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REDUCTION OF THE CODIMENSION
OF AN ISOMETRIC IMMERSION

JOSEPH ERBACHER

0. Introduction

Let ¢: M™ — M"*?(¢) be an isometric immersion of a connected n-dimensional
Riemannian manifold M™" into an (n 4 p)-dimensional Riemannian manifold
M+2(¢) of constant sectional curvature &. When can we reduce the codimen-
sion of the immersion, i.e., when does there exist a proper totally geodesic
submanifold N of M"*2(¢) such that ¢(M™) C N? We prove the following:

Theorem. If the first normal space N,(x) is invariant under parallel transla-
tion with respect to the connection in the normal bundle and | is the constant
dimension of N,, then there exists a totally geodesic submanifold N**! of
M~*2(%) of dimension n + I such that $(M™) C N™*1,

This theorem extends some results of Allendoerfer [2].

1. Notation and some formulas of Riemannian geometry

Let ¢: M — M"*?(¢) be as in the introduction. For all local formulas we
may consider ¢ as an imbedding and thus identify x ¢ M™ with ¢(x) e M"+?.
The tangent space T,(M™) is identified with a subspace of the tangent space
T,(M"*?). The normal space T+ is the subspace of T ,(M"*?) consisting of all
X e T, (M"*?) which are orthogonal to T (M™) with respect to the Riemannian
metric g. Let I (respectively ) denote the covariant differentiation in M”
(respectively M**?), and D the covariant differentiation in the normal bundle.
We will refer to I/ as the tangential connection and D as the normal connection.

With each £e TL is associated a linear transformation of T,(M") in the
following way. Extend & to a normal vector field defined in a neighborhood of
x and define —A4,X to be the tangential component of & for X e T, (M™).

A.X depends only on £ at x and X. Given an orthonormal basis &, - - -, &, of
T} we write A, = A, and call the 4,’s the second fundamental forms associ-
ated with &, - .-, ¢,. If &, - - -, &, are now orthonormal normal vector fields

in a neighborhood U of x, they determine normal connection forms s,, in U by
Dy§, = ; 5.5(X)é5
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for X e T, (M™). We let RY denote the curvature tensor of the normal con-
nection, i.e.,

RN(X, Y) = DXDY - Dl’DX - D[X,Y]'

We then have the following relationships (in this paper Greek indices run
from 1 to p):

(1) PrY =VyY + T g(4,X,Y)E,

(2) 24,X,Y) = ag(X, AY),

(3) Vit = —AX + Dzt = —AX + 3 5,,X)%, ,
(4) Sep + 8. =0, ﬂ

(5) eADY — 5 5,K)AY = FrA)X = T 5N 4,X

— Codazzi equation,

Vx5.0)Y — (Vys.p)X = 2(ds,)(X, Y)
(6) = X-5,5(Y) — YV-5,5(X) — 5,,([X, YD
=84, 41X, Y) + 2 {8 X)5,5(Y) — 5,,(¥)s,5(X)}

— Ricci equation,

RY(X,Y), = Z; 8([A,, 4,1X, Y)§,

(7)
= Zﬂ) {20ds.)(X, Y) + 2 {8, (Y)$,5(X) — 5,(X)s,,(YV)}}E;

where X and Y are tangent to M”.

The first normal space N,(x) is defined to be the orthogonal complement of
{£eTL|A, =0} in T:. R* will denote the k-dimensional Euclidean space,
S*(1) the k-dimensional unit sphere in R**!, and H*(—1) the k-dimensional
simply connected space form of constant sectional curvature — 1. All immer-
sions, vector fields, etc., are assumed to be of C~.

2. Reducing the codimension of an isometric immersion

Let ¢: M, — M**?(¢) be an isometric immersion of a connected n-dimen-
sional Riemannian manifold M" into an (n 4 p)-dimensional Riemannian
manifold M*+?2(¢) of constant sectional curvature &.

