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REDUCTION OF THE CODIMENSION
OF AN ISOMETRIC IMMERSION

JOSEPH ERBACHER

0. Introduction

Let φ: Mn —> Mn + p(c) be an isometric immersion of a connected ^-dimensional
Riemannian manifold Mn into an (n + p)-dimensional Riemannian manifold
Mn+P(c) of constant sectional curvature c. When can we reduce the codimen-
sion of the immersion, i.e., when does there exist a proper totally geodesic
submanifold N of Mn+P(c) such that ψ(Mn) c iV? We prove the following:

Theorem. // the first normal space Nλ(x) is invariant under parallel transla-
tion with respect to the connection in the normal bundle and I is the constant
dimension of N19 then there exists a totally geodesic submanifold Nn+ι of
Mn+p(c) of dimension n + I such that φ(Mn) C F 1 .

This theorem extends some results of Allendoerfer [2].

1. Notation and some formulas of Riemannian geometry

Let ψ: Mn —> Mn + P(c) be as in the introduction. For all local formulas we
may consider ψ as an imbedding and thus identify xeMn with ψ(x) <~Mn+p.
The tangent space Tx(Mn) is identified with a subspace of the tangent space
Tx(Mn+p). The normal space T± is the subspace of Tx(Mn+p) consisting of all
X 6 Tx(Mn+p) which are orthogonal to Tx(Mn) with respect to the Riemannian
metric g. Let V (respectively F) denote the covariant differentiation in Mn

(respectively Mn + P), and D the covariant differentiation in the normal bundle.
We will refer to V as the tangential connection and D as the normal connection.

With each ξ e Γ£ is associated a linear transformation of Tx(Mn) in the
following way. Extend ξ to a normal vector field denned in a neighborhood of
x and define — AξX to be the tangential component of Vxξ for X e Tx(Mn).
AξX depends only on ξ at x and X. Given an orthonormal basis ξ 1? , ξp of
T£ we write Aa = Aξa and call the A«$ the second fundamental forms associ-
ated with ξ 1? , ξp. If ξ 1? , ξp are now orthonormal normal vector fields
in a neighborhood U of x, they determine normal connection forms saβ in U by
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for Xz Tx(Mn). We let RN denote the curvature tensor of the normal con-
nection, i.e.,

RN(X, Y) = DXDY - DYDX - DίXiYy

We then have the following relationships (in this paper Greek indices run
from 1 to p):

( 1) r*Y = FxY+Σ 8(AaX,
a

( 2 ) g(AaX,Y) = g(X,Ac,Y),

( 3) Vxξa = -AaX + Dxξa = -AaX + Σ s
β

( 4 ) s.f + sβa = 0 ,

( 5 ) (PχAa)Y - Σ saβ(X)AβY = (PYAJX - Σ
β β

— Codazzi equation,

(r*s.β)Y - (Prsaβ)X = 2(dsaβ)(X, Y)

( 6) =X saβ(Y) - Y• saβ(X) - saβ([X, Π )

= g(.[Aa,Aβ]X, Y) + Σ {sJX)srβ(Y) - sar(Y)srβ(X)}
r

— Ricci equation,

R»(X, Y)ξa = Σ g([Aa,Aβ]X, Y)ξβ

( 7 ) '
- Σ {2{dsmf)(X, Y) + Σ {ί .,dOί r fW - smr(.X)srβ(X)}}ξf,

β 7

where X and Y are tangent to Mn.
The first normal space Nλ(x) is defined to be the orthogonal complement of

{ξ e T^\Aξ = 0} in T£. i?fc will denote the Λ-dimensional Euclidean space,
S*(l) the ^-dimensional unit sphere in Rk+1, and Hk(—1) the A:-dimensional
simply connected space form of constant sectional curvature — 1. All immer-
sions, vector fields, etc., are assumed to be of C°°.

2. Reducing the codimension of an isometric immersion

Let φ: Mn-+ Mn+P(c) be an isometric immersion of a connected Λ-dimen-
sional Riemannian manifold Mn into an (n + p) -dimensional Riemannian
manifold Mn+P(c) of constant sectional curvature c.

