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RIEMANNIAN MANIFOLDS ADMITTING A CERTAIN
CONFORMAL TRANSFORMATION GROUP

YOSHIHIKO SUYAMA & YόTARό TSUKAMOTO

1. Introduction

Several authors have studied compact Riemannian manifolds admitting a
conformal non-Killing vector field. The main results are as follows.

Let M be a connected n-dimensional Riemannian manifold admitting a con-
formal non-Killing vector field.

(1) If M is a complete Einstein space of dimension n > 3, then M is iso-
metric to a sphere (Nagano-Yano [8]).

(2) // M is a complete Riemannian manifold of dimension n > 3 with par-
allel Ricci tensor, then M is isometric to a sphere (Nagano [5]).

(3) If M is compact and homogeneous, then M is isometric to a sphere
provided n > 3 (Goldberg-Kobayashi [2]).

(4) M can not be a compact Riemannian manifold with constant nonposi-
tive scalar curvature (Yano [7], Lichnerowicz [4]).

Recently S. Tanno and W. C. Weber [6] investigated compact connected
Riemannian manifolds which have constant scalar curvature and admit a closed
conformal vector field with certain conditions. The purpose of this paper is to
prove the following theorems.

Theorem I. If a compact connected Riemannian manifold M admits a
closed conformal non-Killing vector field, then M is diffeomorphic to a gener-
alized twisted torus or a sphere.

Theorem 2. // a compact Riemannian manifold M with finite fundamental
group admits a closed conformal non-Killing vector field, then M is diffeomor-
phic to a sphere.

Theorem 3. // a compact connected Riemannian manifold M admits a
closed conformal non-Killing vector field which vanishes at some point of M,
then M is diffeomorphic to a sphere.

Theorem 2 is an immediate consequence of Theorem 1, and Theorem 3 fol-
lows from the proof of Theorem 1.

Communicated by Y. Matsushima, September 11, 1970.
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2. Preliminaries

Let M be a compact connected n-dimensional Riemannian manifold with
metric g. A vector field X on M is conjormal if and only if

(2.1) Lxg = 2λg,

where Lx denotes the Lie derivation with respect to X, and λ is a differentiate
function on M which is called the characteristic function oί X. If X is a con-
formal non-Killing vector field, then λ is a non-constant function. Since M is
compact, X generates a global 1-parameter group of transformations φt of M.
Then condition (2.1) is equivalent to

(2.2) (φfg) = fr8,

where

ft(p) = exp (2 Γ λ(φu(p))dιΔ ,

0

If we put X — Σ ξ^jdx1 in a coordinate neighborhood of M with local

coordinate (JC1, , xn), (2.1) is equivalent to

(2.3) ξuj + ξj;ί = 2λgίj ,

where gtj are the components of g with respect to the coordinate system

(JC1, . ,x n ),ξi = Σ gijξj, and " " denotes the covariant derivative with re-

spect to the coordinates system (JC1, , xn). From now on, we assume that X is

closed, that is to say,

(2.4) ξi;j = ξJit .

By (2.3) and (2.4) we have

(2.5) ξi;j - λ8tJ

so that

(2.6) ξ\j = Wj ,

where

Π (/ = /) ,
δlj = jo (/ Φ j).

If we denote the divergence of X by divZ, from (2.6) follows immediately
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Let M be an (n — l)-dimensional differentiable manifold, and ψ be a diffeo-
morphism of M, and consider M x [0, α], α > 0. If M is a differentiable mani-
fold obtained by identifying M x {0} and M χ { f l } i n M χ [0, a] by using the
map φ, then we call it a generalized twisted torus.

Let N be a compact submanifold of M, and c be a geodesic starting from
p eN such that c is perpendicular to N at p. If the point # on c is the last point
such that the subarc ^pq of c is the shortest geodesic between q and N, then the
point <y is called the cut point of N along c.

3. Proof of Theorem I

Setting Mf = {p e M \ Xp Φ 0}, Mf is an open subset of M so that M' is an
open submanifold of M. Then there exists a distribution D of dimension n — 1
on M r such that for all p <ε Mf we have

Lemma 3.1. The distribution D is differentiable involutive.
Proof. Since Xv Φ 0 for all p eM' there exists a coordinate system

O1, >,xn) around p such that X coincides with the vector field djdx1 in
this coordinate neighborhood W (cf. Chevalley [1]). Setting

for/ 2 , , Λ ,

ll a/a*1 II2 a*1

the set Y2, , Yn is a local basis for the distribution D in W. Thus D is differ-
entiable and also involutive. In fact, for any two vector fields Z, Z' belonging
to D we have

(3.1) g([Z, Z'L X) = £(^Z', X) - g{Vz,Z, X) .

