RIEMANNIAN MANIFOLDS ADMITTING A CERTAIN CONFORMAL TRANSFORMATION GROUP

YOSHIHIKO SUYAMA \& YÔTARÔ TSUKAMOTO

1. Introduction

Several authors have studied compact Riemannian manifolds admitting a conformal non-Killing vector field. The main results are as follows.

Let M be a connected n-dimensional Riemannian manifold admitting a conformal non-Killing vector field.
(1) If M is a complete Einstein space of dimension $n \geq 3$, then M is isometric to a sphere (Nagano-Yano [8]).
(2) If M is a complete Riemannian manifold of dimension $n \geq 3$ with parallel Ricci tensor, then M is isometric to a sphere (Nagano [5]).
(3) If M is compact and homogeneous, then M is isometric to a sphere provided $n>3$ (Goldberg-Kobayashi [2]).
(4) M can not be a compact Riemannian manifold with constant nonpositive scalar curvature (Yano [7], Lichnerowicz [4]).

Recently S. Tanno and W. C. Weber [6] investigated compact connected Riemannian manifolds which have constant scalar curvature and admit a closed conformal vector field with certain conditions. The purpose of this paper is to prove the following theorems.

Theorem I. If a compact connected Riemannian manifold M admits a closed conformal non-Killing vector field, then M is diffeomorphic to a generalized twisted torus or a sphere.

Theorem 2. If a compact Riemannian manifold M with finite fundamental group admits a closed conformal non-Killing vector field, then M is diffeomorphic to a sphere.

Theorem 3. If a compact connected Riemannian manifold M admits a closed conformal non-Killing vector field which vanishes at some point of M, then M is diffeomorphic to a sphere.

Theorem 2 is an immediate consequence of Theorem 1, and Theorem 3 follows from the proof of Theorem 1.

2. Preliminaries

Let M be a compact connected n-dimensional Riemannian manifold with metric g. A vector field X on M is conformal if and only if

$$
\begin{equation*}
L_{X} g=2 \lambda g \tag{2.1}
\end{equation*}
$$

where L_{X} denotes the Lie derivation with respect to X, and λ is a differentiable function on M which is called the characteristic function of X. If X is a conformal non-Killing vector field, then λ is a non-constant function. Since M is compact, X generates a global 1-parameter group of transformations φ_{t} of M. Then condition (2.1) is equivalent to

$$
\begin{equation*}
\left(\varphi_{t}^{*} g\right)=f_{t} \cdot g \tag{2.2}
\end{equation*}
$$

where

$$
f_{t}(p)=\exp \left(2 \int_{0}^{t} \lambda\left(\varphi_{u}(p)\right) d u\right), \quad p \in M
$$

If we put $X=\sum_{i=1}^{n} \xi^{i} \partial / \partial x^{i}$ in a coordinate neighborhood of M with local coordinate (x^{1}, \cdots, x^{n}), (2.1) is equivalent to

$$
\begin{equation*}
\xi_{i ; j}+\xi_{j ; i}=2 \lambda g_{i j}, \tag{2.3}
\end{equation*}
$$

where $g_{i j}$ are the components of g with respect to the coordinate system (x^{1}, \cdots, x^{n}), $\xi_{i}=\sum_{j=1}^{n} g_{i j} \xi^{j}$, and ";" denotes the covariant derivative with respect to the coordinates system $\left(x^{1}, \cdots, x^{n}\right)$. From now on, we assume that X is closed, that is to say,

$$
\begin{equation*}
\xi_{i ; j}=\xi_{j ; i} \tag{2.4}
\end{equation*}
$$

By (2.3) and (2.4) we have

$$
\begin{equation*}
\xi_{i ; j}=\lambda g_{i j} . \tag{2.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
\xi_{; j}^{i}=\lambda \delta^{i}{ }_{j}, \tag{2.6}
\end{equation*}
$$

where

$$
\delta^{i}{ }_{j}= \begin{cases}1 & (i=j) \\ 0 & (i \neq j)\end{cases}
$$

If we denote the divergence of X by $\operatorname{div} X$, from (2.6) follows immediately

$$
\operatorname{div} X=\sum_{i=1}^{n} \xi_{; i}^{i}=n \lambda .
$$

Let \bar{M} be an ($n-1$)-dimensional differentiable manifold, and φ be a diffeomorphism of \bar{M}, and consider $\bar{M} \times[0, a], a>0$. If M is a differentiable manifold obtained by identifying $\bar{M} \times\{0\}$ and $\bar{M} \times\{a\}$ in $\bar{M} \times[0, a]$ by using the $\operatorname{map} \varphi$, then we call it a generalized twisted torus.

Let N be a compact submanifold of M, and c be a geodesic starting from $p \in N$ such that c is perpendicular to N at p. If the point q on c is the last point such that the subarc $\overline{p q}$ of c is the shortest geodesic between q and N, then the point q is called the cut point of N along c.

