INTEGRAL FORMULAS FOR SUBMANIFOLDS AND THEIR APPLICATIONS

BANG-YEN CHEN & KENTARO YANO

Various integral formulas for hypersurfaces have been established and applied to the study of closed hypersurfaces with constant mean curvature. For the literature, see [12]. Integral formulas for submanifolds of arbitrary codimensions have been obtained by Chen [4], [5], [13], Katsurada [7], [8], [9], Kôjyô [8], Nagai [9], Okumura [15], Tani [16] and Yano [5], [10], [11], [13], [15], [16]. In the present paper, we first obtain the most general integral formulas for closed submanifolds in an *m*-dimensional euclidean space, and then apply those formulas to obtain some characterizations of spherical submanifolds.

1. Preliminaries¹

Let M^n be an *n*-dimensional manifold with an immersion $x: M^n \to E^m$ of M^n into a euclidean space E^m of dimension *m*. Let $F(M^n)$ and $F(E^m)$ be respectively the bundles of orthonormal frames of M^n and E^m . Let *B* be the set of elements $b = (p, e_1, \dots, e_n, e_{n+1}, \dots, e_m)$ such that $(p, e_1, \dots, e_n) \in F(M^n)$ and $(x(p), e_1, \dots, e_m) \in F(E^m)$ whose orientation is coherent with that of E^m , by identifying e_i with $dx(e_i), i = 1, \dots, n$. Define $\tilde{x}: B \to F(E^m)$ by $\tilde{x}(b) =$ $(x(p), e_1, \dots, e_m)$.

Throughout this paper, we shall agree, unless otherwise stated, on the indices of the following ranges:

 $1 \leq i, j, \cdots \leq n; 1 \leq A, B, \cdots \leq m; n+1 \leq r, s, \cdots \leq m$.

The structure equations of E^m are given by

$$dx = \Sigma \omega'_A e_A , \qquad de_A = \Sigma \omega'_{AB} e_B , \ (1) \qquad d\omega'_A = \Sigma \omega'_B \wedge \omega'_{BA} , \qquad d\omega'_{AB} = \Sigma \omega'_{AC} \wedge \omega'_{CB} , \ \omega'_{AB} + \omega'_{BA} = 0 ,$$

where ω'_A , ω'_{AB} are differential 1-forms on $F(E^m)$. Let ω_A , ω_{AB} be the induced 1-forms on *B* from ω'_A , ω'_{AB} by the mapping \tilde{x} . Then we have

Communicated November 18, 1970.

¹ Manifolds, mappings, functions,... are assumed to be differentiable and of class C^{∞} , and we shall restrict ourselves only to connected submanifolds of dimension n>1.

(2)
$$\omega_r = 0$$
, $\omega_{ir} = \Sigma A_{rij}\omega_j$, $A_{tij} = A_{tji}$.

From (2) we can define the *mean curvature vector* H by

$$(3) H = (1/n)\Sigma A_{rii}e_r .$$

H is a well-defined normal vector, and its length is called the *mean curvature*.

For each unit normal vector $e = \sum \cos \theta_r e_r$, the second fundamental form $A_{(e)} = (A_{ij}(e))$ at e is a linear transformation and is given by

$$A_{(e)}(e_i) = \sum \cos \theta_r A_{rij} e_j , \qquad j = 1, \cdots, n .$$

If N is a nonzero normal vector, then the second fundamental form at N is defined as the second fundamental form at the unit direction of N. The principal curvatures at e are defined as the eigenvalues of the second fundamental form $A_{(e)}$ at e. Furthermore, the pth mean curvature $M_p(e)$ at e is given by the pth elementary symmetric function, i.e.,

(4)
$$\binom{n}{p}M_p(e) = \Sigma k_1 \cdots k_p$$
,

where k_1, \dots, k_n are the principal curvatures at e, and $\binom{n}{p} = n!/[p!(n-p)!]$. If all the principal curvatures at e are the same, i.e., $k_1 = \dots = k_n$, everywhere, then M^n is said to be *umbilical with respect to e*. If the mean curvature vector $H \neq 0$ everywhere and M^n is umbilical with respect to H, then M^n is called a *pseudo-umbilical submanifold*.