By (2.6) we obtain

0 = Z g(Z\ X) = g(F,Z', JO

(3.3) 0 = Z' g(Z, X) = g(Fz,Z, X) + λg{Z\ Z) ,

from which and (3.1) follows immediately g([Z, Z'], X) = 0. So [Z, Z'] belongs
to D, and D is involutive. q.e.d.

Hence there exists an integral manifold of D passing through each point of M'.
Lemma 3.2. There exists a point p on M such that λ(p) < 0 and Xp Φ 0.
Proof. Let M be an oriented 2-fold covering manifold of M, and X a lift
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of X by the covering map. Then X is a conformal vector field on M. Let λ be
a characteristic function of X. Then we have div X = nλ and

(3.4) 0 = — JάivX = fλ .
M M

Since λ is a non-constant function on M, two sets {p e M \ λ(p) > 0} and
{p eM\λ(p) < 0} are non-empty, and therefore so is λ.

Now we assume that X vanishes on the open set 0. For any vector fields Y,
Z on M we have

(3.5) (Lxg)(Y, Z) = X g(Y, Z) - g([X, Y], Z) - g(Y, [X, Z]) = 0 on 0 .

On the other hand,

which shows that λ vanishes on Θ. Hence there exists a point p on M such that
λ(p) < 0 and Xp Φ 0. q.e.d.

Let U(p) be a neighborhood of p, where Λ is negative and X never vanishes.
Then

(3.6) X-g(X, X) = (Lzg)(X, X) = 2λg(X, X) ,

which implies that g(X,X) decreases along the integral curve of X on U(p).
Lemma 3.3. There exists a coordinate neighborhood U with local coordi-

nate system (xι, , xn) such that
(1) U is contained in U(p),

(2) xKp) = 0 , Ϊ = 1, . . ,n,
(3) (jc1! < 0,1**1 <b(i> 2) on U,
(4) tHe slice of U defined by the equation xι — ξ, where \ξ\ < a, is an

integral manifold of D,
(5) if we put V = {q e U \ x\q) = 0}, then the set φt(V) coincides with the

set{qeU\x\q) = t}.
Proof. By Lemma 3.1. and Frobenius theorem (Chevalley [1]) we have a

coordinate neighborhood U with a local coordinate system (y\ -,yn) which
satisfies the conditions (l)-(4). Since V is an integral manifold of D and ψt is
a conformal transformation for a fixed t, φt(V) is also an integral manifold, and
X never vanishes on U(p). So we can change yι into xι {i = 1, , ή) such that
x\φt(p)) = t. Thus we have a desired coordinate system, q.e.d.

The value of g(X, X) is constant on any integral manifold of D. In fact, for
any Z 6 D we have

(3.7) Z g(X,X) = 2s(F,Z,Z) = 2te(Z,*) = 0 .
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Let N be a unique maximal integral manifold of D containing the point p.
Then φt(N) Π N = 0 for all t, 0 < |; | < a. By Lemma 3.3 and the above re-
mark, the value of g(X, X) on U is constant on each slice and decreases as the
parameter t increases. This shows that φt(V) Π N = 0 and therefore <pt(N) Π N
= 0, for all t, 0 < \t\ < a.

Lemma 3.4. The above maximal integral manifold N is an (n — ^-dimen-
sional compact manifold.

Proof. We shall show that the closure N of N in M coincides with N. Let
x be a point contained in N, and {xn} be the sequence contained in N such that
xn converges to x in M as rc tends to oo. Since the value of g(X, X) is a non-
zero constant on N, gx(X, X) is equal to this value, and so there exists a neigh-
borhood Ux of x in which the vector field X never vanishes. Now we take a
coordinate neighborhood [/' of x contained in Ux whose local coordinate system
(JC'1, , x/n) has the same properties as in Lemma 3,3. If xn is so taken that
I*'11 < α' < a, then it is clear from the above remark of this lemma that in t/'
there exists at most one of those slices contained in N. If there does not exist
such a slice, we can not take the sequence {xn} C N such that xn —» x as n —> oo.
Therefore the slice passing through x is contained in N, so that xeN. Moreover
this shows that N has no boundary, q.e.d.