Lemma 1. Suppose the first normal space N,(x) is invariant under parallel
translation with respect to the normal connection and | is the constant dimen-
sion of N,. Let N,(x) = Ni(x), where the orthogonal complement is taken in
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TL, and for x e M™ let S (x) = T ,(M"™) + N,(x). Then for any x ¢ M™ there
exists differentiable orthonormal normal vector fields &,, - - -, &, defined in a
neighborhood U of x such that:

(@) ForanyyeU, &), - -,§) span N\(y), and &,,,(3), - - -, &,(y) span
N,(y), N

b) Vyt, =0inUfora>1+ 1 and X tangent to M,

() The family £ (y),ye U, is invariant under parallel translation with
respect to the connection in M™*? along any curve in U.

Proof. Since N, is invariant under parallel translation with respect to the
normal connection, sois N,. Let x e M™ and choose orthonormal normal vectors
&(x),- - -, &,(x) at x such that &(x), - - -+, &,(x) span Ny(x) and &;,,(x),- - -, &,(x)
span N,(x). Extend &, ---,&, to differentiable orthonormal normal vector
fields defined in a normal neighborhood U of x by parallel translation with
respect to the normal connection along geodesics in M*. This proves (a).

Since N, and N, are invariant under parallel translation with respect to the
normal connection, we have Dy¢ e N, (respectively N,) for & e N, (respectively
N,)). Let &,,---,&, be chosen as in (a). Then s,, =0 in U for 1 < <[,
I+1<p<pandl1 <<, 1+ 1< a< p. Equations (6) and (7) imply
that RV(X,Y)§ = O for £eN,, and since N, is also invariant under parallel
translation with respect to the normal connection we conclude that for
&e N,(»), ye U, the parallel translation of & with respect to the normal con-
nection is independent of path in U. Thus D&, = 0 in U for « > [ + 1, and
5.5 = 0 in U for I+1<a<p, l+1<8<p. Because of (3), we have
Vxé, = 0for « > 1+ 1 and X tangent to M", proving (b).

To prove (c) it suffices to show that ViZ e whenever Ze & and X is
tangent to M". This follows from (1) and (3) and (a) and (b) above.

We shall now prove our Theorem under the assumption that #M"*? is simply
connected and complete. We consider the cases ¢ =0,¢ >0 and ¢ <0
separately.

Proposition 1. The Theorem is true if M"*? = R"*»,

Proof. Let xeM" and let &, --.,¢,, and U be as in Lemma 1. Define
functions f, on U by f, = g(%, §,) where X is the position vector. Then

X.fa = ﬁxf« - g(X3€a) + g(},ﬁXsa) =0

for « > 1+ 1 and X tangent to U. Thus U lies in the intersection of p — I
hyperplanes, whose normal vectors are linearly independent, and the desired
result is true locally; i.e., if x e M™ there exist a neighborhood U of x and a
Euclidean subspace R™*! such that ¢(U) C R"*!. To get the global result we
use the connectedness of M”. Let x,y e M" with neighborhoods U and V re-
spectively such that U N V +# ¢ and ¢(U) C R+, 4(V) C Ry*!. Then

oU N V) C R+ N RpHE,
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If Rp*' =+ R}*' then R;*' N Rp*' = R™**, k <[, and this implies that
dim N,(z) <! for ze U N V. Since dim N, = constant = [, we must have
Rr+t = Ry*. This proves the global result.

Proposition 2. The Theorem is true if M**? = S*+2(1).

Proof. Consider S"*?(1) as the unit sphere in R"*?*' with center at the
origin of R**?*!. Let & be the inward pointing unit normal of §**?, N,(x) be
the first normal space for M™ considered as immersed in R"*?*', 7 be the
Euclidean connection in R"*?*!, and &, ---,&, be chosen as in Lemma 1.
Then Vy6 = —X and V&, = V£, for X tangent to M». It readily follows
that N (x) = Ny(x) + span {£(x)} and that N, is invariant under parallel trans-
lation with respect to the normal connection for M* considered as immersed
in R**?*!, Thus, by Proposition 1, there exists an R**!*! such .that ¢(M™)
C R™"'*!) namely,

R = T,(M™) 4+ N,(x) + span {¢§(x)},

for any xe M™. Hence R™*'*!' contains & and therefore passes through the
origin of R**?*!, Thus

¢(Mn) C Rn+l+1 n Sn+p(1) — Sn+l(1) .

