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QUASI-SASAKIAN STRUCTURES OF RANK 2p + 1

SHUKICHI TANNO

Introduction

Quasi-Sasakian structures were defined and studied by D. E. Blair [1]. How-
ever, there are some gaps in arguments in § 3 — § 5 of [1], The first is found
in the middle of page 337, namely, for a quasi-Sasakian structure (φ,ξ,η,gf),
the new (φ,ξ,η,g) is not quasi-Sasakian, in general. Moreover, &2q,ψ,θ are
not uniquely determined.

In this note we give complete statements on quasi-Sasakian structures of rank
2p+ 1.

1. Quasi-Sasakian structures

Let φ be a (1, l)-tensor, ξ a vector field, and η a 1-form on a difϊerentiable
manifold M of dimension 2n + 1. Then (φ, ξ, η) is an almost contact structure if

(1.1) y(ξ) = l , φξ = O, vφ = 0,

(1.2) φ2 = - I + ξ®v.

For a (positive definite) Riemannian metric g, (φ, ξ, η, g) is an almost contact
metric structure if

(1.3)

(1.4) g(φX, φY) = g(X, Y) - η(X)η(Y)

for X,Y € £2n+1, where S2n+ι denotes the module of vector fields on M. An
almost contact metric structure (φ,ζ,η,g) is a contact metric structure if

(dv)(X, Y) = 2g(X, φY) for X, Y β <?2n+i .

(φ, ξ, η) is said to be normal if

) + WηXX, Y)ξ = 0 .

([φ, φ](X, Y) = φ2[X, Y] + [φX, φY] - φ[X, φY] - φ[φX, Y] .)

N1 = 0 implies the followings (cf. [4]):
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(1.6) N\X, Y) = (LφXφ(Y) - (LφYη)(X) = 0 ,

(1.7) N\X) = (Lξφ)X = 0,

(1.8) N\X) = -(LζV)X = 0 ,

where Lx denotes the Lie derivation with respect to X. Define a 2-form Φ by
Φ(X,Y) = g(Z,0Γ). Then a normal almost contact Riemannian structure
(φ, f j ̂  g) is said to be quasi-Sasakian, if Φ is closed.

Proposition 1.1. Let M(φ, ξ, η, g) be a quasi-Sasakian manifold. Then we
have

(1.9)

(1.10) dη(φX, φY) = dv(X, Y) ,

(1.11) Le0 = O

(1.12)

/. (1.9) and (1.11) are the same as (1.8) and (1.7). Since LφXη =
di{φX)η + i(φX)dη, by (1.1) and (1.6) we obtain

(1.13) dη(φX, Y) - dη(φY, X) = 0.

Then replacing Y by φY and using (1.9) we have (1.10). (1.12) can be proved
by means of dΦ = 0, (1.8) and (1.11) (cf. [1, Lemma 4.1]).

Remark. The condition dΦ = 0 is used only for (1.12).

2. Quasi-Sasakian manifolds of rank 2p + 1

Let M(φ, ξ, η, g) be a quasi-Sasakian manifold. If dη = 0 on M, then M is
called a cosymplectic manifold (cf. [2]). If 2Φ = dη, then M is called a Sasakian
manifold or a manifold with normal contact metric structure (cf. [4]). In this
case, η Λ (dη)n Φ 0 holds on M.

A quasi-Sasakian manifold M (or more generally, an almost contact mani-
fold M) is said to be of rank 2p if (dτj)p φ 0 and η Λ (dr/)p = 0 on M, and to
be of rank 2p + 1 if η Λ ( ^ ) p ^ 0 and (dη)p+1 = 0 on M. It is known that there
are no quasi-Sasakian structures of even rank (cf. [1]).

Let M be a quasi-Sasakian manifold of rank 2p + 1, and define a submodule
gia o f ^ + 1 (2<? = 2Λ - 2p) by

^ = {Xe£2n+1 /(X)ίfy = 0 and ?(X) = 0} .

S2q is well defined and S** is of dimension 2q at each point x of M. We denote
by if1 a submodule of i2n+ι composed of {/£} for C°°-functions / on M, and by
S2p the orthogonal complement of Sι ® i2(l in S2n+\ Put ^2 ί ) + 1 = S2p 0 (f1,
and let Z<= ̂ . Then by ^ Z ) = 0 and (1.13) or (1.10) we have φXe£2q.
Since X = φ(-φX) for X € (T2S we get
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(2.1) φS2q — S2q , φS2p = S2p .

