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ALGEBRAS OF MATRICES UNDER DEFORMATION

W. STEPHEN PIPER

1. Introduction

The subject of this discussion is families of one-parameter deformations of
the associative algebras of n X n upper triangular real matrices; the purpose is
to expand the set of examples of algebraic deformations. Gerstenhaber [1] has
given an example of a commutative associative algebra which when deformed
is non-commutative. Also, a large class of associative algebras 4, namely the
class of semi-simple algebras, which includes the algebras of n X n matrices,
has the second Hochschild cohomology group H*A4, A) equal to zero. These
algebras are rigid, meaning that their only deformations are trivial, that is,
equivalent to those generated by vector space isomorphisms.

We consider the algebras A, of n X n upper triangular real matrices having
equal diagonal elements. For any »n > 2, dim Z%(4,, 4,) > dim B¥(A4,, 4,),
and hence H¥A,, A,) #+ 0 (§4). In the case of n = 3, we exhibit 2-cocycles
which can not be integrated to a deformation of A4,. Although H*A4,, 4,) + O,
we prove that any infinitesimal deformation f of 4, and any partial integration
of f can be completed to a deformation of 4,. In other words, all obstructions
to the integration of f vanish, and as we shall see, with restriction only on the
choice of four of the eight coefficients for the cochains involved.

§ 2 presents a brief review of the definitions in algebraic deformation theory,
and §3 introduces the terminology which proves useful in analysis of the de-
formations of A4,. The existence of non-trivial infinitesimal deformations of 4,
is proven in §4, together with the fact that H*(4,, A,) # 0. The particular
cases of n = 2 and 3 are taken up in §§5 and 6. Formula 19 and § 7 provide
examples of deformations of 4,,n > 2.

2. Background

We recall from [1] and [2] the principal definitions of algebraic deformation
theory. Given an associative algebra A with multiplication denoted by juxtaposi-
tion, we define a (one-parameter) deformation of 4 to be a formal power series,

(1) Fia,p) = af + fila, Pt + fla, pr* + -+,  a,fed,
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such that F, satisfies the law of associativity:

(2) F&(Ft(ang),r)'—Ft(a,Ft(,B5T)):O) (X,‘B,TGA.
In terms of the Hochschild cohomology of A4 (with coboundary operator 4), (2)
is equivalent to

of(a, 8,) =0,
5fr(“5 ‘89 T) = p+;=rfp(fq(a9 [g)a T) - fp(a’ fq(‘B’ T)) b

?,q4>0

(3)

or more conveniently,

of (e, B,7) =0,
of (e, B, 1) = p§=r foflas B7)

p,¢>0

where fp * fq(a’ ,83 T) - fp(fq(a9 ‘8), T) - fp(a', fq(ﬁ, T))‘

Given an associative algebra 4 and a cocycle f, ¢ Z%(A4, A), one seeks to

“integrate” f, to a deformation F, i.e., to obtain 2-cochains f,, f,, - - - satisfying
(3). Having obtained f,, f,, - - -, f,_, satisfying (3), we say that f, is integrated
up to the r®-stage. The 3-cochain
W, = fp * fq
p+g=r
0,4>0

is called an r'®-obstruction to the integration of f,. The obstruction is said to
vanish if », is cohomologous to zero. Gerstenhaber [1] has shown that
o, € ZX(A, A), and the question of integration is then to find f, € C%(4, A) such
that ¢f, = o,.

3. The algebras 4,

Denote by A4, for fixed n > 2, the algebra over the real numbers of n X n
upper triangular matrices which have equal diagonal elements. Thus A4, is a
subalgebra of the algebra of all n X n upper triangular real matrices. While this
latter algebra, being semi-simple, has second Hochschild cohomology equal to
zero, the algebra A4, does not. As a vector space over R, A, has a canonical
basis

{en"'aev}: dMAn:U:1+n(n—1)/2’

where ¢, is the n X n identity matrix, and the remaining ¢; each have a single
non-zero entry (specifically, 1) above the diagonal. It is convenient to express
the product of elements of 4, in terms of this basis. In particular,



ALGEBRAS OF MATRICES 439
(4) €i€5 = ; eijkik .
Here and subsequently all summation is over the index set of the basis (i.e.,

from k =1to k = v).
One and 2-cochains g and f can be expressed as:

(5) 8ey) = ; buer ,  fleie)) = %} Qi jmeEm -
One ascertains that B%A,, A,) consists of elements of the form:
(6) fles, e5) = 08(esre5) = p% (einpbjx — €isubrp + €rspbin)ep -

The requirement that f € C*(A4,, A,) be a cocycle imposes restrictions on the
coefficients a,;,, in the expression (5). In particular, 8f(e;, ¢;, &) = O for all ,
j, k implies that

";p (€ipmsip — €pimBisp — €ijplpem + €jepdipmlem = 0,
and, by the linear independence of the ¢, that
(7) Z;. (eipmBjip — €pimisp — Cisplpem + €giplipm) =0,
foreachm=1, ...,2.

