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SELF-LINKING AND THE DIRECTED SECANT SPAN
OF A DIFFERENTIABLE MANIFOLD

JAMES H. WHITE

1. Introduction

In [2], W. Pohl introduced the concept of the self-linking number of a
closed space curve. In [5], the present author generalized the self-linking
number to closed oriented n-manifolds in Euclidean {In + 1)-space. In this
paper we give a new geometric interpretation of this self-linking number by
reinterpreting a formula given by Gauss, Pontryagin [3] among others, for
the linking number of two manifolds in Euclidean spaces (Proposition 1)
and by investigating it in two cases, the first when the two manifolds are the
same, the second when one manifold is a submanifold of the other. We will
show that, in the case where the two manifolds are the same, the self-linking
number is equal to the difference of two intersection numbers. The first is the
algebraic number of directed secants through a generic point p of the Eucli-
dean space into which the manifold is imbedded; a directed secant is an
infinite half line which begins at one point of the imbedding and passes
through another. The second is the algebraic number of infinite half-(n + 1)-
planes which pass through the point p, the half planes being spanned by the
full tangent plane and the forward mean curvature vector at each point of the
imbedding. This result is then generalized to the second case when one mani-
fold is a submanifold of the other. In both cases we rely heavily on work done
in [2], [5], and [6]. The theorem is discussed at some length for curves in
three-space and some geometric consequences are noted.

Finally, in the appendix we present a different approach to the main
theorem for the case of curves in three-space, an approach more in the spirit
of [2]. We prove that under suitable conditions the self-linking number of a
closed space curve is equal to one-half the algebraic number of secants through
the origin minus the total turning of the projection of the position vector of
the curve into the normal plane about the principal normal. In this case a
secant is the full infinite line through two points of the imbedded curve.
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2. Linking of manifolds

We begin by recalling some well-known facts about the linking of manifolds.
Let Mn and Kι be two closed smooth oriented manifolds of dimensions n and
/, / and h be C1 maps of them into oriented Euclidean space En+ι+1 such that
f(Mn) and h(Kι) do not intersect, and Sn+ι be the unit (n + /)-sρhere centered
at the origin of En+ι+1. Consider the cartesian product Mn x Kι given the
canonical orientation, and define a map

e: Mn x Kι -*Sn+ι

by associating with each (m,k)<εMn x Kι the unit vector in En+ι+1:

(1 ϊ o(™ IΛ ^ ( * ) — ft™)U j βyiTi. AC) = .

\h(k)-f(m)\

The degree of this map is the linking number L(/, h), [3]. Let dθn+t be the pull-
back of the volume element of the (n + ΐ)-sphere under the map e. Then clearly

dO^r ,

where 0TO+z is the volume of the (n + Z)-sρhere.
We next interpret L(/, h) in a different manner which will be of prime use in

what follows. Consider the product M x K x L, where L = [0,0] is a closed
interval of real numbers, and M and X are as above. Then M x K x L is a
manifold with boundary components M x ί x {0} and M x £ x {a}. We
define a map g: M x K x L-+ En+ι+1 by

g(m,k,s) = /(m) + J — ^ ^ - ( -
\|Λ(*) W

for (m,k,s)εM x K x L. Let p be an arbitrary point of En+ι+1 such that p
is not a singular value of the map g and is not in the locus g(d(M X K x L)).
Let

/ = {(m,k,s)eM x K x L\g(m,k,s) = p} .

Because of our assumption on p and the compactness of M x K x L, I will be
finite in number. Finally, we define a map e': p x M x K x L — I -+ Sn+ι by

e'(p,m,k,s)=
\g(m,k,s) - p\

Let dθn+t be the pull-back of the volume element of Sn+ι under the map e'. In
[6], using Stokes' Theorem, we proved
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71 + 1 pXd(MxKxL)

where I(g, p) is the algebraic number of intersections of g(M x K X L) with
the point p, or the sum of the indices of the intersections of g(M x K x L)
with p. In this case we obtain

