a_{i}\right)
\end{aligned}
$$

Proposition 6.3. Let $\check{\mathscr{L}}_{p}=\left\{\alpha_{0} \mid \alpha \in \mathscr{F}(p, p), \alpha_{0} \in \mathscr{L}_{p}\right.$ and, for sufficiently small $x, D \alpha_{x}$ preserves perpendicularity\}. Let $a>p-q$ and $\max (0, a(q-p$ $+a)+a-p) \leq b \leq a$, then there is a submanifold $Z(a \perp b)$ of $\left(r_{1}^{2}\right)^{-1} Z(a)$, invariant under $\overline{\mathscr{L}}_{p} \times \mathscr{L}_{q}$, such that:
i) dimension $T\left(\left(r_{1}^{2}\right)^{-1} Z(a), Z(a \perp b)\right)=b(p-a(q-p+a)-(a-b))$,
ii) if X is a manifold of type $\tilde{\mathscr{L}}_{p}, Y$ is a q-manifold and $f: X \rightarrow Y$ is $Z(a)$ transversal, then $Z(a \perp b)(f)=\{x \in Z(a)(f) \mid$ the intersection of the vector space normal to $T Z(a)(f)_{x}$ with kernel $T f_{x}$ is b-dimensional $\}$.

Proof. Over $Z(a), H^{1}$ induces an exact sequence $0 \rightarrow K_{a} \rightarrow Z(a) \times \boldsymbol{R}^{p} \rightarrow$ $Z(a) \times \boldsymbol{R}^{q} \rightarrow Q_{a} \rightarrow 0$. Furthermore, $T\left(J^{1}(p, q), Z(a)\right) \approx K_{a}^{*} \otimes Q_{a}$. Define E over $Z(a)$ by $E=\left\{(\phi, v) \in Z(a) \times \boldsymbol{R}^{p} \mid v\right.$ is perpendicular to w whenever $\left.(\phi, w) \in K_{a}\right\}$, E is an $\tilde{\mathscr{L}}_{p} \times \mathscr{L}_{q}$ bundle over $Z(a)$ with fiber dimension $p-a . H^{2}$ induces $r^{2}:\left(r_{1}^{2}\right)^{-1} Z(a) \rightarrow E^{*} \otimes K_{a}^{*} \otimes Q_{a}$. Define $Z(a \perp b)=Z(a)_{p-a(q-p+a)-(a-b)}\left(\gamma^{2}\right)$. γ^{2} is $p-a(q-p+a)-(a-b)$ uniform sice $E \cap K_{a}$ is the zero section of $Z(a) \times \boldsymbol{R}^{p}$. Over $Z(a \perp b), \gamma^{2}$ induces and exact sequence $0 \rightarrow K_{a \perp b} \rightarrow r_{1}^{2 *} E \rightarrow$ $r_{1}^{2^{*}}\left(K_{a}^{*} \otimes Q_{a}\right)$ where dimension $\left(K_{a \perp b}\right)=p-a(q-p+a)-(a-b)$. If $N_{a \perp b}$ is defined by the exactness of $0 \rightarrow K_{a \perp b} \rightarrow r_{1}^{r^{2}} E \rightarrow N_{a \perp b} \rightarrow 0$, there is an exact sequence $0 \rightarrow K_{a \perp b}^{*} \otimes N_{a \perp b} \rightarrow K_{a \perp b}^{*} \otimes r_{1}^{2^{\star}}\left(K_{a}^{*} \otimes Q_{a}\right) \rightarrow T\left(\left(r_{1}^{2}\right)^{-1} Z(a), Z(a \perp b)\right) \rightarrow 0$. That $Z(a \perp b)$ is invariant under $\tilde{\mathscr{L}}_{p} \times \mathscr{L}_{q}$ is immediate from Theorem 4.3. It remains to show ii).