The general form of A(e;, €5, €,) € B%(A,, A,) is obtained from consideration of
fess€5) = 2, Qijmem. Then

(8) 5f(5i, €js ek) == Z (eimpajkm — CnipQijm — €ijmOmkp + ejkmaimp)ep .
m,p

Let the deformation cochains f,,p = 0,1,2, - - -, of the algebra 4, be given
by

fp(sissj) = ; Clikek »
where, of course,
flless€5) = egy = ; €ijkk >
and f, is a cocycle. With this notation and the assumption that

5fs= pr*fqa s=2,---,r—1,

the rt®-obstruction,
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(9) @, = Z fp*fqa

can be expressed as

o, (e, €5, &)
= Z [fp(cz"ljlel + cte + Cijveva 5/c) - fp(e‘b c3k151 + e + c?kvev)]

p+g=7

p,9>0
= 2 cfucha + -+ + CoChin — ClChy — -+ — ChChe
(10) pre=r
p,q>0
+ (nglcsz + oo+ CChy — €€l — - — c?kvcgvz)EZ
4+ ..
+ (nglcfkv + cee cgjvcfkv - c?lclcﬁv - C?kvcfvv)ev]

4. Existence of infinitesimal deformations

The result of this section is the statement that for each n > 2, H¥(A,,A4,) + 0
and H3A,, A,) # 0. Thus, there are non-trivial infinitesimal deformations, and
so possibly deformations. Further, obstructions do not necessarily vanish. We
shall see in § 5 that for n = 2 all obstructions do vanish, and one has actual
deformations. For n = 3, a non-vanishing primary obstruction will be exhibited
§6).

Theorem 1. H*A,,A,) #+ 0, n > 2.

For the case where n, and hence v, are greater than 2, the proof is given
most easily by demonstrating that the following cocycle is not a coboundary:

(11) f(eh 5/) - 52‘115]2671, >

where §;; is the Kronecker delta, and e,, ¢,, ¢, denote the following matrices in
the canonical basis {¢;, &, - -+, 5, - -, &} Of 4,

¢, has a 1 in the 1% row, 22¢ column, otherwise zero,

e, has a 1 in the 1% row, n'® column, otherwise zero,

¢, has a 1 in the (n — 1)*® row, n™ column, otherwise zero.
First, one shows that (11) is a cocycle.

af(eia Ejs ek)

(12)
= 5i(5jv5k25n) - Z eiimamvakzen + Z ejkmaivamzsn - (5iv6j25n)5k .

Since

eienzenei:5i15n7 1£1S’0,
Cijp = 01050 + 030 5



ALGEBRAS OF MATRICES 441
and
€k = 0510k + 052081 »
(12) becomes
0f(ess €45 &) = (0610700k2 — €3j00ks + €js0i0 — 03005051)en = O .
In order that f(e;, ¢;) be equal to dg(e;, ¢;) for some gle;) = 3 byey, the
k
coefficient a;;,, of e, in (11) must be
13) Aijm = ; (esxmbjr — €ijubim + €xymbir) -
In particular, when i = v, j = 2, and m = n, (13) becomes

Aijm = Qupn = Zk: (evkzbzk - evzkbkn + ekznbvk) .

But, ez, = €, = €1 = 0, for all k,1 < k < v. Therefore, since a,,, = 1
in (11), and not O, f(e;, ¢;) = 8;,0;,¢, is not an element of BX(A4,, 4,). Hence
the cohomology class of f in H*(A4,, A,) is non-trivial.

When n, and hence v, equal 2, f(e;, ;) = 0:,0;¢; is @ non-cobounding cocycle.
The proof is analogous to the preceding general case: (13) becomes for i = j
=2,m=1,

; (€016 — €3xbiy + €xnbie) -
And,
ezklzeku:ezzkz(), k=1,2-
Again, since a,, = 1 in (11), and not 0, f(e;, e;) = §:,0;,¢, is not an element of
B*(A,, A,).

