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METRICS AND ISOMETRIC EMBEDDINGS
OF THE 2-SPHERE

ROBERT E. GREENE

Since any compact C2 two-dimensional submanifold of euclidean 3-space R3

must have positive Gaussian curvature at some point, it follows that the 2-torus
with flat metric and the compact orientable 2-manifolds of genus greater than
1 with metrics of everywhere negative curvature have no C2 isometric embed-
dings in R3. Of course, compact non-orientable 2-manifolds cannot be embedded
inR3 for topological reasons. A manifold of dimension d > 2 always admits a
metric for which there is no isometric embedding in Rd+ι: There certainly exists
a metric such that all sectional curvatures are negative at some point of the
manifold, by a standard extension argument for Riemannian metrics defined in
a neighborhood of a point. There exists no C2 isometric embedding in Rd+1 for
such a metric and in fact no C2 isometric embedding in Rd+1 of any neighborhood
of a point of a d-dimensional manifold, d > 2, where all sectional curvatures
are negative, as the expression for the sectional curvature of hypersurfaces in
terms of the eigenvalues of the second fundamental form shows immediately.

The reasoning used in the cases already discussed fails to apply to any metric
on the 2-sρhere S2, since d = 2 and the Gauss-Bonnet theorem guarantees at
least one point of positive curvature for any given C2 metric on the sphere. The
purpose of this article is to exhibit a C°° metric on S2 for which there is no C2

isometric embedding in R3. The proof of the non-existence of a C2 embedding
of S2 in R3 isometric for this metric is based on the analysis of the structure of
flat submanifolds of R3 given in Hartman and Nirenberg [1] (see also Massey
[2]).

The author is indebted to H. Wu for suggesting the question of whether a
2-sphere with no isometric embedding in R3 exists and to L. Nirenberg for
suggesting some simplifications of the proofs in § L

1. The following results on flat submanifolds of R3 will be used to show
that the metric on S2 constructed in § 2 has no C2 isometric embedding in JR3.

Lemma 1 (Hartman-Nirenberg). Let X be a C2 surface with zero Gaussian
curvature in R3 with simple, nonsingular projection P\X: X —> Dλ onto a con-
nected open set Dλ in the xy-plane, where P : R3-*R2 is the canonical orthogonal
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projection of R3 onto the xy-plane. Let xoeD and let C(xQ) be the arc-com-
ponent containing xQ of the set of all points x of D such that the normal to X at
X Π P~\x) is equal to the normal to X at X Π P~Kx0). Then the boundary of
C(xQ) in the xy-plane is the union of a subset of the boundary of D1 and straight
line segments whose and points lie on the boundary of Du and these straight
line segments are disjoint except for (possibly) having common end points.

Proof. This result is essentially a restatement of Part a), Theorem A, § 9,
Hartman-Nirenberg [1]. The fact that the straight line segments do not intersect
except perhaps for end points in common follows from Corollary 2 of Lemma
2, §3, Hartman-Nirenberg [1].

In the notation of Lemma 1, let L be any line segment in C(x0) (not neces-
sarily a boundary segment). Then P~ι(L) is a plane, and, moreover, the normal
to the nonsingular plane curve X Π P~\L) in the plane P~\L) is the (normalized)
orthogonal projection of the surface normal to X onto the plane P~ι(L). Since
the surface normal along X Π P~ι(L) is constant by assumption, it follows that
X Π P~\L) is a nonsingular plane curve with constant planar normal and hence
that X Π P~ι(L) is a straight line in P~ι(L) and so in R3. It is now clear that the
assumption of the existence of a global simple nonsingular projection on the
xy-plane can be dropped in Lemma 1, and we obtain the following version,
independent of coordinate projections.

Lemma 2. Let V be an open set in R2 and f: V —> R3 be a C2 isometric
embedding. Let xoζV and C(x0) be the arc-component containing x0 of the set
of all x in V such that the surface normal in R3 to f(V) at f(x) is equal to the
surface normal to f(V) at f(x0). Then the boundary of C(x0) in R2 is the union
of a subset of the boundary of V and straight line segments whose end points
lie on the boundary of V, and these straight line segments are disjoint except
for (possibly) having common end points.

Proof. This Lemma is an immediate consequence of the previous discus-
sion, together with the facts that the inverse under / of a straight line segment
of R3 contained in f(V) is a straight line segment in V and that f(V) has locally
a nonsingular projection on some coordinate plane.

Proposition. Let D denote the closed unit disc in R2 with the usual metric,
and f: V—>R3 be a C2 isometric embedding of an open set V in R2 with DdV.
Then there exist points p19 p2 of 3D, the boundary of D in V, such that the
distance in R3 from f(pj to f(p2) is at least \l 3 .