Let X be a manifold of type $\tilde{\mathscr{L}}_{p}$ and Y a q-manifold. Let $f: X \rightarrow Y$ be $Z(a)$ transversal and let $x \in Z(a)(f)$. By Proposition 5.4, $x \in Z(a \perp b)$ if and only if $\left(f^{1^{*}} E\right)_{x} \cap(T Z(a)(f))_{x}$ has dimension $p-a(q-p+a)-(a-b)$. But

$$
\left(\left(f^{*} E\right)_{x} \cup T Z(a)(f)_{x}\right)^{\perp}=\left(f 1^{*} E\right)_{\bar{x}}^{\perp}+T Z(a)(f)_{\bar{x}}^{\perp}=\left(f^{1^{*}} K_{a}\right)_{x}+T Z(a)(f)_{x}^{\perp}
$$

Thus $x \in Z(a \perp b)$ if and only if

$$
\begin{aligned}
& a(q-p+a)+(a-b) \\
& \quad=\operatorname{dim}\left(\left(f^{1^{*}} E\right)_{x} \cap T Z(a)(f)_{x}\right)^{\perp}=\operatorname{dim}\left(\left(f^{1^{*}} K_{a}\right)_{x}+T Z(a)(f) \frac{\perp}{x}\right) \\
& \quad=\operatorname{dim} f^{1^{*}} K_{a}+\operatorname{dim} T Z(a)(f)^{\perp}-\operatorname{dim}\left(\left(f^{1^{*}} K_{a}\right)_{x} \cap T Z(a)(f)_{x}^{\perp}\right) \\
& \quad=a+a(q-p+a)-\operatorname{dim}\left(\left(f^{1^{*}} K_{a}\right)_{x} \cap T Z(a)(f)_{x}^{\perp}\right)
\end{aligned}
$$

if and only if $\operatorname{dim}\left(\left(f^{1^{*}} K_{a}\right)_{x} \cap T Z(a)(f)_{\frac{1}{x}}\right)=b$. q.e.d.
Obviously Proposition 6.3 is not the most general result possible. One can construct invariant manifolds by combining perpendicularity considerations with the constructions of Theorem 6.2.

Proposition 6.4. Let $\tilde{\mathscr{L}}_{p} \subset \mathscr{L}_{p}$ be translation invariant, $\tilde{\mathscr{L}}_{q}=\{\mathrm{id}\}$, and Q_{a} be as in the proof of Proposition 6.3. Let E be a vector sub-bundle of $Z(a) \times R^{p}$ invariant under the action of $\tilde{\mathscr{L}}_{p}$, and $\gamma^{2}:\left(r_{1}^{2}\right)^{-1} Z(a) \rightarrow E^{*} \otimes$ $\left(Z(a) \times \boldsymbol{R}^{p^{*}}\right) \otimes Q_{a}$ be the map induced by H^{2}. If $b \leq \operatorname{dim} E$, then $Z(a)_{b}\left(\gamma^{2}\right)$ is a manifold and is invariant under $\tilde{\mathscr{L}}_{p}$.

Proof. γ^{2} is b-uniform by Lemma 6.1, so $Z(a)_{b}\left(\gamma^{2}\right)$ is a manifold. γ^{2} is equivariant by Proposition 4.4. so $Z(a)_{b}\left(\gamma^{2}\right)$ is invariant under $\tilde{\mathscr{L}}_{p}$. q.e.d.

We conclude this section with an application of Proposition 6.4.
Let X be a p-manifold, and $f: X \rightarrow \boldsymbol{R}^{q}$ an immersion. f induces a map $\bar{f}: X \rightarrow G_{p}\left(\boldsymbol{R}_{q}\right)$ defined by $T f\left(T X_{x}\right)=(\bar{f}(x))_{f(x)}$. According to Proposition 2.2,
$\bar{f}^{*} T G_{p}\left(R^{q}\right) \approx T X^{*} \otimes f^{1^{*}} Q_{0}$. Thus $T \bar{f}$ induces a map $\psi: T X \rightarrow T X^{*} \otimes f^{1^{*}} Q_{0}$. If, in Proposition 6.4, $a=0$ and $E=Z(0) \times \boldsymbol{R}^{p}$, then a straightforward local analysis shows that $\psi=f^{2 *} \gamma^{2}$. It follows from Proposition 6.4 that for $b \leq p$ and f suitably transversal, $Z_{b}(\bar{f})$ is a submanifold of X. Define bundles K_{b}^{2} and N_{b}^{2} over $Z_{b}(\tilde{f})$ by the exactness of the sequences $0 \rightarrow K_{b}^{2} \rightarrow T X \rightarrow T X^{*} \otimes f^{1^{*}} Q_{0}$ and $0 \rightarrow K_{b}^{2} \rightarrow T X \rightarrow N_{b}^{2} \rightarrow 0$. For $Z(0)_{b}\left(\gamma^{2}\right)$-transversal immersions f there is an exact sequence $0 \rightarrow K_{b}^{2^{*}} \otimes N_{b}^{2} \rightarrow K_{b}^{2 *} \bigcirc T X^{*} \otimes f^{1^{*}} Q_{0} \rightarrow T\left(X, Z_{b}(\bar{f})\right) \rightarrow 0$ over $Z_{b}(\bar{f})$. Thus $T\left(X, Z_{b}(\bar{f})\right)$ has dimension $\left(\frac{1}{2} b(b+1)+b(p-b)\right)(q-p)-$ $b(p-b)=\frac{1}{2} b(b+1)(q-p)+b(p-b)(q-p-1)$.