(2) - J — J dθ n + ι -—L-J Λ>n+ι = (-l)»+i/(g,p),
W + Z pxϋfxXxfα} n + l pxMxKx{0}

the signs coming from the induced orientation from Stokes' Theorem. We
first observe that the second integral on the left hand side is zero, for ef

restricted to p x M x K x {0} gives

e>(p,m,k,ΰ) =
\Km) - p\

and hence the image o f p χ M χ K χ { 0 } has dimension less than n + I. Thus
we obtain

pχMxKx{a}

As with our previous work [6], the main interest lies in the case where a goes
to infinity. Let us examine this case more closely. The map er on p x M x K
X {a} is

e'iυ m k ά)= [f(m) - p] I h { k )

μ' ' ' I [ / ( ) ] I A(Λ)I [/(m) - p] I A(Λ) - /(m) | + α [h(k) - f(m)] \

Clearly, as a —» oo, this map becomes

e (p, m, k, oo) = — i - i J V J ,

|Λ(it) - Km)I

which is the same as the map e on M x K in equation (1). Thus the integral

71 + 1 pxMxKx[oo]

is really just the same as the earlier integral

MxK
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We define the image of M x K x L under g, where L = [0, oo], to be the
directed secant span from M to K (or perhaps more precisely, from /(M) to
h(K)). We obtain thereby

Proposition 1. L(/, /*) = (— l)n+ιI(g, p), where L(f,h) is the linking number
of f(M) with h(K), and I(g,p) is the algebraic intersection number of the directed
secant span from M to K with p.

It will be our purpose to use Proposition 1 to give new interpretations of
the self-linking number of a differentiable manifold.

3. Extension to secant spaces

Let Nq be a compact orientable differentiate manifold of dimension q pos-
sibly with boundary, and Mn a closed submanifold of dimension n < q with
no boundary. We shall make use of the abstract space S(M,N) of secants of
N relative to M canonically defined in [5]. In fact, S(M,N) essentally is a dif-
ferentiable manifold whose interior is M x N — DM, where DM = {(m, ή)ζ.M
X N\n — m} and whose boundary consists of M X dN and T(N)M which is
the restriction to M of the space of oriented tangent directions of N. We shall
understand that if M is a part of the boundary of N, then T(N)M consists of
Γ(M) and the tangent directions of N pointing to the interior of N from M.

Consider the product manifold S(M, N) X L, where L = [0, a] is a closed
interval of real numbers. Then S(M,N) is a manifold with boundary com-
ponents MxdNxL, T(N)M X L, S(M, N) X {0}, S(M, N) X {«}.

Let F be a C3 map of N into oriented (n + q + l)-sρace such that F is a
C3 imbedding in a neighborhood of M, and let / denote the restriction of F to
M. We define, as in § 2, a map g: 5(M, N) X L -> En+q+1 by

for (m, n, s) e (M x N — DM) X L, and define

( 3 ) g(ί m , 5) = f(m) + s ( ^ *

for ίm 6 TXΛO^ and (ίm, 5 ) € TXΛÔ  X L, where F* is the induced map on the
tangent space. By abuse of notation and where the meaning should be clear,
we will write equation (3) as

g(t,s) = f(m) + st

for 0, s) e T(N)M x L, the / on the right-hand side being the "realized" unit
tangent vector, as it were. That g is a differentiable map follows from argu-
ments about related maps in [2] and [5].
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Let p be an arbitrary point of En+q+1 such that p is not a singular value of
the map g and is not in g(d(S(M,N) X L)). Let / = {(m,n,s) eS(M,N)
X LI g(m, n, s) = p}. As before, because of our assumption on p and the com-
pactness of S(M,N) x L,I will be finite in number. Continuing, we define a
map e: p x S(M, J V ) χ L - / - > Sw+<* by

\g(m,n,s) — p\

for (m, n,s)e(M x N — DM) X L, and

for (ί, j) € Γ(N)jf X L (where we have made use of the abuse of language
mentioned above). Let dθn+q be the pull-back of the volume element of Sn+q

under the map e. Then we use the main result, the so-called equation (E), of
[6] to conclude

pxd(S(M,N)xL)

where I(g, p) is the algebraic number of intersections of g(5(M, N) X L) with
p. This gives

Γ rfOB+g - _ J _ Γ dθn +, = ( _ \r+«I(g, p)
pxMxdNxL n + q pχΓ(iV)jκfXZ,

the signs of the above terms coming from the induced orientations from the
use of Stokes' Theorem.