3. Proof of Theorem I

Setting $M^{\prime} \equiv\left\{p \in M \mid X_{p} \neq 0\right\}, M^{\prime}$ is an open subset of M so that M^{\prime} is an open submanifold of M. Then there exists a distribution D of dimension $n-1$ on M^{\prime} such that for all $p \in M^{\prime}$ we have

$$
D_{p} \equiv\left\{Z \in M_{p} \mid g(Z, X)=0\right\} .
$$

Lemma 3.1. The distribution D is differentiable involutive.
Proof. Since $X_{p} \neq 0$ for all $p \in M^{\prime}$ there exists a coordinate system (x^{1}, \cdots, x^{n}) around p such that X coincides with the vector field $\partial / \partial x^{1}$ in this coordinate neighborhood W (cf. Chevalley [1]). Setting

$$
Y_{i}=\partial / \partial x^{i}-\frac{g\left(\partial / \partial x^{1}, \partial / \partial x^{i}\right)}{\left\|\partial / \partial x^{1}\right\|^{2}} \frac{\partial}{\partial x^{1}} \quad \text { for } i=2, \cdots, n
$$

the set Y_{2}, \cdots, Y_{n} is a local basis for the distribution D in W. Thus D is differentiable and also involutive. In fact, for any two vector fields Z, Z^{\prime} belonging to D we have

$$
\begin{equation*}
g\left(\left[Z, Z^{\prime}\right], X\right)=g\left(\nabla_{z} Z^{\prime}, X\right)-g\left(\nabla_{z^{\prime}} Z, X\right) . \tag{3.1}
\end{equation*}
$$

By (2.6) we obtain

$$
\begin{align*}
0 & =Z \cdot g\left(Z^{\prime}, X\right)=g\left(\nabla_{z} Z^{\prime}, X\right)+g\left(Z^{\prime}, \nabla_{z} X\right) \\
& =g\left(\nabla_{z} Z^{\prime}, X\right)+\lambda g\left(Z^{\prime}, Z\right), \tag{3.2}\\
0 & =Z^{\prime} \cdot g(Z, X)=g\left(\nabla_{z^{\prime}} Z, X\right)+\lambda g\left(Z^{\prime}, Z\right), \tag{3.3}
\end{align*}
$$

from which and (3.1) follows immediately $g\left(\left[Z, Z^{\prime}\right], X\right)=0$. So $\left[Z, Z^{\prime}\right]$ belongs to D, and D is involutive. q.e.d.

Hence there exists an integral manifold of D passing through each point of M^{\prime}.
Lemma 3.2. There exists a point p on M such that $\lambda(p)<0$ and $X_{p} \neq 0$.
Proof. Let \bar{M} be an oriented 2 -fold covering manifold of M, and \tilde{X} a lift
of X by the covering map. Then \bar{X} is a conformal vector field on \bar{M}. Let $\tilde{\lambda}$ be a characteristic function of \bar{X}. Then we have $\operatorname{div} \bar{X}=n \tilde{\lambda}$ and

$$
\begin{equation*}
0=\frac{1}{n} \int_{\widetilde{\mathcal{M}}} \operatorname{div} \bar{X}=\int_{\widetilde{\bar{M}}} \tilde{\lambda} \tag{3.4}
\end{equation*}
$$

Since $\tilde{\lambda}$ is a non-constant function on \bar{M}, two sets $\{p \in \bar{M} \mid \tilde{\lambda}(p)>0\}$ and $\{p \in \bar{M} \mid \tilde{\lambda}(p)<0\}$ are non-empty, and therefore so is λ.

Now we assume that X vanishes on the open set \mathcal{O}. For any vector fields Y, Z on M we have

$$
\begin{equation*}
\left(L_{X} g\right)(Y, Z)=X \cdot g(Y, Z)-g([X, Y], Z)-g(Y,[X, Z])=0 \text { on } \mathcal{O} \tag{3.5}
\end{equation*}
$$

On the other hand,

$$
\left(L_{X} g\right)(Y, Z)=2 \lambda g(Y, Z)
$$

which shows that λ vanishes on \mathcal{O}. Hence there exists a point p on M such that $\lambda(p)<0$ and $X_{p} \neq 0$. q.e.d.

Let $U(p)$ be a neighborhood of p, where λ is negative and X never vanishes. Then

$$
\begin{equation*}
X \cdot g(X, X)=\left(L_{X} g\right)(X, X)=2 \lambda g(X, X) \tag{3.6}
\end{equation*}
$$

which implies that $g(X, X)$ decreases along the integral curve of X on $U(p)$.
Lemma 3.3. There exists a coordinate neighborhood U with local coordinate system (x^{1}, \cdots, x^{n}) such that
(1) U is contained in $U(p)$,
(2) $x^{i}(p)=0, i=1, \cdots, n$,
(3) $\left|x^{1}\right|<a,\left|x^{i}\right|<b(i \geq 2)$ on U,
(4) the slice of U defined by the equation $x^{1}=\xi$, where $|\xi|<a$, is an integral manifold of D,
(5) if we put $V \equiv\left\{q \in U \mid x^{1}(q)=0\right\}$, then the set $\varphi_{t}(V)$ coincides with the set $\left\{q \in U \mid x^{1}(q)=t\right\}$.

