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APPLICATION OF THE HIGHER OSCULATING SPACES
TO THE SPHERICAL PRINCIPAL SERIES

NOLAN R. WALLACH

1. Introduction

The purpose of this paper is to use a geometric construction (analogous to
the higher osculating spaces and fundamental forms of immersions) to study
certain infinite dimensional Banach representations of semisimple Lie groups
(the spherical principal series). Few of our results are new, most can be found
in Kostant [5] or Helgason [4]. However, the proofs are new and quite ele-
mentary (in comparison to those of Kostant and Helgason).

In § 2 we define the spherical principal series and study duality in the series.
In § 3 we study cyclic vectors for these representations and prove several results
on finite dimensional class 1 representations including the fact that every finite
dimensional class 1 representation is realized as a canonically defined subspace
of a principal series representation. In § 4 the geometric construction alluded
to above is given. § 5 is devoted to applications of the results of §§ 1-4. We
prove in particular that almost all of the elements of the spherical principal
series (not necessarily unitary) are irreducible. This is the weakest possible way
of stating the result of Kostant [5]. In § 6 we give Kostant's complete solution
to which elements of the spherical principal series for Lorentz groups are irre-
ducible.

2. The spherical principle series

Let G be a connected semisimple Lie group with finite center, G = KAN an
Iwasawa decomposition of G, K a maximal compact subgroup of G, AN an
Iwaaswa subgroup of G, N the unipotent radical of AN, and A a maximal split
torus of G acting semisimply on N. Let g, ϊ, α, n, be respectively the Lie alge-
bras of G,K,A,N, and M the centralizer of A in K. Set B = MAN. Then
G/B = K/M under the map kanB >-» kM for k e K, a e A, n <ε N.

Let dx be the ^-invariant normalized measure on K/M, and o! and af

c re-
spectively the spaces of real valued and complex valued linear forms on α. If
λea'c, we define a Banach representation (πλ,X

λ) of G as follows:
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i) Xλ is the Hubert space of all measurable functions /: G —• C so that
f(gman) = e~λa°sa)f(g)(\og: A —» a is the inverse map to exp: a —> A), geG,

meM,aeA,n€N, and such that Γ \f(x) f dx < oo Qf(km) \ = \f(k) | thus

K/M

|/(JC) I is well defined for x e K/M). We set </1? /2> = Γ f1(x)f2(x)dx9 for /1? /2

K/M

ϋ) WSo) •/)&) = /fe"1^) for g0? £ e G. It is not hard to check (cf. Harish-
Chandra [1]) that (πλ,X

λ) is a continuous Banach representation of G.

For each A € α define ^(A) = (l/2)tr(adh\n). If ̂  β α^, then ^ = λx + VZΓϊλ2,

for Xx, λ2 e a'. Define λ — λλ — \l — lλ2.
We now define two G-invariant pairings a sesquilinear pairing of Xλ and

X2p~J and a bilinear pairing between Xλ and X2p~λ. If ^ e J F and f2eX2p~J,
define

( 1 ) (/19/2) =
K

where ί/A: is normalized Haar measure on K. If fλ e Z^ and /2 e Z 2 ^"^ define

( 2 ) {/i,/2} = Jh(k)f2(k)dk .
K

Lemma 2.1. (a) // /, e Z J,/2 eX^-\ge G, then (*,(*)•/„ πt,M) 1d =

(b) Iff.ζX^h&X^-^gi

Proof. If / e Z 2 ί -ί , then / e X2 '-'. Thus if /, e Z \ /2 e Z 2 f > ^, then {/„ /2} =

(/i,/2). It is therefore sufficient to prove (a).
Let g e G . Then g = fcαn, ke.k,as.A,neN. Set &(g) = £, H(g) = log a.

Then £: G -*K,H: G —> α are C°° mappings. Let F be a continuous function
on K. If g e G, then (cf. Helgason [3, p. 51])

( 3 ) JF(k)dk = ('
K K

Now let fx e X', /2 € Z 2 ^ 1 . Then

= ff
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^ k ) ) d k = ( / 1 5 / 2 ) , b y ( 3 ) . q . e . d .