The first integral is zero for essentially the same reason as the second
integral in equation (2). As before, our main interest in equation (4) occurs
when a —• oo. We now investigate the integral

— f dθπ+q

pxS(M,N)x{oo]

The map e restricted to p x S(M, N) x {00} is the same as the map e* defined
on S(M, N) as follows:
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for (m,ri)€M x N — DM and

e*(f) = t

for t e T(N)M, the t on the right-hand side once again being the "realized" unit
tangent vector. If we use the same notation and denote by dθn+q the pull-back
of the volume element of Sn+q under e*, then

S(M,N)

where the integral on the right-hand side is called the Gauss integral for N
relative to M. It is defined in § 8 of [5] and is written there as

dOn+<

Hereafter, we shall use this latter notation.
Finally, equation (4) then becomes

-J^J dθn+q - -±^j

-_J_f
On+q J

PXMX8NXL

PXT(N)MXL

In what follows we shall consider two special cases of this equation, the first
being when N = M, the second being when M c N and dN = 0.

4. Self-linking

In this section we give a new interpretation of the self-linking number of a
differentiable manifold. If we set N — My equation (5) becomes

\ C \ C
I dθ2n — I dθ2n = I(g, p) ,

271 MXM 2n pxT(M)xL

where T(M) is the space of oriented tangent directions of M, and I(g, p) is the
intersection number of g(S(M) x L) with the point p. Define the image of
5(M) X L under g to be the directed secant span of the differentiable manifold
M, and call I(g, p) the algebraic number of directed secants through the point p.

Theorem 2. Let I(g, p) be the algebraic number of directed secants through
the point p. Then

Γ
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We now use Theorem 2 to tie together work done in [2], [5], and [6]. For
the convenience of the reader we recall the pertinent theorems from these works.
(These will be listed with capital Latin letters.)

Theorem A. Let f: Mn —> E2n+1 be a C3 imbedding of a closed oriented
differentiate manifold into Euclidean (2n + l)-space, and v a non-vanishing
unit normal vector field on Mn. If n is odd, then

- Γ
where L(f, fεύ) is the linking number of the imbedded manifold with the same
manifold deformed a distance e along the vector field v, and τvdV is the torsion
form of the imbedded manifold with respect to the vector field v. If n is even,
then

where χ(vc) is the Euler characteristic of the complementary (to v) oriented
subbundle of the normal bundle.

Theorem B. // n is even, then

that is, the Gauss integral for M is zero,
It is also shown in [5] that L(f, fευ) is the algebraic number of forward cross

normals, which is the algebraic number of times forward lines along the vector
field v intersect the imbedding /(M).

Theorem C. L(f, ftυ) is the algebraic number of forward cross-normals.
If v is chosen to be along the mean curvature vector field, then L(f, fev) is

called the self-linking number of the manifold M.
Combining Theorems 2, A and B, we have
Lemma 3. // n is odd, then

7Γ
n M

Lemma 4. // n is even, then

J_Γ

and

! Γ = I(g, p) - L(f, fευ)Γ
TpxT(M)xL
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We now quote a theorem from [6] which gives a different result for the
left-hand sides of the equation in Lemma 3 and the second equation in Lemma
4. First, we observe that the image of T(M) X L under the map g is really
just the same as the span of all the full tangent planes of the imbedding /(M).
The theorem from [6] concerns precisely the same image. For each point meM,
consider the half (n + l)-plane spanned by the tangent plane of M at f(m)
and the forward unit normal vector v of M at f(m). We count the algebraic in-
tersection number of these half (n + 1)-planes with the point p and call it
I(y,p). Theorem 5 of [6] states the following

Theorem D. // n is odd, then

- — L - Γ dθ2n - _ L - (τυdV = I(v, p) .
ύ pXT(M)XL n M

If n is even, then

- — ! — f dθ2n + jrχ(vc) = I(v, p) .
m T(M)L

(We note for the sake of the reader that the notation in [6] is substantially
different.)