Proposition 6.5. Let X be a compact p-manifold and let $q \geq p+2$. Then there is a set \mathscr{S} of immersions of X into R^{q}, which is open and dense in the set of all immersions of X into $\boldsymbol{R}^{q}\left(\right.$ in $\mathscr{C}\left(X, \boldsymbol{R}^{q}\right)$) such that \bar{f} is an immersion for each $f \in \mathscr{S}$.

Proof. If $b \geq 1$ and $q \geq p+2$, then $\frac{1}{2} b(b+1)(q-p)+b(p-b)(q-p$ $-1) \geq b(b+1)+b(p-b)=b(p+1)>p$.

7. Characteristic classes

In this section it will be shown that there is a connection between certain kinds of singularities of nice maps of manifolds and the Whitney classes of the domain and target manifolds. Since the results are fragmentary, only a sketch of the methodology will be given. The approach was outlined by Porteous in [5].

Let $\tilde{\mathscr{L}}_{p}$ (respectively $\tilde{\mathscr{L}}_{q}$) be a subgroup of $\tilde{\mathscr{L}}_{p}$ (respectively \mathscr{L}_{q}), and $A \subset J^{n}(p, q)$ a manifold invariant under $\check{\mathscr{L}}_{p} \times \check{\mathscr{L}}_{q}$. Let $E_{1}=\left\{[\phi]^{n+1} \mid[\phi]^{n} \in A\right\}$, and let $\pi: E_{1} \rightarrow A$ be the bundle projection. Let E_{2} be a vector sub-bundle of $A \times \boldsymbol{R}^{p}$, which is invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$, and let $0 \rightarrow B \rightarrow A \times \widetilde{J}^{n}(p, q)$ $\rightarrow E_{3} \rightarrow 0$ be an exact sequence over A with B invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$. Let $\gamma: E_{1} \rightarrow E_{2}^{*} \otimes E_{3}$ be the map induced by H^{n+1}, and suppose that γ is equivariant and a-uniform ($a \leq$ fiber dimension E_{2}). Let X be a manifold of type $\tilde{\mathscr{L}}_{p}$, and Y a manifold of type $\tilde{\mathscr{L}}_{q}$.

Then, as in $\S 5, J_{A}^{n}(X, Y)$ and $J_{A_{a}(\gamma)}^{n+1}(X, Y)$ are manifolds, and E_{2} and E_{3} determine bundles (also denoted E_{2} and E_{3}) over $J_{A}^{n}(X, Y)$. Also γ induces a map $\gamma: J_{E_{1}}^{n}(X, Y) \rightarrow E_{2}^{*} \otimes E_{3}$ over $J_{A}^{n}(X, Y)$, and we have a bundle $G_{a}\left(\pi^{*} E_{2}\right)$ over $J_{E_{1}}^{n+1}(X, Y)$ and an exact sequence $0 \rightarrow L_{a} \rightarrow \bar{\pi}^{*} E_{2} \rightarrow M_{a} \rightarrow 0$ over $G_{a}\left(\pi^{*} E_{2}\right)$ where $\bar{\pi}: G_{a}\left(\pi^{*} E_{2}\right) \rightarrow J_{E_{1}}^{n+1}(X, Y)$ is the bundle projection. Let $\gamma_{a}: G_{a}\left(\pi^{*} E_{2}\right) \rightarrow L_{a}^{*} \otimes \bar{\pi}^{*} \pi^{*} E_{3}$ be the section induced by γ. Since γ is a-uniform, there is a symmetric sub-bundle S_{a} of $L_{a}^{*} \otimes \bar{\pi}^{*} \pi^{*} E_{3}$, containing the image of γ_{a}, such that γ_{a} is a transversal section of S_{a}.