Theorem 2. HA,,A,) + 0,n > 2.
Analogously to the preceding, one demonstrates that

(14) g(ei’ €j» ek) = 51‘7;517151:7157:

is a non-cobounding cocycle. Since e;;, = 8;0;, + 0:,0;, We have

ag(eu Ejs 5k35m) = 5i(5jn5kn5mn5n) - eijnaknamnen + 5inejkn5mn5n

- 5in5jnekmn5n + ainajnaknsnem = 0 .
Suppose g = 3] Cijxmem € B(A,, A,). Then one shows that ¢,,,, = 0, where-

as for the g e Z%(A4,, A,) defined by (14) above, Cpypn = 1.
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Consider f(e;,e5) = X, @ijmen such that 6f = g. The e,-coefficient of

Of(es, €4, €1) 1S
%: eimnajkm - emknaijm - eijmamkn + ejkmaimn .
Setting i = j = k = n, we get
Crnnn = 7Zn: €rmnlunm — €mnulnnm — CnnmAmnn T Cnnmlnmn = 0,
since e,,, = O for all m, and e¢,,,, = €pnn = Om,:-

5. Deformations of A,

The algebra A4, of 2 X 2 upper triangular matrices with equal diagonal ele-
ments, considered as a vector space over R, has a canonical basis

=l he=( ol

The coefficients e;;, in (4) can be conveniently expressed in matrix form:

1 0 0 1
(13) Gun = (0 0) G = (1 0) '

In order that
(16) f(ess €j) = 3 Qijmém

be an element of B*(A4,, A,), the coefficients a;;, must satisfy

b, O b, b
17 — ( 1 > , iy = ( 12 11) ,
an a;j 0 0 A2 b, b,

from which we conclude dim B*A4,, 4,) = 3.
In order that f e C¥(A4,, A,) be a cocycle, its coefficients in (16) must satisfy

a, O 42 G
(18) aij = ( n ) ) Qg = ( ,
0 ay i1 Qo

from which we conclude dim Z%(A4,, A,) = 4. Therefore dim H*(4,,4,) = 1.
A generator for H(A,, A,) is the cohomology class of the cocycle f(e;, ¢;) =
51251251.

Using the cocycle f,(e;, ¢;) = 0.,0;,¢,, we proceed to deform A4,. The primary
obstruction w, = f, x f, is equal to zero for our choice of f,. Hence f, can be any
cocycle, the zero cocycle, for instance. Letting f, = 0, r > 1, we have
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(19) Fie.f) = af + 3 fa. " = af + fi(e. B}t .

a non-trivial deformation of the original multiplication of A4,. If
_ [a al> _ <b b]>
“ (o ol P70 bl

then

b + abt ab, + ab
F s — (a 1¥1 1 1 .
e P 0 ab + alblt)
On the other hand, suppose for f,, one chooses a non-zero cocycle. The ques-
tion is then whether

ap + fila, Pt + fa, PF

can be extended to a deformation of A4,, or if f, is an arbitrary cocycle, whether
there even exists an f, whose coboundary equals f, = f,. More generally, one
asks what restrictions, if any, are needed on the f; in order that the partial
integration of f,,

(20) aB + fila, Pt + fie, O + - + f(a, P17,

be extendible to a deformation of A,.
From (8) we conclude that B3(A4,, A,) consists of cochains whose coefficients
Cijim Satisfy

N 0 O\ 0 0
Cijn = > Cijiz = ) .
o —a,;, O Qi — Gy Qo
_ (G 0 _ [G1ze — Gy — Gy
C; (4
ij21 — b ij22 — s
0 iy — Qo 0

where the a,;,, are the coefficients for some 2-cochain f(e;, ;) = Y, a;jmem.
m

Dimension B%(A4,, A,) is then four,
In an analogous manner, one can show that for a 3-cochain h(e;,¢;, €;) =
2. Cijemén to be an element of Z%A4,, 4,), its coefficients c¢;;;, must satisfy

[0 O 0 0
Cijn = s Cijiz = s
22) Can O Canz - —Cann
Crrr — <C1121" 0) Corns — <Cuzz _CIIZI)
ija1 = ) ijar = .
0 0 Ciar + Can Cozn
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Hence dim Z*(A4,, 4,) = 5, and dim H%(A4,, A,) = 1. A representative of a
non-zero class in H(A4,, A,) is h(e;, 5, &) = 0:,0,0k,6,, and all other cocycles
are cohomologous to real multiples of this one.