Proposition 3.  Our theorem is true if M**? = H"*?(—1).

Proof. 1t is convenient to consider H"*? as being in a Minskowski space
Er+r+l T et E**?*1 be a Minskowski space with global coordinates x°, - - -, x"*?
and pseudo-Riemannian metric g determined by the quadratic form

g(x9y) = — X + XN + R xn+pyn+p .
Consider the submanifold H"*? defined by
_xg+x%+...+x%+p=—1,xo>0.

The pseudo-Riemannian metric g( , ) on E**?*! induces a Riemannian metric
on H™*? such that H"*? becomes a simply connected Riemannian manifold
of constant sectional curvature —1 (cf. [4, p. 66]). Let & = X, the position
vector. Then for x € H**?, &(x) is normal to H"*? and g(é(x), &(x)) = —1.
Let 7 be the Euclidean connection on E"*?*!, i.e., the connection arising
from g; and define A4 by V& = —AX for X tangent to H**?. Then 4 = —1I

and
ViY = VY — g(AX, )¢

for X,Y tangent to H”*?. The minus sign, rather than a plus sign as in (1),
occurs in the last equation because g is indefinite. Let &, ---,&, be as in
Lemma 1 and consider M™ as isometrically immersed in E"*?*!, Then V3§,
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V&, for X tangent to M”. In a way similar to the argument in Proposition 2
we can show that

W(x) = L(x) + span {§(x)} = T,(M™) + N,(x) + span {£(x)}

is invariant under parallel translation with respect to the Euclidean connection
in E**?*!, Thus, in a way similar to the argument in Proposition 1, there exists
an (n + | 4 1)-dimensional plane E"*'*! (=W(x) for any x ¢ M™) such that
¢(M™) C E*+'*'. We may assume that the point x, = 1, x, = 0 for k > 1 is
in $(M™). Then, since E**'*! contains £ and passes through the point x, = 1,
x, = 0 for k > 1, we conclude that E»*!*! is perpendicular to the x, = O plane
and passes through the origin of E**?+*!, Thus H**? N E"*!*! js totally geodesic
in H**?, and

¢(Mn) C Hn+l(_1) — Hn+p(_ 1) n En+l+1.

Clearly completeness is not essential in Propositions 1,2, and 3 in the sense
that if M"*? is a connected open set of R**?,$"*?, or H**? then Propositions
1,2, and 3 remain true. Thus when M"*?(¢) is neither simply connected nor
complete we obtain the local result: if x € M”, then there exists a neighborhood
U of x such that ¢(U) is contained in a totally geodesic submanifold N3*! of
M~*?, We obtain the global result (the Theorem) by a connectedness argument
similar to the connectedness argument in Proposition 1.

Remarks. It is an easy consequence of Codazzi’s equation that if the type
number of ¢ (see [3, vol. I, p. 349]) is greater than or equal to two and N,
has constant dimension, then N, is invariant under parallel translation with
respect to the normal connection. To prove this last remark, let / be the dimen-
sion of N, and choose orthonormal normal vectors &,, - - -, £, in a neighborhood
Uof xsuchthat &), - - -, &, span N,(y) for y e U (cf. § 3). Since the type number
of the immersion is greater than or equal to two, there exist X and Y tangent

to M™ such that 4,;X and 4,Y, 1 < j <, are linearly independent. Codazzi’s
equation then implies that

l l
ﬁZ_]l 5.8(X)A4,Y = 521 Ss(Y)AX
for « > 1 + 1, since A, = 0 for § > I. Since 4,Y and 4,X, 1 < B <, are

linearly independent we conclude that s,,(X) = 5,,(Y) =0 for « > 1> 8.
But, for any Z tangent to M", we have

l l
ﬁ; saﬁ(X)ApZ = le Saﬁ(Z)ApX .

Thus 5,,(Z) = 0 for @ > [ > B. We conclude that D ¢ ¢ N, if Z is tangent to

M and ¢ e N,. Thus N, is invariant under parallel translation with respect to
the normal connection.
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3. The higher normal spaces

Let ¢p: M™ — M"*2(¢) be as in § 1, and & the second fundamental form of
theNimmersion, i.e., for X, Y tangent to M, h(X,Y) is the normal component
of VY. Equation (1) of § 1 may be written as

VY =7,Y + h(X,Y) .