If N Π φt(N) Φ 0 for some t, then N = φt(N), because N and φt(N) are
integral manifolds of D. Now we define the mapping F: t—*φt(N). This
mapping F is locally one-to-one. In fact, we have φt(N) Φ φt>(N) for t Φ t'\
— a<t — t'<a. Now we can consider the following two cases.

(A) There exists t Φ 0 such that N = φt(N).
(B) There does not exist t Φ 0 such that N = φt(N).
Lemma 3.5. In the case (A), M is diffeomorphic to a generalized twisted

torus.
Proof. Let t0 be the minimum positive number such that φto(N) = N, and

put

(3.8) M " = U φt(N) .
0<ί<ίo

We shall show that M" is an open and closed subset of M, so that M = M".
To this end we first show that M" is open in M. For any point q e M", there
exists s such that 0 < s < tQ and q e φs(N). We take a neighborhood V of q
in φs(N) and a suitable positive number ε, so that the set U ψt(Y) i s a n open

-ε<ί<e

set of M which contains the point q.
Next we shall show that M" is closed in M. For any point x of M", there

exists a sequence {xn} c M^ such that JCW —> ̂  as n -+ oo. Then we can write
xn — φtn(yn), where 0 < tn < t and {yn} C N, and can choose the convergent
subsequences of {yn} and {tn}, so that we can assume that yn—>y,tn-+s as
n —> oo, where y e N, 0 < s < ί. Now we estimate d(x, <p8(y)), where d is the
metric function on M:
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(3 9) * ' ψ s ^ ~ d^X' ψt^yn^ + d^n(yn), ψtn(y)) + d(φtn(y), φs(y))

< d(x><Ptn(yn)) + dtn(φtn(yn),φtn(y)) + d(φtn(y),φs(y)) ,

where dtn is the metric function on φtn(N)- On the right hand side of (3.9),
the first and third terms converge t o O a s n ^ o o , So we need only to estimate
the second term. For any point p e N,

(3.10) gφt{p)(X,X) = gn(p)(φtX,φtX) = (φ*g)p(X,X) = ft(p).gp(X,X) .

Since g(X, X) is constant on φt(N) for any t, ft(p) is independent of p € N.
ft(p)> (P e ΛO, is a continuous function of t and satisfies fo(p) = l,fh(p) = 1. So
we have the maximum value C of ft(p) on [0, t0], and

(3.Π) dtn(φtn(yn), Ψtn(y))< σ'%(yn, y) .

Since do(yn, y) —> 0 as n —> oo, dtn(φtn(yn), φtn(y)) —> 0 as n —> oo. This shows
d(jc, φs(y)) = 0, i.e., JC = p,(;y). Therefore M^ = M / r, and hence M" is closed
in M.

Lemma 3.6. In the case (B), M is homeomorphic to Sn.
Proof. Since from (2.6) we have VXX — λX, for any point p € N the curves

τ and τf defined by

(3.12) τ

(3.13) τ' { φ }

are geodesies, and therefore their lengths L(τ) and L(τf) are independent of
p € iV, due to the fact that ^(Z, X)(φt(p)) is independent of p for fixed t. Now
we divide our discussion into the following four cases:

(a) L(τ) = oo and L(τ') = oo.
(b) L(r) = oo andL(r') < oo.
(c) L(τ) < oo and L(r') = oo.
(d) L(τ) < oo and L(r') < oo.
Case (a). Let c be the curve defined by c = {c(t) \ c(t) = φt(p), 0 < t < oo,

p <zN}. Since M and N" are compact and c is perpendicular to N at p, we have
the cut point c(t0) of N along c. If tx > ίo> t h e n the shortest geodesic c ; between
c(tλ) and N is different from the subarc c | [0, tj of c, and the image of d is
integral curve of X because d is perpendicular to N by construction. Hence the
composite of c \ [0, ί j and cr is an extension of c | [0, ί j . This contradicts to our
assumption (B), so Case (a) never happens.