Proof. By Lemma 3.1. and Frobenius theorem (Chevalley [1]) we have a coordinate neighborhood U with a local coordinate system (y^{1}, \cdots, y^{n}) which satisfies the conditions (1)-(4). Since V is an integral manifold of D and φ_{t} is a conformal transformation for a fixed $t, \varphi_{t}(V)$ is also an integral manifold, and X never vanishes on $U(p)$. So we can change y^{i} into $x^{i}(i=1, \cdots, n)$ such that $x^{1}\left(\varphi_{t}(p)\right)=t$. Thus we have a desired coordinate system. q.e.d.

The value of $g(X, X)$ is constant on any integral manifold of D. In fact, for any $Z \in D$ we have

$$
\begin{equation*}
Z \cdot g(X, X)=2 g\left(\nabla_{z} X, X\right)=2 \lambda g(Z, X)=0 \tag{3.7}
\end{equation*}
$$

Let N be a unique maximal integral manifold of D containing the point p. Then $\varphi_{t}(N) \cap N=\emptyset$ for all $t, 0<|t|<a$. By Lemma 3.3 and the above remark, the value of $g(X, X)$ on U is constant on each slice and decreases as the parameter t increases. This shows that $\varphi_{t}(V) \cap N=\emptyset$ and therefore $\varphi_{t}(N) \cap N$ $=\emptyset$, for all $t, 0<|t|<a$.

Lemma 3.4. The above maximal integral manifold N is an $(n-1)$-dimensional compact manifold.

Proof. We shall show that the closure \bar{N} of N in M coincides with N. Let x be a point contained in \bar{N}, and $\left\{x_{n}\right\}$ be the sequence contained in N such that x_{n} converges to x in M as n tends to ∞. Since the value of $g(X, X)$ is a nonzero constant on $N, g_{x}(X, X)$ is equal to this value, and so there exists a neighborhood U_{x} of x in which the vector field X never vanishes. Now we take a coordinate neighborhood U^{\prime} of x contained in U_{x} whose local coordinate system ($x^{\prime 1}, \cdots, x^{\prime n}$) has the same properties as in Lemma 3,3. If $x^{\prime 1}$ is so taken that $\left|x^{\prime 1}\right|<a^{\prime} \leq a$, then it is clear from the above remark of this lemma that in U^{\prime} there exists at most one of those slices contained in N. If there does not exist such a slice, we can not take the sequence $\left\{x_{n}\right\} \subset N$ such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Therefore the slice passing through x is contained in N, so that $x \in N$. Moreover this shows that N has no boundary. q.e.d.

If $N \cap \varphi_{t}(N) \neq \emptyset$ for some t, then $N=\varphi_{t}(N)$, because N and $\varphi_{t}(N)$ are integral manifolds of D. Now we define the mapping $F: t \rightarrow \varphi_{t}(N)$. This mapping F is locally one-to-one. In fact, we have $\varphi_{t}(N) \neq \varphi_{t^{\prime}}(N)$ for $t \neq t^{\prime}$, $-a<t-t^{\prime}<a$. Now we can consider the following two cases.
(A) There exists $t \neq 0$ such that $N=\varphi_{t}(N)$.
(B) There does not exist $t \neq 0$ such that $N=\varphi_{t}(N)$.

Lemma 3.5. In the case (A), M is diffeomorphic to a generalized twisted torus.

Proof. Let t_{0} be the minimum positive number such that $\varphi_{t_{0}}(N)=N$, and put

$$
\begin{equation*}
M^{\prime \prime} \equiv \bigcup_{0 \leq t \leq t_{0}} \varphi_{t}(N) \tag{3.8}
\end{equation*}
$$

We shall show that $M^{\prime \prime}$ is an open and closed subset of M, so that $M=M^{\prime \prime}$. To this end we first show that $M^{\prime \prime}$ is open in M. For any point $q \in M^{\prime \prime}$, there exists s such that $0 \leq s \leq t_{0}$ and $q \in \varphi_{s}(N)$. We take a neighborhood V^{\prime} of q in $\varphi_{s}(N)$ and a suitable positive number ε, so that the set $\underset{-c<t<s}{\cup} \varphi_{t}(V)$ is an open set of M which contains the point q.

Next we shall show that $M^{\prime \prime}$ is closed in M. For any point x of $\bar{M}^{\prime \prime}$, there exists a sequence $\left\{x_{n}\right\} \subset M^{\prime \prime}$ such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Then we can write $x_{n}=\varphi_{t_{n}}\left(y_{n}\right)$, where $0 \leq t_{n} \leq t$ and $\left\{y_{n}\right\} \subset N$, and can choose the convergent subsequences of $\left\{y_{n}\right\}$ and $\left\{t_{n}\right\}$, so that we can assume that $y_{n} \rightarrow y, t_{n} \rightarrow s$ as $n \rightarrow \infty$, where $y \in N, 0 \leq s \leq t$. Now we estimate $d\left(x, \varphi_{s}(y)\right)$, where d is the metric function on M :