Let $f: X \rightarrow Y . f^{n+1}$ induces a map $\bar{f}: G_{a}\left(f^{n^{*}} E_{2}\right) \rightarrow G_{a}\left(\pi^{*} E_{2}\right)$. If $\tilde{\pi}: G_{a}\left(f^{n^{*}} E_{2}\right)$ $\rightarrow A(f)$ is the bundle projection, and $0 \rightarrow \tilde{L}_{a} \rightarrow \tilde{\pi}^{*} f^{n^{*}} E_{2} \rightarrow \bar{M}_{a} \rightarrow 0$ is the obvious sequence over $G_{a}\left(f^{n^{*}} E_{2}\right)$, then $\tilde{L}_{a}=\bar{f}^{*} L_{a}$ and $\bar{M}_{a}=\bar{f}^{*} M_{a} . \gamma: E_{1} \rightarrow E_{2}^{*} \otimes E_{3}$ induces a vector bundle morphism $\tilde{\gamma}: f^{n^{*}} E_{2} \rightarrow f^{n^{*}} E_{3}$ which, in turn, induces a
section $\tilde{\gamma}_{a}: G_{a}\left(f n^{*} E_{2}\right) \rightarrow \tilde{L}_{a}^{*} \otimes \tilde{\pi}^{*} f^{n^{*}} E_{3}$. Since $\tilde{\gamma}_{a}$ is the pullback $\bar{f}^{*} \gamma_{a}$ of the section γ_{a}, the image of $\tilde{\gamma}_{a}$ is contained in the symmetric sub-bundle $\bar{f}^{*} S_{a}$. Note that $A_{a}(f)=\left\{x \in A(f) \mid\right.$ dimension kernel $\left.\tilde{\gamma}_{x}=a\right\}$. Define a section $\tilde{s}_{a}: A_{a}(f) \rightarrow G_{a}\left(f^{n^{*}} E_{2}\right)$ by $\tilde{s}_{a}(x)=$ kernel $\tilde{\gamma}_{x}$. Suppose f is A-transversal. It is not difficult to show that f is $A_{a}(\gamma)$-transversal if and only if $\tilde{\gamma}_{a}$ is a transversal section of $\bar{f} * S_{a}$ on $\tilde{s}_{a} A_{a}(f)$.

If U is a topological space, then $H_{*}(U)\left(H^{*}(U)\right)$ will denote the singular homology (cohomology) of U with Z_{2}-coefficients. Let U_{1} and U_{2} be compact manifolds with $U_{1} \subset U_{2}$. If $i: U_{1} \rightarrow U_{2}$ is the inclusion, $i_{*}: H_{*}\left(U_{1}\right) \rightarrow H_{*}\left(U_{2}\right)$ is the group homomorphism induced by i, and u is the fundamental cycle of U_{1}, then the dual to $i_{*} u$ in $H^{*}\left(U_{2}\right)$ will be called the dual to U_{1} in U_{2}, and will be denoted $D\left(U_{2}, U_{1}\right)$.

Let E be an m-dimensional vector bundle over a compact manifold U. $W(E)=1+W_{1}(E)+\cdots+W_{m}(E)$ will denote the Whitney class of E. If $\sigma: U \rightarrow E$ is a transversal section and Z is the zero set of σ, then $W_{m}(E)$ is the dual to Z in U.