Lemma 1. Suppose the first normal space N^x) is invariant under parallel
translation with respect to the normal connection and I is the constant dimen-
sion of Nv Let N2(x) = N^(x), where the orthogonal complement is taken in
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Γ£, and for xeMn let S?(x) = Tx{Mn) + N^x). Then for any xeMn there
exists differentiable orthonormal normal vector fields ξ19 ,ξp defined in a
neighborhood U of x such that:

(a) For any yεU, ξx(y)9 , ξfy) span N&), and ξι+1(y), , ξp(y) span
N2(y\

(b) Vxξa = 0 in U for a>l + 1 and X tangent to Mn,
(c) The family £P(y),y € E/, w invariant under parallel translation with

respect to the connection in Mn+P along any curve in V.
Proof. Since N1 is invariant under parallel translation with respect to the

normal connection, so is N2. Let x e Mn and choose orthonormal normal vectors
?iθ), , ξp(x) at x such that ξ^x), , ξt(x) span N^x) and ? ι+1O0, , ξp(x)
span iV2(jt). Extend f15 •• ,f2, to differentiable orthonormal normal vector
fields defined in a normal neighborhood U of * by parallel translation with
respect to the normal connection along geodesies in Mn. This proves (a).

Since Nx and N2 are invariant under parallel translation with respect to the
normal connection, we have Dxξ € Nλ (respectively N2) for ξ e Nλ (respectively
iV2). Let ξ 15 , ξp be chosen as in (a). Then saβ = 0 in U for 1 < a < I,
I + 1 < β < P and 1 < j3 < /, I + 1 < a < p. Equations (6) and (7) imply
that RN(X, Y)ξ = 0 for ξ € N2, and since N2 is also invariant under parallel
translation with respect to the normal connection we conclude that for
ζ £ N2(y), yεU, the parallel translation of ξ with respect to the normal con-
nection is independent of path in U. Thus Dξa = 0 in U for a > I + 1, and
saβ = 0 in U for / + 1 < a < p, I + 1 < β < p. Because of (3), we have
pxξa — 0 for a > I + 1 and X tangent to Mn, proving (b).

To prove (c) it suffices to show that VXZ e Sf whenever Z € Sf and X is
tangent to Mn. This follows from (1) and (3) and (a) and (b) above.

We shall now prove our Theorem under the assumption that Mn+P is simply
connected and complete. We consider the cases c = 0, c > 0 and c < 0
separately.

Proposition 1. The Theorem is true if Mn+p = Rn+v.
Proof. Let xeMn and let ξ19 , £ p , and U be as in Lemma 1. Define

functions fa on U by fa = g(x, ξa) where x is the position vector. Then

χ.fa = Vxfa = g(X, ξa) + g(χ, Vxξa) = 0

for a > I + 1 and X tangent to U. Thus U lies in the intersection of p — /
hyperplanes, whose normal vectors are linearly independent, and the desired
result is true locally; i.e., if x e Mn there exist a neighborhood U of x and a
Euclidean subspace Rn+ι such that ψ(U) a Rn+ι. To get the global result we
use the connectedness of Mn. Let x, y € Mw with neighborhoods U and F re-
spectively such that U Π F Φ φ and 0(t/) C i?1

n+i, 0(F) c 1 ^ . Then

Φ(u n F ) c j?r+i n i? 2

w + i .
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If R?+ι Φ m+ι then R%+1 Π R%+1 = Rn+k, k < I, and this implies that
dim Njiz) < I for z e U Γ) V. Since dim Nλ = constant = /, we must have
R"+ι = R%+1. This proves the global result.

Proposition 2. The Theorem is true if Mn+P = Sn+P(l).
Proof. Consider Sn+P(l) as the unit sphere in Rn+p+ι with center at the

origin of Rn+p+1. Let ξ be the inward pointing unit normal of Sn+P, N^x) be
the first normal space for Mn considered as immersed in Rn+p+\ ψ be the
Euclidean connection in Rn+p+\ and ξ19 -,ξp be chosen as in Lemma 1.
Then_Fxf = — X and Vxξa = Fxξa for X tangent to Mn. It readily follows
that Nx(x) = Nx(x) + span {fW} and that Nλ is invariant under parallel trans-
lation with respect to the normal connection for Mn considered as immersed
in Rn+p+1. Thus, by Proposition 1, there exists an Rn+ι+ί such that ψ(Mn)
C Jϊ n + ι + 1 , namely,

Rn+ι+i = τx(M«) + N,(x) + span{f(jc)} ,

for any xeMn. Hence Rn+ι+1 contains ξ and therefore passes through the
origin of Rn+p+\ Thus

ψ(Mn) C Rn+ι+1 Π Sn+P(l) = Sn+ι(l) .