$$
\begin{align*}
d\left(x, \varphi_{s}(y)\right) & \leq d\left(x, \varphi_{t_{n}}\left(y_{n}\right)\right)+d\left(\varphi_{t_{n}}\left(y_{n}\right), \varphi_{t_{n}}(y)\right)+d\left(\varphi_{t_{n}}(y), \varphi_{s}(y)\right) \tag{3.9}\\
& \leq d\left(x, \varphi_{t_{n}}\left(y_{n}\right)\right)+\bar{d}_{t_{n}}\left(\varphi_{t_{n}}\left(y_{n}\right), \varphi_{t_{n}}(y)\right)+d\left(\varphi_{t_{n}}(y), \varphi_{s}(y)\right),
\end{align*}
$$

where $\bar{d}_{t_{n}}$ is the metric function on $\varphi_{t_{n}}(N)$. On the right hand side of (3.9), the first and third terms converge to 0 as $n \rightarrow \infty$. So we need only to estimate the second term. For any point $p \in N$,

$$
\begin{equation*}
g_{\varphi_{t}(p)}(X, X)=g_{\varphi_{t}(p)}\left(\varphi_{t} X, \varphi_{t} X\right)=\left(\varphi_{t}{ }^{*} g\right)_{p}(X, X)=f_{t}(p) \cdot g_{p}(X, X) \tag{3.10}
\end{equation*}
$$

Since $g(X, X)$ is constant on $\varphi_{t}(N)$ for any $t, f_{t}(p)$ is independent of $p \in N$. $f_{t}(p),(p \in N)$, is a continuous function of t and satisfies $f_{0}(p)=1, f_{t_{0}}(p)=1$. So we have the maximum value C of $f_{t}(p)$ on $\left[0, t_{0}\right]$, and

$$
\begin{equation*}
\bar{d}_{t_{n}}\left(\varphi_{t_{n}}\left(y_{n}\right), \varphi_{t_{n}}(y)\right) \leq C^{1 / 2} \bar{d}_{0}\left(y_{n}, y\right) . \tag{3.11}
\end{equation*}
$$

Since $\bar{d}_{0}\left(y_{n}, y\right) \rightarrow 0$ as $n \rightarrow \infty, \bar{d}_{t_{n}}\left(\varphi_{t_{n}}\left(y_{n}\right), \varphi_{t_{n}}(y)\right) \rightarrow 0$ as $n \rightarrow \infty$. This shows $d\left(x, \varphi_{s}(y)\right)=0$, i.e., $x=\varphi_{s}(y)$. Therefore $\bar{M}^{\prime \prime}=M^{\prime \prime}$, and hence $M^{\prime \prime}$ is closed in M.

Lemma 3.6. In the case (B), M is homeomorphic to S^{n}.
Proof. Since from (2.6) we have $\nabla_{x} X=\lambda X$, for any point $p \in N$ the curves τ and τ^{\prime} defined by

$$
\begin{gather*}
\tau \equiv\left\{\varphi_{t}(p) \mid t \in[0, \infty)\right\}, \tag{3.12}\\
\tau^{\prime} \equiv\left\{\varphi_{t}(p) \mid t \in(-\infty, 0]\right\} \tag{3.13}
\end{gather*}
$$

are geodesics, and therefore their lengths $L(\tau)$ and $L\left(\tau^{\prime}\right)$ are independent of $p \in N$, due to the fact that $g(X, X)\left(\varphi_{t}(p)\right)$ is independent of p for fixed t. Now we divide our discussion into the following four cases:
(a) $L(\tau)=\infty$ and $L\left(\tau^{\prime}\right)=\infty$.
(b) $L(\tau)=\infty$ and $L\left(\tau^{\prime}\right)<\infty$.
(c) $L(\tau)<\infty$ and $L\left(\tau^{\prime}\right)=\infty$.
(d) $L(\tau)<\infty$ and $L\left(\tau^{\prime}\right)<\infty$.

Case (a). Let c be the curve defined by $c=\left\{c(t) \mid c(t) \equiv \varphi_{t}(p), 0 \leq t<\infty\right.$, $p \in N\}$. Since M and N are compact and c is perpendicular to N at p, we have the cut point $c\left(t_{0}\right)$ of N along c. If $t_{1}>t_{0}$, then the shortest geodesic c^{\prime} between $c\left(t_{1}\right)$ and N is different from the subarc $c \mid\left[0, t_{1}\right]$ of c, and the image of c^{\prime} is integral curve of X because c^{\prime} is perpendicular to N by construction. Hence the composite of $c \mid\left[0, t_{1}\right]$ and c^{\prime} is an extension of $c \mid\left[0, t_{1}\right]$. This contradicts to our assumption (B), so Case (a) never happens.