2. Some integral formulas

Let $[\\ \cdots \\ m-1 \\ \text{terms}]$ denote the combined operation of exterior product and

vector product, and (,) the combined operation of exterior product and scalar product in E^m . For simple cases we have

$$[e_{1}, \dots, \hat{e}_{A}, \dots, e_{m}] = (-1)^{m+A} e_{A} ,$$

$$(v, [v_{1}, \dots, v_{m-1}]) = (-1)^{m-1} \det (v, v_{1}, \dots, v_{m-1}) ,$$

$$[\underbrace{dX, \dots, dX}_{n-i}, \underbrace{\underbrace{de_{n+1}, \dots, de_{n+1}}_{i}, e_{n+2}, \dots, e_{m}]}_{i} = n(-1)^{m+n+1} e_{n+1} M_{i}(e_{n+1}) dV ,$$

where \wedge denotes the omitted term, $dV = \omega_1 \wedge \cdots \wedge \omega_n$ the volume element of M^n , and X the position vector field of M^n in E^m with respect to the origin of E^m .

INTEGRAL FORMULAS

The position vector field X can be decomposed into two parts:

$$(6) X = X_t + X_n,$$

where X_t is tangent to $x(M^n)$, and X_n normal to $x(M^n)$. Let e be a unit normal vector field over M^n , and \bar{e} a unit normal vector field perpendicular to e and in the direction of $X_n - (X_n \cdot e)e$, i.e.,

(7)
$$X_n = (X_n \cdot e)e + (X_n \cdot \bar{e})\bar{e} .$$

Throughout this paper, we always choose e_1, \dots, e_n in the principal directions with respect to e. Thus, if we denote the principal curvatures at e by k_1 , \dots, k_n , then we have

$$\omega_{i,n+1} = k_i \omega_i$$
, $i = 1, \cdots, n$.

Define *n* functions $F_i(e)$, $i = 1, \dots, n$, by

(8)
$$F_{i}(e) = \frac{(n-i)!}{n!} (X \cdot \bar{e}) \Sigma k_{j_{1}} \cdots k_{j_{i-1}} A_{j_{i}j_{i}}(\bar{e}) ,$$

where the summation is taken over all distinct $j_1, \dots, j_i = 1, \dots, n$.

Suppose that the unit normal vector field e is *parallel in the normal bundle*, i.e., by the definition, de is tangent to $x(M^n)$ everywhere. Then, by using (5), (6) and choosing $e_{n+1} = e$ and $e_{n+2} = \bar{e}$ everywhere, we have

$$d(X, [\underline{dX}, \dots, \underline{dX}, \underline{de}, \dots, \underline{de}, e_{n+1}, \dots, e_m])$$

$$= (dX, [\underline{dX}, \dots, \underline{dX}, \underline{de}, \dots, \underline{de}, e_{n+1}, \dots, e_m])$$

$$+ (-1)^{n-1}(X, [\underline{dX}, \dots, \underline{dX}, \underline{de}, \dots, \underline{de}, e_{n+2}, \dots, e_m])$$

$$+ (-1)^{n-1} \sum_{s=n+2}^{m} (X, [\underline{dX}, \dots, \underline{dX}, \underline{de}, \dots, \underline{de}, e_{n+2}, \dots, e_m])$$

$$= (-1)^{m+i} n! (M_{i-1}(e) + (X \cdot e) M_i(e)) dV$$

$$+ (-1)^{n-1}(X, [\underline{dX}, \dots, \underline{dX}, \underline{de}, \dots, \underline{de}, e_{n+1}, d\bar{e}, e_{n+3}, \dots, e_m])$$

and

$$[\underbrace{dX, \dots, dX}_{n-i}, \underbrace{de, \dots, de, e_{n+1}, d\bar{e}, e_{n+3}, \dots, e_{m}}_{i-1}] = \sum \omega_{j_{1}} \wedge \dots \wedge \omega_{j_{n-i}} \wedge \omega_{n+1,j_{n-i+1}} \wedge \dots \wedge \omega_{n+1,j_{n-1}} \wedge \omega_{n+2,j_{n}} \\ \cdot [e_{j_{1}}, \dots, e_{j_{n-i}}, \dots, e_{j_{n-1}}, e_{n+1}, e_{j_{n}}, e_{n+3}, \dots, e_{m}] \\ (10) = (-1)^{i-1} \sum k_{j_{n-i+1}} \dots k_{j_{n-1}} \omega_{j_{1}} \wedge \dots \wedge \omega_{j_{n-i}} \wedge \dots \wedge \omega_{j_{n-1}} \\ \wedge \omega_{n+2,j_{n}} [e_{j_{1}}, \dots, e_{j_{n-1}}, e_{n+1}, e_{j_{n}}, e_{n+3}, \dots, e_{m}] \\ = (-1)^{i+1} \sum k_{j_{1}} \dots k_{j_{i-1}} A_{j_{i}j_{i}}(\bar{e}) \omega_{j_{1}} \wedge \dots \wedge \omega_{j_{n}} \\ \cdot [e_{j_{1}}, \dots, e_{j_{n}}, e_{n+1}, e_{n+3}, \dots, e_{m}] \\ = (n-i)! (-1)^{m+n+i+1} (\sum k_{j_{1}} \dots k_{j_{i-1}} A_{j_{i}j_{i}}(\bar{e})) \bar{e} dV .$$