For each λ e af

c, (πλ,X
λ) is a unitary representation of K which is unitarily

equivalent with L\K/M)). Let Ko be the set of all equivalence classes of irre-
ducible, finite dimensional, continuous K-modules which have a nonzero Af-
fixed vector. Let VM = {v e V \ m v — v for all m e M] for a X-module F, and
let Vreγb& fixed for each γ e Ko.

f εXλ is said to be K-finite if the linear hull of πλ(K)f is finite dimensional.
Let Xλ

F be the space of all K-finite elements of X\ Then the Peter-Weyl theo-
rem (applied to L\K/M)) implies that Xλ

F is dense Xλ, and Frobenious recipro-
city that, as a K-module, Xλ

F = Σ dim (Vf)Vr

3. Cyclic elements of α c

Let /, 6 Xλ be defined by fλ(g) = e-
UH'g)) for each λ e α-c. We say that / e Xλ

is a cyclic vector for Xλ if Xλ is the smallest closed invariant subspace of Xλ

containing /, and that λ e af

c is cyclic if fλ is a cyclic vector for Xλ. Let X\ be
the smallest closed invariant subspace of Xλ containing fλ.

Proposition 3.1. (a) // X\ is completely reducible, then X\ is irreducible.
(b) // dim X\ < oo, then X\ is irreducible, and λ is the lowest restricted

weight of X\ relative to the Weyl chamber of 21 determined by N.
(c) Let (π, V) be a finite dimensional, continuous, irreducible representation

of G which has a nonzero K-fixed vector, and λ the lowest restricted weight of
V. Then X\ is equivalent to (π, V).

Before proving Proposition 3.1 we need an elementary lemma of Kostant.
Let U(a) be the complexified universal enveloping algebra of g, (X*F)* be the
contragradient C/(g)-module to Xλ

F, and ξλ <=. (Xλ

F)* be defined by ξλ(f) = f(e).
Set Z> = C/(β)fa.

Lemma 3.1. If feXλ

F is such that a{f) = 0 for all a e Z\ then f = 0.

Proof. If feXλ

F, then /: G -> C is analytic. Thus if (gf)(e) = 0 for each
g 6 l/(g), then / = 0. By the definition of the contragradient action, the element
ag e (Xλ

F)* defined by ag(j) = (g-f)(e) is in Zλ for each ge t/(g). This proves
the lemma.

We now prove Proposition 3.1. We suppose that X\ is completely reducible.
If X\ — Uλ®U2, Ut being a closed nonzero invariant subspace of X\ for / =
1,2, then letting Pi: Z^ -> C/̂  be the corresponding projection for i = 1,2, we
see that P J 2 ̂  0 for i = 1,2. Thus /̂  e £/χ Π C/2 since the multiplicity of the
trivial representation of K in Xλ is one. This contradiction implies (a).

We now prove (b). Assume that dimZ^ < oo. Then as a G-module Xλ

e is
completely reducible. Hence (a) implies that X\ is irreducible. Now Lemma 3.1
implies that Zλ\xχ = (A^)*. If n € n and / <= Xλ

F, we see that
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(n-ξx)(f) = -ξ£n.f) = - ^ - / ( e x p ( - ί n ) ) | ί = 0 = 0
at

Thus n-ξλ = 0 for all n € n. If h e α and / e J ^ , then

Thus the highest restricted weight of (A^)* is — Λ; this proves (b)
We now prove (c). Let (π, V) be a finite dimensional, continuous, irreducible

representation of G with Infixed vector v0 Φ 0, (τr*,F*) the contragradient
representation, φ an element of the highest restricted weight space, the weight
being λ, of F * . Define the function /„: G -> C for each v € F via /„(#) = φ(g~ ιv).
Then /^^..(g) - φig-'gov) = fυ(goιg). Thus the map ψ V -> C~(G), ^ ) = /„,
is a G-module homomorphism. Since (TΓ, V) is irreducible and 27 Φ 0,2y is injec-
tive. Now let kζk, as A, nε N. Then

Thus /ββ = φ(vQ)f_λ. This clearly implies that 37: V -> ^"^ is a G-module iso-
morphism.