Case (b). We first show $\varphi_{t}(N)$ converges to one point x as $t \rightarrow-\infty$. For any point $y \in N, \varphi_{t}(y)$ converges to a point y^{\prime} as $n \rightarrow-\infty$. This implies $X_{y^{\prime}}=0$. Using the same argument as in (3.10), we have $f_{t}(p) \rightarrow 0$ as $t \rightarrow-\infty$. For any two points $y, z \in N$, let $x(s), 0 \leq s \leq 1$, be a curve in N joining y to z. Then for any fixed $t, \varphi_{t}(x(s)), 0 \leq s \leq 1$, is the curve in $\varphi_{t}(N)$ joining $\varphi_{t}(y)$ to $\varphi_{t}(z)$. Now we estimate the length of this curve in $\varphi_{t}(N)$.

$$
\begin{align*}
& \int_{0}^{1} g\left(\varphi_{t} \dot{x}(s), \varphi_{t} \dot{x}(s)\right)^{1 / 2} d s=\int_{0}^{1}\left(\varphi_{t}^{*} g\right)(\dot{x}(s), \dot{x}(s))^{1 / 2} d s \\
& \quad=\int_{0}^{1}\left(f_{t}(p)\right)^{1 / 2}\left(g \left(\dot{x}(s), \dot{x}(s)^{1 / 2} d s=\left(f_{t}(p)\right)^{1 / 2} \int_{0}^{1} g(\dot{x}(s), \dot{x}(s))^{1 / 2} d s .\right.\right. \tag{3.14}
\end{align*}
$$

This shows $\int_{0}^{1} g\left(\varphi_{t} \dot{x}(s), \varphi_{t} \dot{x}(s)\right)^{1 / 2} d s \rightarrow 0$ as $t \rightarrow-\infty$, i.e., $d\left(y^{\prime}, z^{\prime}\right)=0$, where $y^{\prime}=\lim _{t \rightarrow-\infty} \varphi_{t}(y), z^{\prime}=\lim _{t \rightarrow-\infty} \varphi_{t}(z)$, and $\dot{x}(s)$ is the tangent vector at $x(s)$.

For any $s<0$, the curve $\tau^{\prime}(s) \equiv\left\{\varphi_{t}(p) \mid t \in[s, 0]\right\}$ is the shortest geodesic between $\varphi_{s}(p)$ and N. In fact, if the curve $\tau^{\prime}(s)$ contains the cut point of N in its inner point, then we have a shortest geodesic τ_{1}^{\prime} between $\varphi_{s}(p)$ and N, which is different from $\tau^{\prime}(s)$. Since τ_{1}^{\prime} is perpendicular to N, we can denote τ_{1}^{\prime} by τ_{1}^{\prime} $=\left\{\varphi_{t}(q) \mid s<s^{\prime} \leq t \leq 0\right\}$ or $\tau_{1}^{\prime}=\left\{\varphi_{t}(q) \mid 0 \leq t \leq c_{1}\right\}$ for some $q \in N$. But we can easily show that these two cases do not happen. Hence $\tau^{\prime}(s)$ is the shortest geodesic between $\varphi_{s}(p)$ and N.

For any $y \in N$, put $\tau^{\prime}[y] \equiv\left\{\varphi_{t}(y) \mid-\infty<t \leq 0\right\}$. Then it has already been shown that $L\left(\tau^{\prime}[y]\right)$ is independent of $y \in N$ and $\bar{\tau}^{\prime}[y] \equiv \tau^{\prime}[y] \cup\{x\}$ is the shortest geodesic between x and N. This shows that for any $t \in(-\infty, 0], \varphi_{t}(N)$ is a connected submanifold of $S_{x}(l)=\{z \in M \mid d(x, z)=l\}$, where $l=d\left(x, \varphi_{t}(p)\right)$, $p \in N$. Since from its construction $\varphi_{t}(N)$ is an open and closed subset of $S_{x}(l)$, we have $S_{x}(l)=\varphi_{t}(N)$. For any $t \in \boldsymbol{R}$, put $\tau^{\prime \prime}(t)=\left\{\varphi_{s}(p) \mid-\infty<s \leq t\right\}$. Then it has already been shown that $\tau^{\prime \prime}(t)=\tau^{\prime \prime}(t) \cup\{x\}$ is a geodesic joining x to $\varphi_{t}(p)$. By the same argument as above, $\bar{\tau}^{\prime \prime}(t)$ does not contain the cut point of x along $\bar{\tau}^{\prime \prime}(t)$. Since by the assumption $L\left(\bar{\tau}^{\prime \prime}(t)\right) \rightarrow \infty$, Case (b) never happens.

Case (c). This case can not happen in the same way as in Case (b).
Case (d). As we showed in Case (b), $\varphi_{t}(N)$ and $\varphi_{-t}(N)$ converge to x and x^{\prime} respectively as $t \rightarrow+\infty$. For any $y \in N$, put $\tau^{\prime \prime} \equiv\left\{\varphi_{t}(y) \mid-\infty<t<\infty\right\}$. Then $\bar{\tau}^{\prime \prime}$ is a shortest geodesic joining x to x^{\prime}, and $L\left(\bar{\tau}^{\prime \prime}\right)$ is independent of $y \in N$. As we showed in Case (b), $\varphi_{t}(N)=S_{x}(l) \equiv\left\{z \in M \mid d(x, z)=l, l=d\left(x, \varphi_{t}(p)\right)\right.$, $p \in N\}$.