By (8), (9) and (10) we thus get

$$d(X, [\underbrace{dX, \cdots, dX}_{n-i}, \underbrace{de, \cdots, de}_{i-1}, e_{n+1}, \cdots, e_m])$$

= $(-1)^{m+i} n! (M_{i-1}(e) + (X \cdot e)M_i(e) + F_i(e)) dV$, $i = 1, \cdots, n$.

Hence we know that $F_i(e)$ are well-defined functions defined on the whole manifold M^n . By integrating both sides of the above equation and applying Stokes' theorem, we have

Proposition 2.1. Let $x: M^n \to E^m$ be an immersion of an oriented closed manifold M^n into E^m . If e is a unit normal vector field over M^n and is parallel in the normal bundle, then

(11)
$$\int_{M^n} (M_{i-1}(e) + (X \cdot e)M_i(e))dV = -\int_{M^n} F_i(e)dV, \quad i = 1, \dots, n,$$

where $M_i(e)$ dentoe the *i*th mean curvature at e.

In particular, we have

Theorem 2.2. Let $x: M^n \to E^m$ be an immersion of an oriented closed manifold M^n into E^m . If e is a unit normal vector field parallel in the normal bundle, and $F_i(e) = 0$ for some $i, 1 \le i \le n$, then

(12)
$$\int_{M^n} M_{i-1}(e)dV + \int_{M^n} (X \cdot e)M_i(e)dV = 0.$$

Remark 2.1. If the codimension m - n = 1, then the assumption $F_i(e) = 0$ in Theorem 2.2 are automatically satisfied. In this case, the integral formulas (12) are called the Minkowski formulas [6].

Remark 2.2. If the codimension is greater than 1, then in order to get some generalized Minkowski's formulas, various authors have set various assumptions. For examples:

INTEGRAL FORMULAS

1. In [7], [8], [9], Katsurada, Kôjyô and Nagai assumed that the position vector field X is parallel to the mean curvature vector field H everywhere, and H is parallel in the normal bundle. In this case, we can choose e in the direction of H so that $X \cdot \bar{e} = 0$ by (7). Thus from (8) it follows that $F_1(e) = \cdots = F_n(e) = 0$ automatically.

2. In [10], [11], Yano assumed that the mean curvature vector field H is parallel in the normal bundle and the second fundamental form at $X_n - (X_n \cdot H)H/(H \cdot H)$ vanishes. In this case, if we choose e in the direction of H, then $A_{ij}(\bar{e}) = 0$ for all $i, j = 1, \dots, n$. Thus by (8) we know that $F_1(e) = \cdots = F_n(e) = 0$ automatically.

Remark 2.3. Let e be a unit normal vector field. If the second mean curvature $M_2(e)$ is equal to an α th scalar curvature [3], then e is called a Frenet direction [3], [5]. From the definition of $F_i(e)$ it follows that $F_2(e) = 0$ if e is a Frenet direction. For the integral formulas in the Frent directions see Chen-Yano [5]. If e is parallel to X_n , then $F_1(e) = \cdots = F_n(e) = 0$ automatically.

Remark 2.4. In Proposition 2.1, the condition of the parallelism of e in the normal bundle can be replaced by the condition that M^n is immersed in a hypersphere of E^m centered at the origin of E^m .

Theorem 2.3. Let $x: M^n \to E^m$ be an immersion of an oriented closed manifold M^n into E^m . If e is a unit normal vector field and is parallel in the normal bundle, and $(X \cdot \bar{e})A_{(\bar{e})} = 0$, then we have $F_1(e) = \cdots = F_n(e) = 0$ and

(13)
$$\int_{M^n} M_{i-1}(e) dV + \int_{M^n} (X \cdot e) M_i(e) dV = 0, \quad i = 1, \dots, n,$$

where $A_{(\bar{e})}$ denotes the second fundamental form at \bar{e} .