Case (b). We first show φt(N) converges to one point x as t —> — oo. For
any point y e N, φt(y) converges to a point / as n-> — oo. This implies Xv, = 0.
Using the same argument as in (3.10), we have ft(p) -* 0 as t —> — oo. For any
two points y,z<zN, let jc(y), 0 < 51 < 1, be a curve in N joining y to z. Then
for any fixed t, φt(x(s)), 0 < s < 1, is the curve in <pt(N) joining φt(y) to φt{z).
Now we estimate the length of this curve in <pt(N).
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= I (ft(p))1/2(8(X(s)> £(s)1/2ds = (ft(p))ι/2 I g(*(A), xθ)) 1 / 2 ds
J J

0 0

This shows Γg(φtx(s), φtx(s))ι/2ds -> 0 as t -> - oo, i.e., d(y', z') = 0, where
0

y = lim ^ί(y), z! = lim ^(z), and x(s) is the tangent vector at x(s).

For any s < 0, the curve r'fa) = {φt(p) \te[s, 0]} is the shortest geodesic
between φs(p) and N. In fact, if the curve τ'0) contains the cut point of N in
its inner point, then we have a shortest geodesic τ[ between φs(p) and N, which
is different from τ'(s). Since τ[ is perpendicular to N, we can denote τ[ by τ[
= {̂ X<?) I * < ^ < ί < 0} o r τj = {̂ ί(<?) 10 < t < cx} for some qzN. But we
can easily show that these two cases do not happen. Hence τf(s) is the shortest
geodesic between φs(p) and N.

For any y € N, put τ'\y\ ^ {^ί(y) | — °° < t < 0}. Then it has already been
shown that L(τ'[y]) is independent of y e N and t'[y] = r ;[j] U {*} is the
shortest geodesic between x and N. This shows that for any t e (— oo, 0], φt(N)
is a connected submanifold of Sx(l) = {z € M | d(;c, z) = /}, where / = d(x, φt(p)),
p eN. Since from its construction φt(N) is an open and closed subset of Sx(l),
we have Sx(l) = φt(N). For any t e R, put r7 /(0 = {^s(p) | — oo < s < ή. Then
it has already been shown that t"{t) = r̂ CO U {x} is a geodesic joining x to
^ ( p ) . By the same argument as above, f"(ί) does not contain the cut point of
x along τ"0) . Since by the assumption L(t"(tj) —> oo, Case (b) never happens.

Case (c). This case can not happen in the same way as in Case (b).
Case (d). As we showed in Case (b), φt(N) and φ_t(N) converge to x and

xf respectively as t —> + oo. For any y eN, put τ" ^Ξ {^ί(y)| — oo < t < oo}.
Then τ" is a shortest geodesic joining Λ: to JC', and L(τ") is independent otyeN.
As we showed in Case (b), φt(N) — Sx(l) = {zeM\ d(x, z) = 1,1 = <i(jc,

Put ί/(x, xθ = r v Let M x be the tangent space of M at x, Sn an π-dim^nsional
sphere oi r/π in Rn+ι, and xr the antipodal point of x e Sn. Then construct the
mapping /: M -+ Sn by

f ^Ξ exp^ o c o ( e x p j " 1 on M — {x'} ,

where exp^ (resp. exp^) is the exponential mapping at x (resp. x) whose do-
main of definition is the open ball in Mx (resp. Sx) of radius r/π and with the
origin as its center, and c: Mx —> 5^ is an isometric isomorphism. Then / is a
homeomorphism of M onto Sn.
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Lemma 3.7. In the case (B), M is diβeomorphic to Sn.
Proof. For any two points y,z e N, put

γ p {φt(y) I - oo < t < αo} , γ = γ U {X} U {x'} ,
r^ z' + s^ 1 j 5 11 ΓvΊ II fv̂ Ί

Then the images of γ and δ are two shortest geodesies joining 1 to i ; . Let a
(resp. a') be the angle between these two curves at x (resp. JC'). Then we have

where dt(φt(y), ψt(z)) is the distance between φt(y) and ^ t(z) on <pt(N), which
is the same set as 5^(0 = {w e M | d(jc, w) = /} and 5Λ,(Z0 = {wzM\ d(x', w) = I'},
where I = d(x,φt(p)) and /' = d(x',φtip)),pzN. The proof of this is parallel
to that of the lemma in Kobayashi-Nomizu [3, p. 170].