Lemma 1. If f,e Z¥(A,, A, and f,, - - -, f, € C(A,, A,) satisfy

(23) 5fs: Z fp*fq’ S=2,"',r,

ptqg=s3
p,q>0

thenfor1 < s<rr,

i) aly = a3y 5
i) aly=a,,
where fe;, ;) = %} 5y -
For s =1 the lemma is a consequence of f,’s being a cocycle. Computing

of, = f,*f,, one notes that a?,, — a2, = O by examining the coefficient c,,,, in
(21). Similarly, the sum of coefficients

Conz + Crpp = Gy — Gy, = 0.
The proof for general s now proceeds by induction. Let

5fs(eia Ejs ek) = Z fp * fq(ei’ €js ek) = Z ngkmsm .
p+q>=0s m
»,q

Since this is a 3-coboundary, from (21) we have

S S J—
Ay — Ggy = Cpy + Con
= 3 lchychy + chuchy, — chich — chuch,

pP+q=s
p,q>0

(24) + chichy + chuch, — chich — chich,]
= 2 [(chich, — cluchy) + chu(ch — ch) + chulch, — il

p+g=s
D,q>0

=0,
by the induction hypothesis, as p and g are less than 5. Also,

Al — G, = Cup + Cone
= 2 lchch + chach, — chachy — chuct
(25 a0
+ ChyChy + ChaChy — Rl — ChaClal
=0.
We conclude that all obstructions to the integration of infinitesimal deforma-
tions of A, vanish by letting r = 1 in the following theorem.
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Theorem 3. Given f, e Z*(A,, A,) and §,, - - -, f, € C¥(A,, A,) such that
6) o= N foxfes  S=2,-er,

one can extend

27 af + file, Pt + fila, P + -+ + frla, PF7

to a deformation F(a, p) of A4,.
Gerstenhaber [1] has proven that

(28) 0,0 = 2 fpxfy

P+e=r+1

P,9>0
is a 3-cocycle. Comparing (21) and (22), we note that a 3-cocycle is a 3-co-
boundary if the coefficient c,,,, is zero. Calculating c,,,, for (28), we have

_ D g VI P Y BN Y
Cop = 2. [ChiChy + ChuCh, C219Cam1 ChoCh,l
p+q=r+1

(29) »,9>0

= 2 (ch — ch)ch =0,
p+g=7r+1

»,4>0
by the lemma.

Comparison of (21) and (22), together with (24), (25) and (29), yields the
corollary.

Corollary. With the hypotheses and notation of the theorem, the extend-
ibility of (27) to a deformation of A, is independent of the values of a,, a,,,
ayy,, and ay,, 1 < s < r, and the corresponding coefficients for values of s > r
may be chosen arbitrarily in integrating (27).

6. Deformation of A4,

The 4-dimensional algebra A,, considered as a vector space over R, has a
canonical basis

1 00 01 0 00 1 000
6=|0 1 0], =[0 0 0], =(0 0 0|, ¢={0 0 1]}.
001 00 0 000 000

The coefficients e,;; in (4) can be expressed in matrix form:

/

0 0

€ij1 =

o © OO

1 0 0 1 0
0 0 0 o |1 000
0 0 0/’ “=io 0 0 0/’

(30) 0 0 0 00 0O
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o = OO
(==l

In order that
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€ijs =

S O O~
S O = O
— O O O
S O O o

1(es, Ej) = ) Qijmém
m

O O O O
S O O =

be an element of Z*(4,, 4,), the coefficients a,;, must satisfy

a, 0 O

0 0 0

%n=lo 0 0

\0 00

(32) a,;; 0 anm
a4, = Ay13 Qg3 Q33
7 Q. Gy —20,,

0 Q43 Gy

The dimension of Z*(A4,, A,)

0 A, an
Ay |G (279
0]’ e 0 — 0y
0 0 Gyy
Ay ay; O
Ay 0 0
a; =
Ay |’ e 0 0
A3 Ay G
is 15.

0 0
— Q1 Oy
0 o/’
0 0
0 aim
0 Gy — O3
0 —ay
—Qyy Gyt G/

In order that f(e;, ¢;) given by (31) be an element of B*A4,, 4,), i.e., f = g,
for some g(e;) = 3, byye; € CY(A,, A,), its coefficients a,;,, must satisfy
7

by 0 0 0\ b, by, 0 0
P 0 00 —b31 Aoss — bu 2b21 b:u bn—bsz
“=lo 00 0] #7lo by, O 0 ’

0 00 O 0 b, O o /

b, O b, by,

by, by by + by b, —by+b

I A B

0 0 b, by,

b, 0 0 b,
a4r — 0 0 0 bzx—bad.
=10 0 0 by,

bll b21 b31 2b41

Hence the dimensions of B*(A;, A,) and H%A,, A;) are, respectively, 12 and 3.
From (8) we conclude that B3(A4,, A;) consists of cochains whose coefficients
Cijim Satisfy the following constraints, where the a,;,, are the coefficients for

some 2-cochain given by (31

):