Combining Lemmas 3 and 4 with Theorem D, we obtain
Theorem 5. L(f, fj = I(g, p) - I(v, p).
From Theorem C, we therefore obtain
Corollary 6. The algebraic number of forward cross normals = I(g, p) —

Kv,p).
Corollary 7. // v is along the mean curvature vector, then

where SL is the self-linking number of the diβerentiable manifold M.
To get a further understanding of Corollary 7, let us examine it more

closely for the case of curves in three-space. Let /: M —> E3 be a C3 imbed-
ding of a curve in three-space for which the curvature never vanishes. In this
case the vector field v will be the principal normal vector field. What the
corollary states is that the self-linking number of the curve is equal to the
algebraic number of directed secants through a generic point p minus the
algebraic number of infinite half osculating planes passing through p. Hence,
for example, if no osculating planes pass through a point p, then the self-
linking number is equal to the algebraic number of directed secants through p.

Suppose, further, that we let the point p go to infinity along a certain fixed
direction. Then, the corollary implies that if no infinite half osculating planes
pass through this point at infinity (which will occur, for example, if no oscu-
lating plane is parallel to the given fixed direction), then the self-linking
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number of the curve is the algebraic number of directed secants along the
given direction. One may state, for example,

Corollary 8. // all the binormals of a curve make an angle less than π/2
with a fixed direction, then the self-linking number of the curve is the algebraic
number of directed secants along the given direction.

The condition of Corollary 8 is 5atisfied, for example, when the binormal
indicatrix is contained in a hemisphere.

As an interesting sidelight we mention that such curves have been studied
before by B. Segre [4] and W. Fenchel [1], the former giving an estimate for
the total absolute torsion of a curve whose binormal indicatrix is contained
in a hemisphere. In fact, if B is the binormal indicatrix and δ is the spherical
diameter of the circumscribed circle of B, then

\τ\ds > 2δ .

The self-linking number, however, is related to the total torsion

Jrds.

Continuing our line of thought, suppose that we have a curve immersed in
the xy-plane such as that in Fig. 1A with the binormal pointing along the
positive z-axis. By a slight deformation lift branch 1 away from branch 2 out
of the plane in such a way that the curvature never vanishes (Fig. IB) . For
the direction in Corollary 8 choose the z-axis in its positive sense. If the de-
formation is small enough, then it is clear that the binormals will make an

Fig. 1A Fig. IB

angle less than π/2 with the z-axis. An easy observation shows that there is
only one directed secant along the positive z-axis, and hence by Corollary 8
the self-linking number is ± 1 . This method can be used for constructing a
curve of arbitrary self-linking number. There is a similar method described
by W. Pohl in [2] for computing the self-linking number of a closed space
curve.
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5. Linking of submanifolds

In this section we assume that N is an oriented closed differentiable mani-
fold without boundary and that M is a closed submanifold of N also without
boundary. Then equation (5) becomes

( 6 ) — L _ f dθn+q - -1— f dθn+q = ( - l)»+«/(g, p) .

Our analysis in this section is quite similar to that of § 4 in that we wish to
use equation (6) to tie together results in [5] and [6].

Suppose the map F is a C3 imbedding of N into Euclidean (n + q + 1)-
space, and there exists on N a non-vanishing unit normal vector field v. In
[5, Theorem 9], we proved

Theorem E. // n is odd, then

Γ = L(f,Fευ) ,

where f is the restriction of F to M, (τM)vdV is the torsion form of the imbedded
manifold F(N) with respect to the imbedded submanifold f(M), and L(f,Feυ)
is the linking number of the imbedded submanifold f(M) with F(N) deformed
a small distance ε along v.

If n is even, then

Γ dθn+q - iχ(^ c )[M] = L(f,Feυ) ,

where χ(vc)[M] is the Euler class of the complementary {to v) subbundle of
the normal bundle of N evaluated on the fundamental class of M.

Combining equation (6) with Theorem E, we have
Lemma 9. // n is odd, then

— J _ Γ dθn+q - J _ ((τM)υdV = ( - l)«+«/(g, p) - L(f, FJ .