Since $(X \cdot \bar{e})A_{(\bar{e})} = 0$, we have either $X \cdot \bar{e} = 0$ or $A_{ij}(\bar{e}) = 0$, for all $i, j = 1, \dots, n$. Thus $F_1(e) = \dots = F_n(e) = 0$ by (8), and hence we get (13) by Theorem 2.2.

Remark 2.5. If e is in the direction of the mean curvature vector field H, then Theorem 2.3 was proved by Yano [10], [11] for i = 2.

Let f be a function on M^n . By grad f or ∇f we mean $\nabla f = \Sigma f_i e_i$, where f_i are given by $df = \Sigma f_i \omega_i$.

Theorem 2.4. Let $x: M^n \to E^m$ be an immersion of an oriented closed manifold M^n into E^m . If e is a unit normal vector field over M^n , then we have

(14)
$$\int_{M^n} (X \cdot \nabla M_i(e)) dV + n \int_{M^n} (M_i(e) + (X \cdot H) M_i(e)) dV = 0 ,$$

for $i = 1, \dots, n$, where H denotes the mean curvature vector field. Proof. Let

(15)
$$\sigma = \Sigma(-)^{j-1}(X \cdot e_j)\omega_1 \wedge \cdots \wedge \hat{\omega}_j \wedge \cdots \wedge \omega_n .$$

Then

(16)
$$d(M_i(e)\sigma) = (dM_i(e)) \wedge \sigma + nM_i(e)(1 + (X \cdot H))dV,$$

which together with $df \wedge \sigma = (X \cdot \nabla f) dV$ implies

(17)
$$d(M_i(e)\sigma) = (X \cdot \nabla M_i(e))dV + nM_i(e)(1 + (X \cdot H))dV.$$

Hence by integrating both sides of (17) and applying Stokes' theorem, we get (14).

Remark 2.6. For the integral formulas for hypersurfaces consisting of $\nabla M_i(e)$, see Amur [1] and Chen [2].

3. Some characterizations of spherical submanifolds

The purpose of this section is to use the integral formulas in § 2 to get some characterizations of spherical submanifolds. The following lemmas are well-known.

Lemma 3.1. Let $M_i(e)$, $i = 1, \dots, n$, be given by (4), and let $M_0(e) = 1$. Then

(18)
$$M_i(e)^2 - M_{i-1}(e)M_{i+1}(e) \ge 0 ,$$

for $i = 1, \dots, n - 1$. Moreover, if $M_1(e), \dots, M_i(e)$ are positive, then

(19)
$$M_1(e) \ge (M_2(e))^{1/2} \ge \cdots \ge (M_j(e))^{1/j}$$
,

where the equality at any stage of (18) and (19) implies that M^n is umbilical with respect to $e, i.e., k_1 = \cdots = k_n$.

Lemma 3.2. If $M_{s-i}(e)$, $M_{s-i-1}(e)$, \cdots , $M_s(e)$ are positive, then

$$(20) \quad M_{s-1}(e)/M_{s}(e) \geq M_{s-2}(e)/M_{s-1}(e) \geq \cdots \geq M_{s-i-1}(e)/M_{s-i}(e) ,$$

where the equality at any stage implies that M^n is umbilical with respect to e, i.e., $k_1 = \cdots = k_n$.

If $x: M^n \to E^m$ is an immersion of M^n into E^m such that M^n is immersed into a hypersphere of E^m centered at c, then M^n is called a *spherical sub*manifold of E^m , or simply M^n is spherical. The radius vector field R is defined by X - c.

Theorem 3.3. Let $x: M^n \to E^m$ be an immersion of M^n into E^m . Then there exists a normal vector field $e \neq 0$ over M^n such that (1) e is parallel in the normal bundle, and (2) M^n is umbilical with respect to e, when and only when M^n is spherical and e is parallel to the radius vector field R.

Proof. Suppose that there exists a normal vector field $e \neq 0$ over M^n such that e is parallel in the normal bundle and M^n is umbilical with respect to e.