Put $d\left(x, x^{\prime}\right)=r$. Let M_{x} be the tangent space of M at x, S^{n} an n-dimensional sphere of r / π in R^{n+1}, and \bar{x}^{\prime} the antipodal point of $\bar{x} \in S^{n}$. Then construct the mapping $f: M \rightarrow S^{n}$ by

$$
\begin{aligned}
& f \equiv \exp _{\bar{x}} \circ ८ \circ\left(\exp _{x}\right)^{-1} \quad \text { on } M-\left\{x^{\prime}\right\} \\
& f\left(x^{\prime}\right)=\bar{x}^{\prime}
\end{aligned}
$$

where $\exp _{x}\left(\right.$ resp. $\left.\exp _{\bar{x}}\right)$ is the exponential mapping at x (resp. \bar{x}) whose domain of definition is the open ball in M_{x} (resp. $S_{\bar{x}}$) of radius r / π and with the origin as its center, and $\iota: M_{x} \rightarrow S_{\bar{x}}$ is an isometric isomorphism. Then f is a homeomorphism of M onto S^{n}.

Lemma 3.7. In the case (B), M is diffeomorphic to S^{n}.
Proof. For any two points $y, z \in N$, put

$$
\begin{array}{ll}
\gamma \equiv\left\{\varphi_{t}(y) \mid-\infty<t<\infty\right\}, & \bar{\gamma} \equiv \gamma \cup\{x\} \cup\left\{x^{\prime}\right\}, \\
\delta \equiv\left\{\varphi_{t}(z) \mid-\infty<t<\infty\right\}, & \bar{\delta} \equiv \delta \cup\{x\} \cup\left\{x^{\prime}\right\} .
\end{array}
$$

Then the images of $\bar{\gamma}$ and $\bar{\delta}$ are two shortest geodesics joining x to x^{\prime}. Let α (resp. α^{\prime}) be the angle between these two curves at x (resp. x^{\prime}). Then we have

$$
\alpha=\lim _{t \rightarrow \infty} \frac{\bar{d}_{t}\left(\varphi_{t}(y), \varphi_{t}(z)\right)}{d\left(x, \varphi_{t}(y)\right)}, \quad \alpha=\lim _{t \rightarrow-\infty} \frac{\bar{d}_{t}\left(\varphi_{t}(y), \varphi_{t}(z)\right)}{d\left(x^{\prime}, \varphi_{t}(y)\right)},
$$

where $\bar{d}_{t}\left(\varphi_{t}(y), \varphi_{t}(z)\right)$ is the distance between $\varphi_{t}(y)$ and $\varphi_{t}(z)$ on $\varphi_{t}(N)$, which is the same set as $S_{x}(l)=\{w \in M \mid d(x, w)=l\}$ and $S_{x^{\prime}}\left(l^{\prime}\right)=\left\{w \in M \mid d\left(x^{\prime}, w\right)=l^{\prime}\right\}$, where $l=d\left(x, \varphi_{t}(p)\right)$ and $l^{\prime}=d\left(x^{\prime}, \varphi_{t}(p)\right), p \in N$. The proof of this is parallel to that of the lemma in Kobayashi-Nomizu [3, p. 170].

We have

$$
\begin{align*}
\bar{d}_{t}\left(\varphi_{t}(y), \varphi_{t}(z)\right) & =f_{t}(y)^{1 / 2} \bar{d}_{0}(y, z), \\
d\left(x^{\prime}, \varphi_{t}(y)\right) & =\int_{-\infty}^{t} g_{\varphi_{u}(y)}(X, X)^{1 / 2} d u=\int_{-\infty}^{t} g_{\varphi_{u}(y)}\left(\varphi_{u} X, \varphi_{u} X\right)^{1 / 2} d u \tag{3.15}\\
& =\int_{-\infty}^{t}\left(\varphi_{u}^{*} g\right)_{y}(X, X)^{1 / 2} d u=g_{y}(X, X)^{1 / 2} \int_{-\infty}^{t} f_{u}(y)^{1 / 2} d u
\end{align*}
$$

and therefore

$$
\begin{aligned}
\alpha^{\prime} & =\lim _{t \rightarrow-\infty} \frac{f_{t}(y)^{1 / 2} \bar{d}_{0}(y, z)}{\left(\int_{-\infty}^{t} f_{u}(y)^{1 / 2} d u\right) g_{y}(X, X)^{1 / 2}} \\
& =\lim _{t \rightarrow+\infty} \frac{f_{-t}(y)^{1 / 2} \bar{d}_{0}(y, z)}{\left(\int_{t}^{\infty} f_{-u}(y)^{1 / 2} d u\right) \cdot g_{y}(X, X)^{1 / 2}} \cdot
\end{aligned}
$$

Similarly,

$$
\alpha=\lim _{t \rightarrow+\infty} \frac{f_{t}(y)^{1 / 2} \bar{d}_{0}(y, z)}{\left(\int_{t}^{\infty} f_{u}(y)^{1 / 2} d u\right) \cdot g_{y}(X, X)^{1 / 2}} .
$$