Proposition 3. Our theorem is true if Mn+P = Hn+P(— 1).
Proof. It is convenient to consider Hn+P as being in a Minskowski space

En+P+it L e t gn+p+i b e a Minskowski space with global coordinates x°, , xn+p

and pseudo-Riemannian metric g determined by the quadratic form

g(x,y) = -xoyQ + x,yx + + xn+Pyn+P

Consider the submanifold Hn+P defined by

-JCJ + x\ + + Jti+ P - - 1 , ô > 0.

The pseudo-Riemannian metric g( , ) on En+p+ι induces a Riemannian metric
on Hn+P such that Hn+P becomes a simply connected Riemannian manifold
of constant sectional curvature —1 (cf. [4, p. 66]). Let ξ = x, the position
vector. Then for xeHn+p, ξ(x) is normal to Hn+P and g(ξ(x), ξ(x)) = — 1.
Let F be the Euclidean connection on En+P+1, i.e., the connection arising
from g; and define A by F x f = - ^ Z for X tangent to # n + * . Then A = - /
and

for f̂, y tangent to Hn+P. The minus sign, rather than a plus sign as in (1),
occurs in the last equation because g is indefinite. Let ξ19 , ξp be as in
Lemma 1 and consider Mn as isometrically immersed in En+P+1. Then Vxξa
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Fxξa for X tangent to M \ In a way similar to the argument in Proposition 2
we can show that

W(x) = 2>{x) + span {ξ(*)} = Tx(Mn) + N,(x) + span {£(*)}

is invariant under parallel translation with respect to the Euclidean connection
in En+p+ί. Thus, in away similar to the argument in Proposition 1, there exists
an (n + I + l)-dimensional plane En+ι+1 (=W(x) for any xεM71) such that
φ(Mn) C En+ι+1. We may assume that the point x0 = 1, xk = 0 for k > 1 is
in ψ(Mn). Then, since En+ι+1 contains ξ and passes through the point x0 = 1,
xk = 0 for k > 1, we conclude that En+ι+1 is perpendicular to the jt0 = 0 plane
and passes through the origin of En+P+1. Thus Hn+P Π £ w + ί + 1 is totally geodesic
in Hn+P, and

φ(Mn) C # w + ' ( - l ) = # * + * ( - l ) Π En+ι+1.

Clearly completeness is not essential in Propositions 1,2, and 3 in the sense
that if Mn+P is a connected open set of Rn+P, Sn+P, or Hn+P then Propositions
1,2, and 3 remain true. Thus when Mn+P(c) is neither simply connected nor
complete we obtain the local result: if x € Mn, then there exists a neighborhood
U of x such that ψ(U) is contained in a totally geodesic submanifold N%+1 of
Mn+P. We obtain the global result (the Theorem) by a connectedness argument
similar to the connectedness argument in Proposition 1.

Remarks. It is an easy consequence of Codazzi's equation that if the type
number of ψ (see [3, vol. II, p. 349]) is greater than or equal to two and Nx

has constant dimension, then N1 is invariant under parallel translation with
respect to the normal connection. To prove this last remark, let / be the dimen-
sion of Ni and choose orthonormal normal vectors ξl9 - , ξp in a neighborhood
U of x such that ξ 19 , ξ x span Nλ(y) toryeU (cf. § 3). Since the type number
of the immersion is greater than or equal to two, there exist X and Y tangent
to Mn such that ΛάX and AjY, 1 < j < I, are linearly independent. Codazzi's
equation then implies that

Σ saβ(X)AβY = Σ saβ(Y)AβX ,
β = l β = l

for a > I + 1, since Aβ = 0 for β > Z. Since AβY and AβX, 1 < β < I, are
linearly independent we conclude that saβ(X) = saβ(Y) = 0 for a > / > β.
But, for any Z tangent to Mn, we have

Σ saβ(X)AβZ = Σ saβ{Z)AβX .
β = l β = l

Thus saβ{Z) = 0 for a > I > β. We conclude that Dzξ 6 Ήλ if Z is tangent to
Mn and ξξNλ. Thus Nx is invariant under parallel translation with respect to
the normal connection.
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3. The higher normal spaces

Let ψ: Mn -> Mn+P(c) be as in § 1, and h the second fundamental form of
the immersion, i.e., for X, Y tangent to Mn, h(X, Y) is the normal component
of FXY. Equation (1) of § 1 may be written as

VXY = VXY + h(X, Y) .