Then we can easily verify that e has constant length |e|, and therefore we can choose the first unit normal $e_{n+1} = e/|e|$ so that

(21)
$$\omega_{i,n+1} = h\omega_i, \qquad i = 1, \dots, n,$$

(22) $\omega_{n+1,r} = 0$, $r = n + 1, \dots, m$.

By taking the exterior derivative of (21) and applying (22), we get

$$dh \wedge \omega_i = 0$$
, $i = 1, \cdots, n$,

which imply that h is constant. Now consider the mapping $Q: M^n \to E^m$ defined by $Q(p) = x(p) + e_{n+1}/h$. Then use of (21) and (22) yields dQ(p) = 0, which shows that

$$x(p) + e_{n+1}/h = c = \text{constant}$$
.

Hence M^n is immersed into a hypersphere of E^m centered at c, and e is parallel to the radius vector field X - c.

Corollary 3.1. Let $x: M^n \to E^{n+2}$ be an immersion of M^n into E^{n+2} . Then there exists a unit normal vector field e such that M^n is umbilical with respect to e and the first mean curvature $M_1(e)$ at e is constant when and only when M^n is spherical and e is parallel to the radius vector field R.

Proof. Suppose that e is a unit normal vector field such that M^n is umbilical with respect to e, and the first mean curvature $M_1(e)$ at e is constant. Then by choosing $e_{n+1} = e$ we have

$$\omega_{i,n+1} = M_1(e)\omega_i$$
, $i = 1, \cdots, n$.

By taking the exterior derivative of the above equations we get

$$dM_1(e) \wedge \omega_i = \omega_{i,n+2} \wedge \omega_{n+2,n+1} = 0$$
.

Thus

$$\omega_{i,n+2}=0, \qquad i=1,\cdots,n$$

on the set $U = \{p \in M^n : \omega_{n+1,n+2} \neq 0 \text{ at } p\}$. On the open set U, by taking exterior derivative of the above equations, we have

$$\omega_i \wedge \omega_{n+1,n+2} = 0$$
, $i = 1, \cdots, n$,

which imply that $\omega_{n+1,n+2} = 0$ on U. Therefore U is an empty set. This shows that e is parallel in the normal bundle. Hence, by using Theorem 3.3, we know that M^n is spherical and e is parallel to the radius vector field R.

Throughout the remainder of this paper, we always assume that $x: M^n \to E^m$ is an immersion of an oriented closed manifold M^n into E^m .

Theorem 3.4. If there exist a unit normal vector field e parallel in the normal bundle and an integer $i, 2 \le i \le n$, such that

- (i) $M_i(e) > 0$,
- (ii) $X \cdot e \leq -M_{i-1}(e)/M_i(e)$, (or $X \cdot e \geq -M_{i-1}(e)/M_i(e)$),
- (lii) $F_i(e) = F_{i-1}(e) = 0$,

then M^n is spherical and the radius vector field R is parallel to e.

Proof. Suppose that there exist a unit normal vector field e parallel in the normal bundle and an integer $i, 1 < i \le n$, such that (i), (ii) and (iii) hold. Then by (ii) and Theorem 2.2 we get

$$X \cdot e = -M_{i-1}(e)/M_i(e) ,$$

$$\int_{M^n} (M_{i-2}(e) + (X \cdot e)M_{i-1}(e))dV = 0 ,$$

and threfore

$$\int_{M^n} (1/M_i(e))(M_{i-1}(e)^2 - M_{i-2}(e)M_i(e))dV = 0.$$

Thus by Lemma 3.1 we have $M_{i-1}(e)^2 - M_{i-2}(e)M_i(e) = 0$, and M^n is umbilical with respect to e. Hence Theorem 3.4 follows immediately from Theorem 3.3.

Theorem 3.5. If there exist a unit normal vector field e parallel in the normal bundle and an integer i, 1 < i < n, such that

- (i) $M_{i+1}(e) > 0$,
- (ii) $X \cdot e \ge -M_{i-1}(e)/M_i(e)$,
- (iii) $F_{i+1}(e) = 0$,

then M^n is spherial and e is parallel to the radius vector field. Proof. By (ii) and Lemma 3.2 we have

$$X \cdot e \geq -M_{i-1}(e)/M_i(e) \geq -M_i(e)/M_{i+1}(e)$$

which, together with

$$\int_{M^n} (M_i(e) + (X \cdot e)M_{i+1}(e))dV = 0$$

by Theorem 2.2, implies

$$X \cdot e \ge -M_{i-1}(e)/M_i(e) \ge -M_i(e)/M_{i+1}(e) = X \cdot e$$

Therefore $M_i(e)^2 = M_{i-1}(e)M_{i+1}(e)$, and hence by Theorem 3.3, M^n is spherical and e is parallel to the radius vector field.