Lemma 3.2. λ e α^ w cycZ/c // ΛAẐ  c?«/y // Λ«y nonzero closed invariant sub-
space of X2p~λ (resp. X2p~λ) contains f2p_-λ (resp. f2p_λ). In particular, if λea'c is
cyclic, then X\9~ι and X\9~ι are irreducible.

Proof. Suppose λ € a'c is cyclic. We prove the result for X2p~λ. The proof
for X2p-χ is exactly the same by substituting { , } for ( , ) .

Suppose that U C X2p~x is nonzero, closed and invariant. There is g e G such
that (πλ(g)fλ, U) Φ (0). Since λ is cyclic, (fλ, U) Φ (0). This implies that the
trivial representation of K appears in U. Since the multiplicity of the trivial rep-
resentation of K in X2p'1 is one, f2p_Ί εU.

Conversely, suppose that every nonzero closed invariant subspace of X2p~λ

contains f2p_-λ, and let / e X2p~\ Then the smallest closed invariant subspace of
X2p~λ containing / contains flp_-λ. Hence there is g z G such that (πλ(g)fλ, /) Φ 0
this clearly implies that X\ = Xλ. q.e.d.

The following are immediate consequences of Lemma 3.2.
Corollary 3.2. Let λ e <X'C. Then (πx,X

x) is irreducible if and only if λ and
2p — λ (resp. λ and 2p — X) are cyclic.

Corollary 3.3. Let λ e a*c. Then λ is cyclic if and only if λ is cyclic, and Xλ

is irreducible if and only If Xλ is irreducible.
Before proceeding we need
Lemma 3.4. 2ρ is cyclic.
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Proof. Suppose that / is a K-finite element of L2(K/M) such that

j(τt2p(g)f2p)(k)Kk)dk = 0 , for all g € G .
K

Then

J = 0 , for all g e G ,

which implies that / = 0 (see Helgason [3]). Thus X\p is dense in X2p, and hence
x2p = SΓΪ'.

4. The map B

We now abstract the situation in §§2 and 3. Let Z b e a complex Hubert
space, and π a continuous representation of G on X. We assume:

(i) The space of £-fixed vectors in X is one dimensional and consists of
analytic vectors.

(ii) π(k) is unitary for k € K.
(iii) Each irreducible X-submodule of X appears with finite multiplicity.

We note that the representations (πλ,X
λ) satisfy (i), (ii), (iii).

Let p be the orthogonal compliment to ϊ in g relative to the killing form of
g, and note that ad p. Let K act on p by the adjoint action, and S(pc) be the
symmetric algebra on pc = p ®R C. Then S(pc) is naturally a ^-module.

Let voζXbt a infixed vector, and define a map B: S(pc) —• Z inductively.
Let Sj(pc) be the /th symmetric power of p c , and define Bo: 50(:pc) = C —> X via
J?0(c) = cv0. Set Vo = B0(S°(pc)). Suppose that we have defined Bo, , Bn and
Vj =z Bj(Sj(pc)), j = 0, , n. Let v •-• t;^71 be the projection of Z onto the
orthogonal compliment of Vo + + Vn. Define and note that

Bn+1(X19 - ,Xn+ι) = ((X19 - ",Xn+M)Nn,

= (Xl9 , [Xi9Xi+1]9 ,Ar

n+1vα)^» - 0 .

Thus Bn+1 is symmetric, and Bn+1 induces a linear map Bn+ι: Sn+1(pc) —> Z .
Set Kn + 1 = 5w + 1(5w + 1(ί) c)), and note that

Set 5 = f; 5 .̂

Lemma 4.1. 5 : S(pc) —> X is a K-module homomorphism.
Proof. Let X e p, and let X j be the /th symmetric power of X.ltke K, then
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k X* = (Ad(k)xy. Now

which proves the lemma since K acts unitarily.
Let Xe be the smallest closed invariant subspace of X containing v0.
Lemma 4.2. Xe is the closure of B(S(pc)) in X.
Proof. Clearly B(S(pc)) C Xe. We therefore need only to show that

π(g)v0 e B(S(pc)) for all geG. If g e G, then g = cxpX k, for k e K, X e p.
Thus we need only to show that τr(exρ X) v0 e B(S(pc)) for each Xεp. But

clearly XJ voeB(S(pc)) for all/. Since ττ(exρX)v0 = Σ XJv0/j\,v0 being an

analytic vector we have τr(exp X)v0 e B(S(pc)), and the lemma is proved.