Lemma 10. // n is even, then

- — ! — Γ dθn+q + }χ(vc)[M] = (-1)« + V(g,p) - L(f,F.υ) .
Vn + q x T { N ) X L

pxT{N)MXL

The result we quote from [6] concerns the left-hand sides of these two above
equations. We observe, again, that the image of T(N)M X L under the map g
is the same as the span of all the full tangent planes of F(N) restricted to
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/(M). For each point ra e M, consider the half (q + 1)-plane spanned by the
tangent plane to N at f(m) and the forward unit normal vector voίNatf(m).
We count the algebraic intersection number of these (q + l)-half planes with
the point p and call it IM(v,p). Theorem 5 of [6] states

Theorem F. // n is odd, then

—-1— Γ dθn+q - -A- ((τM)vdV = IM(v, p) .

If n is even, then

Finally, combining Lemmas 9 and 10 with Theorem F we obtain
Theorem 11. L(f, FJ = ( - l)n+«I(g, p) - IM(v, p).
Appendix. In this appendix we briefly outline a different approach to the

above investigations for curves in three-space. This is done more in the spirit
of W. Pohl in [2] and gives a slightly different result for the self-linking num-
ber. For the details of the kind of analysis which follows, the reader is referred
to [2].

Let /: M —> E3 be a C3 imbedding of a closed curve in three-space with non-
vanishing curvature, and 5(M) be the abstract space of secants of M, i.e.,
S(M) = M X M — D U Γ(M), where D is the diagonal and Γ(M) is the space
of oriented tangent directions of M. We define a map eλ\ S(M) —> S2,S2 being
the unit 2-sphere in E3, by

for 0 , y) e M x M — D, and

e1(f) = t

for t ε T(M), where the right-hand side is the "realized" unit tangent vector.
Let p be an arbitrary point of E3 such that no tangent line of f(M) passes

through p. With each (x,y)eM X M — D such that the secant line f(x)f(y)
does not pass through p, we associate e2(x, y), the unit vector in the plane
spanned by secant line f(x)f(y) and the line pf(x), perpendicular to eλ and so
oriented that eλe2 agrees with the orientation exa where a is a unit vector directed
from p to f(x). The vector function e2 extends smoothly to the boundary Γ(M)
and gives there a unit vector along the projection of the line pf(x) into the
normal plane at f(x). We observe that e2 is not defined when the secant line
passes through p, and call such a secant a cross-secant. We note that p may
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be chosen in such a way that the number of cross-secants are finite. Finally,
set e3 = eλ x e2.

Let dθ2 be the pull-back of the volume element of S2 under the map ex If
we set deve5 = ωtj, then dθ2 may be written as ωl2 Λ ω13 = —dω23, where d
denotes the exterior derivative. An analysis similar to that of [2] (the reader is
referred there for details) gives, by a use of Stokes' Theorem,

(7 ) - L f dθ2 + - L Cω23 = 1/ ,

where the first integral is the Gauss integral for M (cf. § 4) and / is the
algebraic number of cross-secants (or secants through p). We observe without
proof that \I is an integer. This is essentially due to the fact that in the analysis
here each cross-secant is counted twice, once for (JC, y), and once for (y, x).

We examine now the ω23 of the second integral. Recall that on M, e2 is a
unit vector along the projection of the line pf(x) onto the normal plane at /(*).
Hence we may write, ex being along the unit tangent vector,

e2 = cos ΘN + sin ΘB ,

e3 = — sin ΘN + cos ΘB ,

where N and B are the principal normal and binormal of the curve at f(x) and
θ is the angle e2 makes with N. A direct computation shows

ω23 = zds + dθ ,

where τ is the torsion and ds the arc-element. Hence

Combining this equation with equation (7) we obtain

\ C 1
dθ2 + τds = \l — —

2π J 2i

But the left-hand side is just the self-linking number of the curve, so that

SL = U - —L- [dθ .
2π J

We may state this in the following way: Suppose without loss of generality
that p is the origin of coordinates. Then we have shown

Theorem 12 The self-linking number of a closed space curve is equal to
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one-half the algebraic number of secants through the origin minus the total
turning of the projection of the position vector into the normal plane about the
principal normal.
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