Theorem 3.6. If there exist a unit normal vector field e parallel in the normal bundle and two integers s and i, $1 \le i < s \le n$, such that

- (i) $M_s(e), \ldots, M_i(e) > 0$,
- (ii) $M_s(e) = \sum_{j=i}^{s-1} c_j M_j(e)$, for some constants c_j , $i \le j \le s-1$,
- (iii) $F_j(e) = 0, j = i, \dots, s 1,$

then M^n is spherical and e is parallel to the radius vector field. Proof. By Lemma 3.2 we have

$$\frac{M_{j}(e)}{M_{s}(e)} - \frac{M_{j-1}(e)}{M_{s-1}(e)} = \Big(\frac{M_{j}(e)}{M_{s-1}(e)}\Big)\Big(\frac{M_{s-1}(e)}{M_{s}(e)} - \frac{M_{j-1}(e)}{M_{j}(e)}\Big) \ge 0 ,$$

for $i \leq j \leq s - 1$, so that

$$1 = \sum c_j M_j(e) / M_s(e) \ge \sum c_j M_{j-1}(e) / M_{s-1}(e)$$

or

$$M_{s-1}(e) - \sum c_j M_{j-1}(e) \ge 0$$
,

where equality holds only if M^n is umbilical with respect to e. Thus by using (ii) and Theorem 2.2 we have

(23)
$$\int_{M^{n}} \left(M_{s-1}(e) - \sum_{j=i}^{s-1} c_{j} M_{j-1}(e) \right) dV$$
$$= - \int_{M^{n}} (X \cdot e) \left(M_{s}(e) - \sum_{j=i}^{s-1} c_{j} M_{j}(e) \right) dV = 0 ,$$

and therefore $M_{s-1} = \sum c_j M_{j-1}(e)$, which implies that M^n is umbilical with respect to e. Hence by Theorem 3.3, M^n is spherical and e is parallel to the radius vector field.

Similarly, by using (23), we have

Theorem 3.7. If there exist a unit vector field e parallel in the normal bundle and two integers s and i, $0 \le i < s < n$, such that

- (i) $M_{s+1}(e), \dots, M_{i+1}(e) > 0$,
- (ii) $M_s(e) = \sum_{i=i}^{s-1} c_j M_j(e)$ for some constants c_j , $i \le j \le s-1$,
- (iii) $X \cdot e > 0$ or $X \cdot e < 0$,
- (iv) $F_{s-1}(e) = \cdots = F_i(e) = 0$,

then M^n is spherical and e is parallel to the radius vector field.

Theorem 3.8. If there exist a unit normal vector field e parallel in the normal bundle and an integer $i, 1 \le i \le n$, such that

(i) $M_i(e) > 0$,

(ii) $M_i(e) = cM_{i-1}(e)$, for a constant c,

(iii) $F_{i-1}(e) = F_i(e) = 0$,

then M^n is spherical and e is parallel to the radius vector field.

Proof. Since $M_i(e) > 0, c$ cannot be zero and $M_{i-1}(e)$ must be of fixed sign. By (ii) and Lemma 3.1, we have

$$M_{i-1}(e)(M_{i-1}(e) - cM_{i-2}(e)) = M_{i-1}(e)^2 - M_i(e)M_{i-2}(e) \ge 0,$$

from which, together with (ii) again and Theorem 2.2, it follows

$$\int_{M^n} (M_{i-1}(e) - cM_{i-2}(e)) dV = \int_{M^n} (cM_{i-1}(e) - M_i(e)) (X \cdot e) dV = 0,$$

so that $M_{s-1}(e) = cM_{s-2}(e)$. Thus by Theorem 3.6, M^n is umbilical with respect to e, and hence M^n is spherical and e is parallel to the radius vector field.

Theorem 3.9. If there exists a unit normal vector field e parallel in the normal bundle such that

(i) $M_n > 0$,

(ii) the sum of the principal radii of curvature is constant at e, i.e., $\sum_{i=1}^{n} (1/k_i) = constant,$

(iii) $F_n(e) = F_{n-1}(e) = 0$, then M^n is spherical and e is parallel to the radius vector field. Proof. Since

(24)
$$\sum_{i=1}^{n} (1/k_i) = n M_{n-1}(e) / M_n(e) = \text{constant} ,$$

by Theorem 3.8 we know that M^n is spherical and e is parallel to the radius vector field.