Let / be the space of all ϋC-fixed elements of S(pc) and let J+ = ( Σ Sj(pc)) ΓΊ J.

Lemma 4.3. (a) Ker B is a homogeneous ideal in S(pc).
(b) 7+cKerJ5.
Proof, (a) is clear from the fact BJ+1(Xu) = (X BJ(U))NJ for u€Sj(pc),

Xzp.

We prove (b). Let uεJ+. Then u = Σ «,-, for UjeSJ(pc),UjζJ+. Now

Bj(Uj) is Affixed, thus by assumption (i),/?/^) = cy0. But by definition of 2?̂
for / > 2, (Bj(uj), vQ} = 0. Thus c = 0. q.e.d.

In the special case where (π, X) — (πλ, X
λ) and vQ = /^ we denote β by Bλ.

5. The space 7ϊ

Extend the restriction of the Killing form on p to be a Hermitian inner pro-
duct on S(pc) in the canonical manner. Let / = Ker B2p, and set H = I1 in

S(pc).
Lemma 5.1. Suppose that dim α = 1. Lei e1? , en be an orthonormal

basis of p, and identify S(pc) with the polynomial mappings of p —> C using the
complex bilinear extension of the Killing form restricted to p. If v e p, then

define (dj)(x) = — (f(x + tv))\t=0 for f e S(pc). Let H = Ker

Then H = H.

Proof. Let r = Σ 4 6 ^(P)? and'let Λ: € α be a unit vector. Since dim α = 1,
i = l

we see that Ad(K)>x is the unit sphere 5 of p, and the isotropy group for this
action on S is M. Thus S =

Using the fact j ] 3J£r = 2AZ. It is easy to see that S(pc) = H®S(pc)r. Since
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r 6 J+, from Lemma 4.3 it follows that H c H. Furthermore, S(p c ) | 5 = H\s.
The Stone-Weierstrauss theorem now implies hat H\s is the space of all K-finite
elements oίL2(K/M). Thus by Frobenious reciprocity, β\s= Σ ( d i m Vf)Vτ.

ΐ€K0

Since Lemma 3.4 implies that H = Σ (dim F f ) F r . We have H = H. q.e.d.

In general, using Lemma 3.4 we see that # = Σ dim {Vf)Vr as a X-
r<=£0

module, and that B2p: H —> L2(K/M)F is an isomorphism of ^-modules, where
L\K/M)F is the space of all K-finite elements of L\K/M).

Let # r = dim (Vf)Vr C # . For each Λ€ α^ we now define a K-homomorphism
PJ: Hγ->Hr as follows.

Define η): V(χ>c) ^ Xλ by η){Xi) = X*-jλ for each / and X e pc, and
rf: S(pc) —• L2(K/M)F to be 2 η). Here we look upon η\ύ) as a function on

K/Mtor uzS(pc). Then define PJ = (fl2")"1 o ̂ | ^ , andletp r ϋ) = det(PJ|f l f).

Lemma 5.2. (a) // pr(λ) 9̂  0 /or each γ € Xo, ί/ie/t λ is cyclic.
(b) Suppose dim α = 1. Then λ is cyclic if and only if pγ(λ) Φ 0 for all γeK0.
(c) Let m(y) = max{/1 Vγ C H Π 5J(pc)}. ΓΛen p r : αj, —> C is a polynomial

mapping of degree at most m(^)(dim Vf )2.
Proof, (a) Suppose that pr(λ) Φ 0. Then Pλ

r: Hf -+ Hf is injective, and
the multiplicity of Vγ in Im Pλ

7 is dim Vf so that Pλ

r: Hr^ Hr is injective. Thus,
if p7(X) Φ 0 for all γ € l 0 we see that ^(S(pc)) - ZJ.. Clearly ηλ(S(pc)) c ZJ.
Hence, if pr(Λ) ^ 0 for all γ 6 Xo, then ^ is cyclic.