Proof. We shall apply Lemma 2 with x0 = the center of the unit disc D.
We consider two cases:

1) Suppose x0 is a boundary point of C(xQ) in V. Then, by Lemma 2, there
exists a straight line segment LdV with end points on the boundary of V in
R2 such that the surface normal to f(V) in R3 along f(L) is constant. We show
that f(L) is a straight line segment in R3: Since L is a geodesic in V, the curva-
ture of f(L) as a space curve is equal to the normal curvature of the surface
f(V) along the direction of f(L). But, since the (surface) normal of f(V) is con-
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stant along /(L), this curvature is zero. Thus j(L) is a space curve of zero curva-
ture and hence is a straight line segment in R3. It follows that the images under
/ of the two points of dD Π L are separated by distance 2 in R3.

2) Now suppose that x0 is in the interior of C(x0). Again by Lemma 2, the
boundary of C(x0) Π D consists of disjoint line segments extending to the
boundary of D together with arcs of the unit circle. Note that, since D is com-
pact in the open set F, these line segments cannot have even end points in
common. Then (as in the argument for Theorem B, § 9, Hartman and Niren-
berg [1]), one can show that C(x0) contains three rays from x0 to the boundary
dD of D, two of which rays make a smallest angle greater than 2ττ/3.

Let S£ be the set of u e dD such that the line segment from x0 to u does not lie
entirely in C(x0). From the structure of the boundary of C(xQ) ΓΊ D, it is clear
that S£ is a union of open arcs of length less than π. Let A be a component arc
of Sέ of maximal length and let ul9 u2 be the end points of A. Then — A, the arc
diametrically opposite to A, must contain in its closure (in dD) a point, say w3,
not in J£? for otherwise A would not be of maximal length. Two of the line

segment lλ = xou19 l2 = xQu2, l3 = xQu3 must make a (smallest) angle of more
than 2τr/3.

Say Zx and l2 make a smallest angle of more than 2ττ/3. /ft) and f(l2) are line
segments in R* by the argument used in case 1) both lie in the plane perpen-
dicular to the surface normal to f(V) at f(x0), and the angle between them is
equal to the angle between lγ and l2 since / is an isometry. Thus the end points
/(wx) and f(u2) are at least V 3 apart in R*.

2. Let S denote the 2-sphere, pλ the south pole, p2 the north pole, Hι and
H2 the open southern and northern hemispheres, respectively, and E the equator
of S. Let Δ be a stereographic projection diίfeomorphism of S — {p2} onto R2,
which takes the equator E of S onto the unit circle of R2 and Hλ onto the open
unit disc. Δ induces a flat C°° metric on S — {p2} from the eulidean metric on
R2; let Gι denote this metric on S — {p2}.

We now wish to define a C°° metric G on S with the following properties:
a) There is an open set V c S - {p2} with Cl Hx C V 3 G \ V = G, | V.
b) sup D I S G ( ^ , ^ 2 ) < 1/2,

where DISG denotes the distance function on S induced by the Riemannian
metric G.

For ε > 0, define Uε by

U. - {p e S - {p2} I I n f Ό I $ β ί ( q , p ) < ε} ,
qeE

where DISG l denotes the distance function on S — {p2} induced by the Rieman-
nian metric Gλ. Then there is a C°° function fε: S —> R such that

/.(p) = hpeH, U E/β/1, 0 < / e ( p ) < l , p e S ,
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Let G2 be any extension of Gλ \ Hλ U U1/2 to all of S. Then for ε > 0 sufficiently
small, G = feG2 satisfies properties a) and b). Property a) is immediate since
Cl Hλ U Ue/2 is open and fε(p) = 1 for p e Cl Hx (J Ut/3 = ^ U t/./a. To show
that property b) holds for fεG2 with ε > 0 sufficiently small, observe that
every point in H2 — Ue is within G-distance

ε Sup ΌlSG2(p2, q)

of p2 while every point in Uε Π H2 is, for ε < 1/2, within G2-distance ε of a
point in H2 — Uε and hence within G-distance ε of a point in H2 — Ue. Thus,
for ε < 1/2, every point in H2 is within G-distance

ε(l + Sup DISG2G?2, q))

of p2. Since

Sup DISG2(p2, $ ) < CXD ,

there are ε such that

0 < ε < [4(1 + Sup DISG2(p2, q))]~ι

and ε < 1/2, and for such an ε, DISG(q, p2) < 1/4 for all qεH2 and hence

Sup ΌISG(qi,q2)< 1/2.

It remains to show that 5 with the metric G has no O isometric embedding
in R3. Suppose on the contrary that /: S -> R* is a C2 embedding isometric for
G on 5. By property a) of the metric G and the construction of G19 there is
an open set V with ^ U ^ ^ C l ^ c F such that V is isometric to an open
set in R2 and HX\J E corresponds to the closed unit disc D under this isometry.
Thus, the Proposition of § 1 is applicable to the isometry f\ V of V into R3. It
follows that there are points qι,q2eE such that the distance in R3 of fiqj from
f(q2) is at least V~J. But by property b) of the metric G, the G-distance of qγ

from q2 on S is less than or equal to 1/2 < V~3". Thus / cannot be an isometric
embedding for S with the metric G.
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