If $A_{b}(f)=\phi$ for each $b>a$, then $\tilde{s}_{a} A_{a}(f)$ is the zero set of $\tilde{\gamma}_{a}$. Hence the following

Lemma 7.1. Suppose the fiber dimension of S_{a} is m. Let $f: X \rightarrow Y$ be $A_{a}(\gamma)$-transversal. suppose $A(f)$ is compact and $A_{b}(f)=\phi$ for each $b>a$. Then the dual to $\tilde{s}_{a} A_{a}(f)$ in $G_{a}\left(f^{n^{*}} E_{2}\right)$ is $W_{m}\left(\bar{f}^{*} S_{a}\right)$.

If dimension $E_{2}=1$, then $G_{1}\left(f^{n^{*}} E_{2}\right)=A(f)$ and $\bar{f}^{*} S_{1}=\left(f^{n} E_{2}\right) * \otimes\left(f^{n} E_{3}\right)$. Thus

Proposition 7.2. Let $\operatorname{dim} E_{2}=1, \operatorname{dim} E_{3}=m$ and $f: X \rightarrow Y$ be $A_{1}(\gamma)$ transversal. If $A(f)$ is compact, then

$$
D\left(A(f), A_{1}(f)\right)=W_{m}\left(\left(f^{n^{*}} E_{2}\right)^{*} \otimes\left(f^{n^{*}} E_{3}\right)\right)=\sum_{i=0}^{m} W_{1}\left(f^{n^{*}} E_{2}\right)^{i} W_{m-i}\left(f^{n^{*}} E_{3}\right)
$$

Let U_{1} and U_{2} be compact manifolds and let $\phi: U_{1} \rightarrow U_{2}$ be continuous. ϕ induces a group (not ring) homomorphism $\phi_{\#}: H^{*}\left(U_{1}\right) \rightarrow H^{*}\left(U_{2}\right) . \phi_{\#}$ is defined by composing ϕ_{*} with the appropriate duality isomorphisms.

If $\phi^{*}: H^{*}\left(U_{2}\right) \rightarrow H^{*}\left(U_{1}\right)$ is the ring homomorphism induced by $\phi, u_{1} \in H^{*}\left(U_{1}\right)$ and $u_{2} \in H^{*}\left(U_{2}\right)$, then $\phi_{\sharp}\left(\left(\phi^{*} u_{2}\right) \cdot u_{1}\right)=u_{2} \cdot \phi_{\#} u_{1}$. If $\phi: U_{1} \rightarrow U_{2}$ and $\phi: U_{2} \rightarrow U_{3}$, then $(\psi \phi)_{\#}=\psi_{\#} \phi_{*}$. Note that if $U_{1} \subset U_{2}, i: U_{1} \rightarrow U_{2}$ is the inclusion, and 1 is the unit cohomology class of U_{1}, then $D\left(U_{2}, U_{1}\right)=i_{\sharp} 1$.

For the remainder of this section, X will be compact.
Lemma 7.3. Let E be a vector bundle over X of fiber dimension m. Let $a \leq m$ and let $\bar{\pi}: G_{a}(E) \rightarrow X$ be the projection. Suppose $0 \rightarrow L_{a} \rightarrow \bar{\pi}^{*} E \rightarrow M_{a} \rightarrow 0$ is the usual sequence over $G_{a}(E)$. Then $\bar{\pi}_{\sharp}\left(W_{m-a}\left(M_{a}\right)^{a}\right)$ is the unit cohomology class of X.

Proof. See [5].
If E is a vector bundle over X, then $-E$ will denote the inverse bundle of E.
Porteous uses Lemma 7.3 to prove

Theorem 7.4. Let X be a compact p-manifold, Y a q-manifold and a a positive integer such that $a \leq p$ and $a>p-q$. Let $f: X \rightarrow Y$ be $Z(a)$-transversal and suppose $Z_{b}(f)=\phi$ for $b>a$. Then $D\left(X, Z_{a}(f)\right)$ is the determinant of the $a \times$ a matrix whose i, j term is $W_{q-p+a+i-j}\left(f^{*} T Y-T X\right)$.

Proof. See [5].
(Actually, Porteous proves a somewhat stronger theorem.)
Lemma 7.5. Let E be a vector bundle over X of fiber dimension m, and $\bar{\pi}: G_{1}(E) \rightarrow X$ be the bundle projection. Then $\bar{\pi}_{\xi}\left(W_{1}\left(L_{1}\right)^{j}\right)=W_{j-m+1}(-E)$ for each j.