We have

(3.15)

and therefore

= lim -

Similarly,

a — lim

In order to prove a = a', we estimate the ratio a''/a:
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(3.16) — = lii

where

n-t

exp I λ(φu(y))du

exp j λ(φjy))du

(3.17) °

exp — I λ(ωu{y))du
\ J

= lim * = lim

exp ^(^u(y))αw exp j λ(φu(y))du
0 - ί

Since M is homeomorphic to *Sn, M is orientable and TV is also orientable by the
construction, so that

(3.18)

0 = ϊλ(x)dv = Cdvλ p |^α(jc)) exp ίu Cλ(φt(x))dt\\du
M N 0

- exp

where dv and J^! are volume elements on M and N respectively. Since the
integrand of the right hand side of (3.18) is independent of x, we have

exp ί j λ(φt(x))dt\ = exp (J λ(φt(x))dt\ .
0 0

Hence we have

(3.19) lim f-'W2 = 1 .

Since the values of d(x', φt(y)) and d(x, φt(y)) are bounded, we obtain, in con-
sequence (3.15),

(3.20) lim Γίu{y)ι/2du = 0 , lim Γ°°e_u(yf'Hu = 0 ,
ί-oo J ί-oo J

ί ί

which together with (3.19) and ΓHospitaΓs theorem implies
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Γ
(3.21) lim* = l i m nκy) = 1

Hence by (3.19) and (3.21) we have

(3.22) a = a' .

Now we construct a diffeomorphism of M onto Sn. We put d(x,x') = r.
Let Mx be the tangent space of M at x9 S

w be an rc-dimensional sphere of radius
r/7r in Rn+\ xf be the antipodal point xeSn

9e19 , £w be an orthonormal basis
for MX9 and e/ (i = 1, , ή) be the tangent vector at x', obtained by parallelly
displacing et along the geodesic exp^ teί9 0 < t < r. By (3.22), e/, . , en' is also
an orthonormal basis for Mx,. Now we choose an orthonormal basis e19 , en

for Si. Let e (/ = 1, 2, ., ή) be the tangent vector at x', obtained by paral-
lelly displacing ei along the geodesic exp^ tet, 0 < t < r. Then e'19 , e'n is
also an orthonormal basis for S%. Let c be the isometric isomorphism of Mx

onto Si such that c(eτ) = ei9 i = 1, , n, and / be the isometric isomorphism
of Mx onto S~f such that /(^) = e'i9 i = 1, , n. Now define two mapping
/,/': M - > S " b y :

/ = exp^ o c o (expj" 1 on M — [x'} ,

f ^ exp^ , o c' o (exp^,)"1 on M — {x} ,

f W = x .

By the construction, / is a diffeomorphism of M — {x'} onto Sn — {x'}, f
is a diffeomorphism of M — {x} onto Sn — {x}, and / = f. Hence / is a dif-
feomorphism of M onto Sn.

3. Examples

In this section we give two examples of compact Riemannian minifolds ad-
mitting a closed conformal non-Killing vector field.

Example 1. In the (JC, j)-ρlane, consider a curve y = sin x + <z, 0 < x < 2π9

a > 1. If we place this curve in the (x, y, z)-space and revolve it about the x-
axis, then we obtain a smooth closed surface M! with boundary, on which we
induce the natural Riemannian metric:

ds2 = dr2 + (sinjc(r) + a)2dθ2

where we put
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r = V1 + cos2 tdt

Now we obtain a compact Riemannian manifold M by identifying a boundary,

with two components, of Mf by an isometry of two circles. Then M is difϊeo-

morphic to a torus or a Klein's bottle, and X — (sinJt(r) + a)-d/dr is a closed

conformal non-Killing vector field on M because it satisfies

Lxg = 2 cos x(r)^g.
dr

Example 2. In the (x, y) -plane, consider a smooth curve y = f(x), 0<x<l,

such that /(0) = /(/) - 0, /(*) > 0 on (0, /) and (dx/dy)x=Q = (dx/dy)x=ι = 0.

If we place this curve in the (JC, y, z)-space and revolve it about the *-axis,

then we obtain a smooth closed surface M on which we induce the natural

Riemannian metric:

ds2 = dr2 + f(x(r))2dθ2 ,

where we put

r=\ VI +
0

Thus M is diffeomorphic to a sphere S2. If we set f(x) = J1 — — lχ — _ ] ,

X = f(x(r))d/dr, then X is a closed conformal non-Killing vector field on M,

because it satisfies

LxS =
dx dr
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