Remark 3.1. If we replace e by a unit vector field parallel to the mean curvature vector field H, then the conclusion in Theorems 3.3 to 3.9 and Corollary 3.1 should be read as " M^n is a minimal submanifold of a hypersphere of E^m ", since the only closed submanifolds of a euclidean space such that the position vector field parallel to the mean curvature vector field H everywhere are the minimal submanifolds of a hypersphere.

Remark 3.2. If M^n is spherical and e is a unit vector field parallel to the radius vector field R, then we have (i) e is parallel in the normal bundle, (ii) $M_i(e) = \text{constant}$, for all $i = 1, \dots, n$, (iii) $R \cdot e = \pm M_i(e) / M_{i-1}(e) = \text{constant}$, for all $i = 1, \dots, n$, and (iv) $F_i(e) = \dots = F_n(e) = 0$.

Remark 3.3. If the ambient space is replaced by an *m*-dimensional Riemannian space of constant sectional curvature and the position vector field X replaced by a concurrent vector field over M^n , then we can get the same

INTEGRAL FORMULAS

results for all theorems in §§ 2 and 3 except the statement " M^n is spherical and *e* is parallel to the radius vector field" should be replaced by the existence of a concurrent normal vector field (see Yano-Chen [14]).

Remark 3.4. Let N be a vector field in E^m over M^n . If there exist a function f and a 1-form λ such that $d(x + fN) = \lambda N$, then the vector field N is called a *torse-forming*, because if we develop the vector field N along a curve in the manifold M^n , we obtain a field of vectors along the curve whose prolongations are tangent to another curve. From Theorem 3.3 it follows that a normal vector field N in E^m over M^n is a concurrent vector field if it is a torse-forming.

References

- [1] K. Amur, Vector forms and integral formulas for hypersurfaces in Euclidean space, J. Differential Geometry 3 (1969) 111-123.
- B. Y. Chen, Some integral formulas for the hypersurfaces in euclidean space, Nagoya Math. J. 43 (1971).
- [3] —, On the scalar curvature of immersed manifolds, Math. J. Okayama Univ. 15 (1971).
- [4] —, Pseudo-umbilical surfaces in euclidean spaces, Kōdai Math. Sem. Rep., to appear.
- [5] B. Y. Chen & K. Yano, *Pseudo umbilical submanifolds in a Riemannian manifold* of constant curvature, to appear.
- [6] C. C. Hsiung, Some integral formulas for closed hypersurfaces, Math. Scand. 2 (1954) 286-294.
- Y. Katsurada, Closed submanifolds with constant v-th mean curvature related with a vector field in a Riemannian manifold, J. Fac. Sci. Hokkaido Univ. (I) 20 (1969) 171–181.
- [8] Y. Katsurada & H. Kôjyô, Some integral formulas for closed submanifolds in a Riemann space, J. Fac. Sci. Hokkaido Univ. (I) 20 (1968) 90–100.
- [9] Y. Katsurada & T. Nagai, On some properties of a submanifold with constant mean curvature in a Riemann space, J. Fac. Sci. Hokkaido Univ. (I) 20 (1968) 79-89.
- [10] K. Yano. Integral formulas for submanifolds and their applications, Canad. J. Math. 22 (1970) 376-388.
- [11] —, Submanifolds with parallel mean curvature vector of a euclidean space or a sphere, Kcdai Math. Sem. Rep., to appear.
- [12] —, Integral formulas in Riemannian geometry, Marcel Dekker, New York, 1970.
- [13] K. Yano & B. Y. Chen, Minimal submanifolds of a higher dimensional sphere, Tensor, to appear.
- [14] —, On the concurrent vector fields of immersed manifolds, Kōdai Math. Sem. Rep., to appear.
- [15] K. Yano & M. Okumura, Integral formulas for submanifolds of codimension 2 and their applications, Kōdai Math. Sem. Rep. 21 (1969) 463-471.
- [16] K. Yano & M. Tani, Submanifolds of codimension 2 in a euclidean space, to appear.

MICHIGAN STATE UNIVERSITY Tokyo Institute of Technology