Following Allendoerfer [1] we define the normal spaces as follows. The first
normal space Nx(x) is defined to be the

span {h(X,Y) | X,Y e Tx(Mn)} .

Choosing orthonormal normal vectors ξί9 , ξp at x such that ξ 15 , ξt span
Nx(x), where / is the dimension of N^x), and using (1) one easily sees that this
agrees with our previous definition for N^x) given in § 1. Suppose N19 , Nk

have been defined such that Λ^ J_ Nj for i Φ ]. If

Nλ{x) + + Nk(x) Φ T±

define Nk+1(x) as follows: Let

L{x) = span{(DZ l(DZ 2(. . . (DZk(h(Zk+1,Zk+2))) . •))),} ,

where Zl9 , Zk+2 are vector fields tangent to Mn. If

L(x) Π (N.ix) + . + Nk(x)y

is not equal to {0}, where the orthogonal complement is in T£, define Nk+1(x)
to be

L(x) Π (Nfc) + + Nk(x)V .

Otherwise define Nk+ι(x) to be

(N.ix) + + NM)L

It is clear that we may speak of the last normal space.
Note the following lemma.
Lemma. // each Nk(x) has constant dimension nk, then there exist ortho-

normal normal vector fields ξ19 ,ξp in a neighborhood U of x such that
ξni+...+nk_1+1, '"9ξnk span Nk(y) for yzU.

Proof. Choose vector fields Xt and Yi9 1 < / < n19 in a neighborhood
of x such that (h(Xk, Yi))x are linearly independent and span N^x). Since
h(Xt, Yi), 1 < i < n19 are difϊerentiable normal vector fields in a neighborhood
of x and linearly independent at x, they are linearly independent in a neighbor-
hood of x. But Ni has constant dimension and h{Xt, Yt) € Λ^ using the Gram-
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Schmidt orthogonalization process we obtain orthonormal normal vector fields
ξ19 , ξni in a neighborhood U of x such that ξ19 , ξni span Nfy) for y e L/.
Now suppose f15 ,£ n i + . . . + W J f c have been found with the desired property.
It Nk+ι is the last normal space, then

Nk+1 = ( # ! + . . . + Nk)± .

By using an orthonormal basis of the normal space in a neighborhood of x and
?i> * >?n1+..+7ifc above, it is clear that we may find an orthonomal basis of
Nk+1 in a neighborhood of x. If Nk+ι is not the last normal space, then we may
obtain ζi9 nx + + nk + 1 < i < nλ + + nk+19 in a neighborhood F
of x9 by various choices of the vector fields Z19 , Zk+2 so that

(a) each f ^ is of the form

DZl(DZ2( ( D Z k ( h ( Z k + 1 , Z k + 2 ) ) ) . . . ) ) ,

( b ) ξi(y)εNk+ι(y) for y s F ,

(c) f^ c) are linearly independent and span Nk+1(x).

By the differentiability of ξi9 they are linearly independent in a neighborhood
of x. By (b) and the constant dimension of Nk+1, they span Nk+ι in a neigh-
borhood of x. Use the Gram-Schmidt orthogonalization process to obtain the
desired result.

Thus, when each Nk has constant dimension, each Nk is a differentiate
vector bundle. We also note that when each Nk has constant dimension we
may replace L(x) in the definition of Nk+1(x) by

span {(Dxξ)x | X <= Tx(Mn), ξ a local cross section for Nk near x} .

If Nλ is invariant under parallel translation with respect to the normal con-
nection, then there are only two normal spaces N1 and N2 — iVf.

Let N(x) be a subspace of Γ£ such that Λ̂ ( c) D TV^JC). If N is invariant
under parallel translation with respect to the normal connection, then by re-
placing S?(x) = Tx(Mn) + Λ^JC) by Tx(Mn) + N(x) in Lemma 1 we may
prove the following:

Thorem. Let ψ: Mn —• Mn+P(c) be as in § 1. // N D iVx αnrf iV fa invariant
under parallel translation with respect to the normal connection and I is the
dimension of N, then there exists a totally geodesic submanifold Nn+ι of
Mn+P(c) such that ψ{Mn) C Nn+ι.

For example, though Nγ may not be invariant under parallel translation with
respect to the normal connection, we may have N1 + N2 invariant under
parallel translation with respect to the normal connection.
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