Cijn =

Cijz =

Gy
anm
Ciju = (

cijzl -

a122

Qi —

Cijor = (
A3
(5PN
Cijoz = a
121

Cijou =

(34)

Cija1 =

(
_ Ay —
Cijrz =

[ =Nl

A

aZlZ

— Qg

- a412

- a213

— Q33

— 4y

0
a221

3

[« NeleNel

LGEBRAS OF MATRICES
0 0
0 —ay,
0 0 ’
0 0
0 0 0
Ay Q3 Gy — Qapp
0 0 0
0 0 0
0 0 0
Apy A3y Gyyy — Q33
Ay Qg Ay
0 0 0
0 0 0
0O O —ay,
0 0 0 ’
Ay Gy, Ay
0
— A3y
0 b
0
—ain Gy
0 A3 — Qg3
— 4y — A3y
— Qi — a3
0 0
Q34 Qypq — Qg3
b
A3 (2P
0 0
0 0
0 — O3y
0 0 ’
Gy a4
0
—ds3
0 b
0

— 1y
Ay — Qg — Qypp
— a3y

— Gy

447
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a3 0 0 0
Cisp = iz Qa3 gy Qug — gy
32 =
0 0 0 0 ’
0 0 0 0
Q33 — Ay, —ay — a3 —
Cipes = iy — GQpun Gpyy — Gy Qg — gy Gy — Gy — Gy
Qi1 — Q31 Gyy — Uy 0 A — Gy
—am Ayn — Gy — Ay
a, 0 0 0
Corel — 0 0 0 — A3y
4Tlo 000 0
Qi1 Gy Gy A3
WGy Gy O 0
P 0 Gy 0 —ay,
—
mM=lo a4, 0 0 |’
0 a; O 0
Ay, Gy3s 0 0
Cirg = A Qog + Qpyp Gy Gy — Gy
a2 0 [/ 0 0 ’
0 a,s, 0 0
Gy — Gy Q33 — Qipp — a3 — Oy
Cor — Ay — gz Gy — Oy + Qpzg sy — Qg Qygq — Gpgp — Uiz
ija3 —
Ay — Q33 Gy — Gagy + Qa3 A3y — Gy Ay — Gy
— 0y, Q33 — Gy — Q3 — Ay
Gy — Qi Qi3 — Qip —ain — Qi
Con = — 4 Gy — Qo — Oy — 0y — Gy
ij44 —
—dy, gy — 3 — 4y — Ay
Ay — gy Gygy — O + Gy —Gyy T Gy 0

In the algebra A4,, we found that all obstructions to integration of infini-
tesimal and partial deformations vanished (Theorem 3). For A,, we have the

contrary result.
Lemma 2. The infinitesimal deformation

(35) fleise)) = (Gss + 00508 + 0101060 = 21 Aijmem »

where

Aijm = (Oi3 + 0:)0;:0m3 + 0:407:0m4
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is not integrable.
Comparing (32) and (33) we note that f(e;, ¢;) in (35) is a cocycle but not a
coboundary. The primary obstruction

(36) wess €55 1) = f(f(ess €5), e0) — fleis flejr €x)) = 23 Cijimtm

has as a coefficient:
37N Cops = (33 — Ayp) Ay = 2 .

From (34) any 3-coboundary Y ¢;jxmén € B (A, A,) must have c,y,, = 0. There-

fore (36) is an actual obstruction, and the 2-cocycle (35) is not integrable.
More generally, in order that the primary obstruction to the integration of
the cocycle f(e;, &;) = . G;jmen De cohomologous to zero (i.e. vanish), the fol-

lowing relations must be satisfied by the a;;,:

(3%) Ap3(20555 — Gy) = 0, Ayo(Gagy + Gy — 2a,,) = 0.

7. Existence of deformation of A4,

The existence of deformations of the algebras 4,,, n > 2, is demonstrated by
consideration of the non-cobounding 2-cocycle,

(39) f,(ei, €j) = Z a%jmem = 51;05]267, N
(cf. (11)). The primary obstruction of (39) is

fi= fl(e’l’ €js &) = f1(5i06126n9 €k) - f1(€za ajvakzen)
= (aivajzanvakz - ajv6k251v5n2)5n =0 ’

since n # v, n # 2. Therefore, in particular, choosing f, = 0,s > 2, we have
the deformation of 4,

F(esr65) = €sg; + 81,0580t » n>2.

The similar deformation of 4, was given in § 5.
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