In order to prove $\alpha=\alpha^{\prime}$, we estimate the ratio α^{\prime} / α :

$$
\begin{equation*}
\frac{\alpha^{\prime}}{\alpha}=\lim _{t \rightarrow \infty} \frac{f_{-t}(y)^{1 / 2} \cdot \bar{d}_{0}(y, z)}{\left(\int_{t}^{\infty} f_{-u}(y)^{1 / 2} d u\right) \cdot g_{y}(X, X)} \cdot \frac{\left(\int_{t}^{\infty} f_{u}(y)^{1 / 2} d u\right) \cdot g_{y}(X, X)^{1 / 2}}{f_{t}(y)^{1 / 2} \bar{d}_{0}(y, z)}, \tag{3.16}
\end{equation*}
$$

where

$$
\begin{align*}
\lim _{t \rightarrow \infty} \frac{f_{-t}(y)^{1 / 2}}{f_{t}(y)^{1 / 2}} & =\lim _{t \rightarrow \infty} \frac{\exp \int_{0}^{-t} \lambda\left(\varphi_{u}(y)\right) d u}{\exp \int_{0}^{t} \lambda\left(\varphi_{u}(y)\right) d u} \tag{3.17}\\
& =\lim _{t \rightarrow \infty} \frac{\exp \left(-\int_{t}^{0} \lambda\left(\varphi_{u}(y)\right) d u\right)}{\exp \int_{0}^{t} \lambda\left(\varphi_{u}(y)\right) d u}=\lim _{t \rightarrow \infty} \frac{1}{\exp \int_{-t}^{t} \lambda\left(\varphi_{u}(y)\right) d u} .
\end{align*}
$$

Since M is homeomorphic to S^{n}, M is orientable and N is also orientable by the construction, so that

$$
\begin{align*}
0 & =\int_{M} \lambda(x) d v=\int_{N} d v_{1} \int_{-\infty}^{\infty}\left\{\lambda\left(\varphi_{u}(x)\right) \exp \left(u \int_{0}^{u} \lambda\left(\varphi_{t}(x)\right) d t\right)\right\} d u \tag{3.18}\\
& =\int_{N}\left[\frac{1}{u}\left(\exp \left(u \int_{0}^{\infty} \lambda\left(\varphi_{t}(x)\right) d t-\exp \left(u \int_{0}^{-\infty} \lambda\left(\varphi_{t}(x)\right) d t\right)\right)\right] d v_{1},\right.
\end{align*}
$$

where $d v$ and $d v_{1}$ are volume elements on M and N respectively. Since the integrand of the right hand side of (3.18) is independent of x, we have

$$
\exp \left(\int_{0}^{\infty} \lambda\left(\varphi_{t}(x)\right) d t\right)=\exp \left(\int_{0}^{\infty} \lambda\left(\varphi_{t}(x)\right) d t\right) .
$$

Hence we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f_{-t}(x)^{1 / 2}}{f_{t}(x)^{1 / 2}}=1 \tag{3.19}
\end{equation*}
$$

Since the values of $d\left(x^{\prime}, \varphi_{t}(y)\right)$ and $d\left(x, \varphi_{t}(y)\right)$ are bounded, we obtain, in consequence (3.15),

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{i}^{\infty} f_{u}(y)^{1 / 2} d u=0, \quad \lim _{t \rightarrow \infty} \int_{t}^{\infty} e_{-u}(y)^{1 / 2} d u=0, \tag{3.20}
\end{equation*}
$$

which together with (3.19) and l'Hospital's theorem implies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\int_{t}^{\infty} f_{u}(y)^{1 / 2} d u}{\int_{t}^{\infty} f_{-u}(y)^{1 / 2} d u}=\lim _{t \rightarrow \infty} \frac{f_{t}(y)^{1 / 2}}{f_{-t}(y)^{1 / 2}}=1 \tag{3.21}
\end{equation*}
$$