Proof (By induction on j). Let $a=W_{1}\left(L_{1}\right), 1+b_{1}+\cdots+b_{m-1}=W\left(M_{1}\right)$ and $1+c_{1}+\cdots+c_{m}=\bar{\pi}^{*} W(E)$. $\bar{\pi}_{z}$ lowers dimension by the fiber dimension of $G_{1}(E)$, so the lemma is trivial for $j<m-1$. By the Whitney duality theorem, $\sum_{i=0}^{m-1} a^{i} c_{m-1-i}=b_{m-1}$, so $\bar{\pi}_{\sharp} b_{m-1}=\sum_{i=0}^{m-1} \bar{\pi}_{\sharp}\left(a^{i}\right) W_{m-1-i}(E)=\bar{\pi}_{\sharp}\left(a^{m-1}\right)$. But by Lemma 7.3, $\bar{\pi}_{\ddagger} b_{m-1}=1$, so the lemma is valid for $j=m-1$.

We now assume that $t \geq m-1$ and that Lemma 7.5 is valid for $j \leq t$, and prove for $j=t+1 . \sum_{i=0}^{m-1} a^{i} c_{m-1-i}=b_{m-1}$ implying $\sum_{i=0}^{m-1} a^{i+1} c_{m-i}=a b_{m-1}=c_{m}$, so $\sum_{i=1}^{m} a_{i} c_{m-i}=0$. Thus if $t+1 \geq m$, then $\sum_{i=0}^{m} a^{t+1-m+i} c_{m-i}=0$. Applying $\bar{\pi}_{\#}$ and the induction hypothesis,

$$
\begin{aligned}
0 & =\bar{\pi}_{\sharp}\left(a^{t+1}\right)+\sum_{i=0}^{m-1} \bar{\pi}_{\#}\left(a^{t+1-m+i}\right) W_{m-i}(E) \\
& =\bar{\pi}_{\sharp}\left(a^{t+1}\right)+\sum_{i=0}^{m-1} W_{t+2-2 m+i}(-E) W_{m-i}(E),
\end{aligned}
$$

so $\bar{\pi}_{\#}\left(a^{t+1}\right)=\sum_{i=0}^{m-1} W_{t+2-2 m+i}(-E) W_{m-i}(E)$. But $\sum_{i=0}^{m} W_{t+2-2 m+i}(-E) W_{m-i}(E)$ is the $(t+2-m)$-dimensional term of $W(-E) W(E)$ which is 0 since $(t+2-m) \neq 0$. It follows that

$$
\bar{\pi}_{\sharp}\left(a^{t+1}\right)=\sum_{i=0}^{m} W_{t+2-2 m+i}(-E) W_{m-i}(E)=W_{t+2-m}(-E)
$$

Theorem 7.6. Let $p \leq q$ and $I^{n}=(\underbrace{1, \cdots, 1}_{n})$. Let X be a compact p manifold, and Y a q-manifold. Suppose $f: X \rightarrow Y$ is $Z\left(I^{m}\right)$-transversal for each $m \leq n$ and such that $Z_{i}(f)=\phi$ for each $i>1$. Then the dual to $Z\left(I^{n}\right)(f)$ in X is a polynomial in the $W_{i}\left(f^{*} T Y-T X\right)$, and this polynomial is computable and does not depend on X, Y and f.

Proof. Let all notation be as in §6. If $1 \leq m \leq n$, then $f^{m^{*}} E_{2}^{m}=f^{1^{*}} E_{2}^{1}$ and $f^{m^{*}} E_{3}^{m}=\left(\underset{m}{\otimes} f^{1^{*}} E_{2}^{1}\right) \otimes f^{1^{*}} Q^{1}$ over $Z\left(I^{m}\right)(f)$. Note that $\operatorname{dim} E_{2}^{1}=1$ and $\operatorname{dim} Q^{1}=$ $q-p+1$. Let $i_{m}: Z\left(I^{m}\right)(f) \rightarrow Z\left(I^{1}\right)(f)$ be the inclusion. By Proposition 7.2, if $1 \leq m \leq n-1$, then

$$
\begin{aligned}
D\left(Z\left(I^{m}\right)(f), Z\left(I^{m+1}\right)(f)\right) & =i_{m}^{*}\left(W_{q-p+1}\left(\left(\otimes_{m}^{\otimes} f^{1^{*}} E_{2}^{1}\right) \otimes f^{1^{*}} Q^{1}\right)\right) \\
& =i_{m}^{*}\left(\sum_{i=0}^{q-p+1}\left((m+1) W_{1}\left(f^{1^{*}} E_{2}^{1}\right)\right)^{i} W_{q-p+1-i}\left(f^{*} Q^{1}\right)\right) .
\end{aligned}
$$