(b) follows directly from Lemma 5.1.
We now prove (c). Let ξ: S(pc) -> C^iK/M ; α c ) ( = the C°° maps from

to αc) be defined by

for

(Recall that H(kan) = log a ioτ k € K, a e A, n e N.) Let for each n a nonnega-
tive integer P n be a polynomial in n-variables recursively defined by:

(i) Po - 1.
n βp

It is straightforward to check that deg Pn = n and that η)(Xj) = Pj(λ(ξ(X)),
. . . , ;K£(Z*))) for X € p. Now suppose that # r Π S^(pc) φ (0) for j = i19 ..., im

and /x < . . . </ m = m(^). Let ^ f ί e be elements of p so that Xΐeje, , ̂ e

e , i e

(Λβ = dim^S*^)) is a basis of SHp c ). If uzH7, then 11 = Σ Λ*.»^ίΓ,in for
αm > w β C, and
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Thus λ i-* Pλ

r depends polynomially with λ and has coefficients of degree at most
m(γ) relative to a basis matrix, and hence (c) follows.

Corollary 5.1. (a) Let Z c ac be the set of all λ which are not cyclic.
Then Z is contained in a countable number of complex algebraic hypersurfaces
of a>c.

(b) // dim a = 1, then Z is countable.
In particular almost every element of af

c is cyclic. Thus for almost every ele-
ment λ of ctfc, (πλ, X

λ) is irreducible.

6. The generalized Lorentz group

We note that pr(2p) = 1 for all γzK0 by the definition of the pr(λ), and
recall that SOe(n, 1) is the connected open subgroup of the subgroup of

n

GL(n + 1, R) leaving the quadratic form £ A — 4+i invariant. Denote by the
i = l

Universal covering group of SOe(n, 1) by Spin (n, 1), and let G = SOe(n, 1)
or Spin (π, 1).

Let a be the positive restricted root of g relative to α and the choice of N.
Then p = Γ ~ ) or. Since K = SO(n) or Spin (n), and the action of K on p

is the usual action of K on Rn, W is an irreducible JK-module for each /.
Furthermore by the classical theory of spherical harmonics, W and Hk are in-
equivalent K-modules if j Φ k. Let pj(λ) = Pr(λά) for γ € Ko such that W e γ.

Lemma 6.1. Let G = SOe(n, 1) or Spin(«, 1). Then λza'c is cyclic if and
only if dim X\ — oo.

Proof. The necessity is clear. If dim Xλ

e = oo, then we must have # ) =£ 0
for each /. But then X\ D B)(W) for each /. Thus X2

eZ) X2

F, and hence X1 = Z^.

Theorem 6.1. L^/ G = 5Oe(w, 1) or Spin (n, 1). T/zen pj(λ) =
Jff« + *)/ff(Λ+ 1 + A).

Proof. By the above, dim Vf = \ for each p e Xo. Furthermore if Hj € γ,
then m(γ) — /, and therefore degree pά{λ) < j . Furthermore if pό(λ) = 0, then
dimZ^α < oo. Thus by Proposition 3.1, la is the lowest restricted weight of
Xλ

e

a

t Since the lowest restricted weight μ of a finite dimensional class 1 repre-
sentation of G must satisfy <μ, α>/<α, α> = — *> * being a nonnegative integer,
by the classical theorem of Cartan and Helgason, λ = — k if dim Z^α < oo. Let
JFfc be the irreducible class 1, G-module with lowest restricted weight —ka.

Then, as a ^-module, Wk = Σ # ' , and p / - * ) = 0 for / > Λ. This implies
i=o

k

that p^ is a scalar multiple of fl W + /)» which is found from the identity

Pj(n + 1) = 1.
Corollary 6.1. (Kostant, Helgason). Let G = SOe(n, 1) or Spin Oz, 1).
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(a) λea'c is cyclic if and only if λ Φ — ka, k being a nonpositive integer.

(b) (πλ, X
λ) is irreducible if and anly if λ Φ ka with k an integer and k < 0

or k > n — 1.

Proof, (a) follows immediately from the proof of Theorem 6.1, and (b)

directly from Corollary 3.2.
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