Hence by (3.19) and (3.21) we have

$$
\begin{equation*}
\alpha=\alpha^{\prime} \tag{3.22}
\end{equation*}
$$

Now we construct a diffeomorphism of M onto S^{n}. We put $d\left(x, x^{\prime}\right)=r$. Let M_{x} be the tangent space of M at x, S^{n} be an n-dimensional sphere of radius r / π in $R^{n+1}, \bar{x}^{\prime}$ be the antipodal point $\bar{x} \in S^{n}, e_{1}, \cdots, e_{n}$ be an orthonormal basis for M_{x}, and $e_{i}{ }^{\prime}(i=1, \cdots, n)$ be the tangent vector at x^{\prime}, obtained by parallelly displacing e_{i} along the geodesic $\exp _{x} t e_{i}, 0 \leq t \leq r$. By (3.22), $e_{1}{ }^{\prime}, \cdots, e_{n}{ }^{\prime}$ is also an orthonormal basis for $M_{x^{\prime}}$. Now we choose an orthonormal basis $\bar{e}_{1}, \cdots, \bar{e}_{n}$ for $S_{\bar{x}}^{n}$. Let $\bar{e}_{i}^{\prime}(i=1,2, \cdots, n)$ be the tangent vector at \bar{x}^{\prime}, obtained by parallelly displacing \bar{e}_{i} along the geodesic $\exp _{\bar{x}} t \bar{e}_{i}, 0 \leq t \leq r$. Then $\bar{e}_{1}^{\prime}, \cdots, \bar{e}_{n}^{\prime}$ is also an orthonormal basis for $S_{\bar{x}}^{n}$. Let ι be the isometric isomorphism of M_{x} onto $S_{\bar{x}}^{n}$ such that $\iota\left(e_{i}\right)=\bar{e}_{i}, i=1, \cdots, n$, and ι^{\prime} be the isometric isomorphism of $M_{\bar{x}}$ onto $S_{\bar{x}^{\prime}}^{n}$, such that $\iota^{\prime}\left(e_{i}^{\prime}\right)=\bar{e}_{i}^{\prime}, i=1, \cdots, n$. Now define two mapping $f, f^{\prime}: M \rightarrow S^{n}$ by:

$$
\begin{array}{rlrl}
f & \equiv \exp _{\bar{x}^{\prime} \circ \iota \circ\left(\exp _{x}\right)^{-1}} \quad & \text { on } M-\left\{x^{\prime}\right\}, \\
f\left(x^{\prime}\right) & =\bar{x}^{\prime}, \\
f^{\prime} & \risingdotseq \exp _{\bar{x}^{\prime}} \circ \iota^{\prime} \circ\left(\exp _{x^{\prime}}\right)^{-1} & & \text { on } M-\{x\}, \\
f^{\prime}(x) & =\bar{x} . & &
\end{array}
$$

By the construction, f is a diffeomorphism of $M-\left\{x^{\prime}\right\}$ onto $S^{n}-\left\{\bar{x}^{\prime}\right\}, f^{\prime}$ is a diffeomorphism of $M-\{x\}$ onto $S^{n}-\{\bar{x}\}$, and $f=f^{\prime}$. Hence f is a diffeomorphism of M onto S^{n}.

3. Examples

In this section we give two examples of compact Riemannian minifolds admitting a closed conformal non-Killing vector field.

Example 1. In the (x, y)-plane, consider a curve $y=\sin x+a, 0 \leq x \leq 2 \pi$, $a>1$. If we place this curve in the (x, y, z)-space and revolve it about the x axis, then we obtain a smooth closed surface M^{\prime} with boundary, on which we induce the natural Riemannian metric:

$$
d s^{2}=d r^{2}+(\sin x(r)+a)^{2} d \theta^{2}
$$

where we put

$$
r=\int_{0}^{x} \sqrt{1+\cos ^{2} t} d t
$$

Now we obtain a compact Riemannian manifold M by identifying a boundary, with two components, of M^{\prime} by an isometry of two circles. Then M is diffeomorphic to a torus or a Klein's bottle, and $X=(\sin x(r)+a) \cdot \partial / \partial r$ is a closed conformal non-Killing vector field on M because it satisfies

$$
L_{x} g=2 \cos x(r) \frac{d x}{d r} g
$$

Example 2. In the (x, y)-plane, consider a smooth curve $y=f(x), 0 \leq x \leq l$, such that $f(0)=f(l)=0, f(x)>0$ on $(0, l)$ and $(d x / d y)_{x=0}=(d x / d y)_{x=l}=0$. If we place this curve in the (x, y, z)-space and revolve it about the x-axis, then we obtain a smooth closed surface M on which we induce the natural Riemannian metric:

$$
d s^{2}=d r^{2}+f(x(r))^{2} d \theta^{2},
$$

where we put

$$
r=\int_{0}^{x} \sqrt{1+f^{\prime}(t)^{2}} d t
$$

Thus M is diffeomorphic to a sphere S^{2}. If we set $f(x)=\sqrt{1-\frac{4}{l^{2}}\left(x-\frac{l}{2}\right)^{2}}$, $X=f(x(r)) \partial / \partial r$, then X is a closed conformal non-Killing vector field on M, because it satisfies

$$
L_{x} g=2 \frac{d f}{d x} \frac{d x}{d r} g .
$$

References

[1] C. Chevalley, Theory of Lie groups, Princeton University Press, Princeton, 1946.
[2] S. Goldberg \& S. Kobayashi, The conformal transformation groups of a compact homogeneous Riemannian manifolds, Bull. Amer. Math. Soc. 68 (1962) 378381.
[3] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
[4] A. Lichnerowicz, Géométrie des groups de transformations, Dunod, Paris, 1958.
[5] T. Nagano, The conformal transformations on a space with parallel Ricci tensor, J. Math. Soc. Japan 11 (1959) 10-14.
[6] S. Tanno \& W. C. Weber, Closed conformal vector fields, J. Differential Geometry 3 (1969) 361-366.
[7] K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957.
[8] K. Yano \& T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. of Math. 69 (1959) 451-461.

Kyushu University