Thus

$$
D\left(Z\left(I^{1}\right)(f), Z\left(I^{n}\right)(f)\right)=\prod_{m=1}^{n-1}\left\{\sum_{i=0}^{q-p+1}\left((m+1) W_{1}\left(f^{*} E_{2}^{1}\right)\right)^{i} W_{q-p+1-i}\left(f^{1^{*}} Q^{1}\right)\right\}
$$

Denote this cohomology class by C. If $i: Z\left(I^{1}\right)(f) \rightarrow X$ is the injection, then $D\left(X, Z\left(I^{n}\right)(f)\right)=i_{\sharp} C$. Let $\bar{\pi}: G_{1}(T X) \rightarrow X$ be the projection and $s^{1}: Z\left(I^{1}\right)(f) \rightarrow$ $G_{1}(T X)$ the obvious section. Then $\bar{\pi} s^{1}=i$ so $D\left(X, Z\left(I^{n}\right)(f)\right)=\bar{\pi}_{\sharp}{ }^{1}{ }_{\#} C$. If \bar{Q} is defined over $G_{1}(T X)$ by the exactness $0 \rightarrow M_{1} \rightarrow \bar{\pi}^{*} f^{*} T Y \rightarrow \bar{Q} \rightarrow 0$, then $f^{1^{*}} Q^{1}$ $=s^{1^{*}} \bar{Q}$. As noted before, $f^{*} E_{2}^{1}=s^{{ }^{*}} L_{1} . s_{\sharp}^{1} C$ is now computable by Lemma 7.1. By the Whitney duality theorem, $s_{\sharp}^{1} C$ is expressible in terms of $W_{1}\left(L_{1}\right)$ and the Whitney closses of $\bar{\pi}^{*} T X$ and $\bar{\pi}^{*} f^{*} T Y$. By Lemma $7.5, \bar{\pi}_{\#} s_{\sharp}^{1} C$ is computable.

Theorem 7.7. Let $p \geq q$, and $I^{n}=(p-q+1, \underbrace{1, \cdots, 1}_{n-1})$. Let X be a compact p-manifold, and Y a q-manifold. Suppose $f: X \rightarrow Y$ is $Z\left(I^{m}\right)$-transversal for each $m \leq n$ and such that
i) $Z_{i}(f)=\phi$ for each $i>p-q+1$, and
ii) $Z(p-q+1, i)(f)=\phi$ for each $i>1$.

Then the dual to $Z\left(I^{n}\right)(f)$ in X is a polynomial in the $W_{i}\left(f^{*} T Y-T X\right)$, and this polynomial is computable and does not depend on X, Y and f.

Proof. In the spirit of Theorem 7.6.
The author has been unable to find a nice form (as in Theorem 7.4) for the polynomials of Theorems 7.6 and 7.7.

Bibliography

[1] J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. Math. No. 33 (1967) 383-419.
[2] A. Haefliger \& A. Kosinski, Un théorème de Thom sur les singularités des applications différentiables, Séminaire H. Cartan, Paris, 1956-57.
[3] H. I. Levine, Singularities of differentiable mappings, Mimeographed notes, University of Bonn.
[4] _, Mappings of manifolds into the plane, Amer. J. Math. 78 (1966) 357-365.
[5] I. R. Porteous, Simple singularities of maps, Mimeographed notes, Columbia University.

[^0]: Communicated by J. J. Kohn, October 12, 1968, and, in revised form, January 26, 1969. This work is part of the author's doctoral thesis written at Brandeis University under the direction of H. I. Levine; several of his suggestions and simplifications were adopted.