Following Allendoerfer [1] we define the normal spaces as follows. The first
normal space N,(x) is defined to be the

span {W(X,Y)|X,Y e T ,(M™)} .

Choosing orthonormal normal vectors &,, - - -, &, at x such that &,, - . ., &, span
N,(x), where [ is the dimension of N,(x), and using (1) one easily sees that this
agrees with our previous definition for N,(x) given in § 1. Suppose N, - - -, N,
have been defined such that N; | N, fori # j. If

N@) + -+ + Ne(x) #+ T3
define N, ,,(x) as follows: Let
L(x) = span {(D;,(Dz,(- - - (D z,(W(Zy1, Zi:))) -+ -}
where Z,, - - -, Z,,, are vector fields tangent to M™. If
L@ N NG + -+ + N

is not equal to {0}, where the orthogonal complement is in 7%, define Ny ,(x)
to be ‘

Lx) N (NG + - 4 Ne@))* .
Otherwise define N, ,,(x) to be
N,x) 4 -+ + Nt

It is clear that we may speak of the last normal space.

Note the following lemma.

Lemma. If each N,(x) has constant dimension n,, then there exist ortho-
normal normal vector fields &, - --,&, in a neighborhood U of x such that
$n1+---+nk_1+1’ B Enk span Nk(y) for Ye U.

Proof. Choose vector fields X; and Y;, 1 < i < n,, in a neighborhood
of x such that (A(X,, Y,)), are linearly independent and span N,(x). Since
WX, Y), 1 < i< n, are differentiable normal vector fields in a neighborhood
of x and linearly independent at x, they are linearly independent-in a neighbor-
hood of x. But N, has constant dimension and A(X;, Y;) € N;; using the Gram-
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Schmidt orthogonalization process we obtain orthonormal normal vector fields
&, - -+, &, in a neighborhood U of x such that &, - - -, &,, span N,(y) for ye U.
Now suppose &, - -+, &,,4....n, have been found with the desired property.
If Ny, is the last normal space, then

Nk+1=(N1+ coo 4+ Nt

By using an orthonormal basis of the normal space in a neighborhood of x and
&1, ¢+ 5 &pysennsn, above, it is clear that we may find an orthonomal basis of
N, in a neighborhood of x. If N,,, is not the last normal space, then we may
obtain &, n, + .-+ +n, +1<i<n + --- + n,,,, in a neighborhood V
of x, by various choices of the vector fields Z,, - - -, Z,,, so that

(a) each &, is of the form

Dy Dz (-« (Dz(WZy 115 Zis)) - +)) »
(b) &0)eN.,(» for yeV,
() &,(x) are linearly independent and span N, ,(x).

By the differentiability of Z,, they are linearly independent in a neighborhood
of x. By (b) and the constant dimension of N,,,, they span N,,, in a neigh-
borhood of x. Use the Gram-Schmidt orthogonalization process to obtain the
desired result.

Thus, when each N, has constant dimension, each N, is a differentiable
vector bundle. We also note that when each N, has constant dimension we
may replace L(x) in the definition of N,,,(x) by

span {(Dz8),| X e T ,(M™), & alocal cross section for N, near x} .

If N, is invariant under parallel translation with respect to the normal con-
nection, then there are only two normal spaces N, and N, = Ni.

Let N(x) be a subspace of T such that N(x) D N,(x). If N is invariant
under parallel translation with respect to the normal connection, then by re-
placing #(x) = T, (M™) + N,(x) by T,(M" + N(x) in Lemma 1 we may
prove the following:

Thorem. Let ¢: M — M**?(¢) be asin § 1. If N D N, and N is invariant
under parallel translation with respect to the normal connection and | is the
dimension of N, then there exists a totally geodesic submanifold N™**' of
M™2(&) such that $(M™) C N*+L,

For example, though N, may not be invariant under parallel translation with
respect to the normal connection, we may have N, + N, invariant under
parallel translation with respect to the normal connection.
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