Define (1,1)-tensors ψ and θ by

φ(X) = φX if X € i2p ,

= 0 if X e S2q 0 £ι ,

0(Z) = 0 Z if Z € £2q,

= 0 if Xe£2p+ι .

Then - 0 2 , - 0 2 + ξ ® 2y and -θ2 are projection tensors to S2p, £2p+λ and ^2 Q

respectively, and we have φ = ψ + θ and

(2.2) φφ = φφ = ψ2 , φθ = θφ = θ2

by the definitions of φ and θ and by (2.1) respectively. We define a (0,2)-
tensor g* by

(2.3) 2g*(*, Y) = -dv(X, φY) , X, Y ε ^ + 1 .

By (1.13), g* is symmetric. Assume that g* is positive definite on S2p, and define
a new metric g by

(2.4) g(X, Y) = η{X)η{Y) + gKψ2X, φΎ) + 8(Θ2X, Θ2Y) .

Then we have

g(£, JO = ? W , g(φX, ΦY) = g&, Y) - η{X)ηiY)

by (1.10) and (2.2), etc. (φ, ξ, η, g) is a normal almost contact metric structure.
Proposition 2.1. Let M(ψ,ξ,η,g) be a quasi-Sasakian manifold of rank

2 / 7 + 1 , and assume that

(i) [M] = 0,
(ii) g* defined by (2.3) w positive definite on S2p. Then M has a normal

almost contact metric structure (φ,ξ,η,g) such that for each point x of M we
have two submanifolds U2p+1 and V2q of M containing x, where U2p+ι is a
Sasakian manifold and V2q is a Kdhlerian manifold.

Proof. An almost product structure (defined by — θ2 and — φ2 + ξ (x) η) is
integrable (see [5, p. 240]), since [0, θ] = 0 implies [02, θ2] = 0. For a point x
of M, let V2q and U2p+1 be integral submanifolds of - 0 2 and -ψ2 + ξ (x) η pass-
ing through x. Consider the imbeddings r: V2q —> M and s: U2p+ι -> M, and
let w, v be vector fields on U2p+1. Define φo,ξo,ηo, goby

φou = s~ιφsu = s~ιφsu , ξ0 = s~λξ ,

ηo(u) = η(su) , 7]Q = s*η , fo(κ, v) = g(su,sv) ,
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where by s we also mean the differential of s; these are well defined. (φ0, ξ09

η0, g0) is an almost contact metric structure, and is normal since

v)ξ0} = [φ,φ](su,sv) + (dv)(su,sv)ξ = 0 .

Further, we have

2go(u,φov) = 2g(su,φsv) = 2g*(su,φsv) = —(dτj)(su,φφsv)

= (dη)(su9sv) = (s*dη)(u,v) = (dηo)(u,v) .

Hence U2p+1 is a Sasakian manifold.
Let w, z be vector fields on V2p, and define Jo and Go by

Jow = r~ιθrw = r~ιφrw , G0(w,z) = g(rw9 rz) .

Then Jo and Go are well defined and define an almost Hermitian structure.
Moreover, Jo is integrable since

r{[J0, /0](w, z)} = [θ, θ](rw, rz) = 0.

Define Ω0(w,z) = Go(w,Joz). Then

Ω0(w, z) = g(rw, rJoz) = g(rw, φrz)

= g(θ2rw,θψz) by (2.4)

= Φ(rw, rz) = (r*Φ)(w, z) ,

and therefore dΩ0 = dr*Ω = r*dφ = 0. Hence V2q is Kahlerian.
Remark, dφ = 0 is^used only for dΩ0 = 0. Thus, if dθ = 0, then dφ = 0

is unnecessary, where Θ is defined below.
We define 2-forms Ψ, Ψ, θ, θ by

Ψ(X, Y) = g(X, φY) , Ψ{X, Y) = g(X, φY) ,

Θ(X, Y) = g(X, ΘY) , Θ(X, Y) =

Lemma 2.2. # 2 p i

(2.5)

(2.6)

(2.7)

md i2q are

Ltφ = O,

Lξθ = 0 ,

£ fg* =

invariant under exp ίξ

L ?f =

0 , L i

L(

Ltl
y =

r=o ;
9 = 0 ,

0 .

Let Z 6 i2q and put α = exp tξ, t being a real number (sufficiently
small, if necessary). If ξ is complete, a is a diffeomorphism of M. If f is
not complete, we understand that a is a map: JF —> aW for some open set W,
and also that X e S2q implies X \ W e £2q \ W. Since a leaves η invariant, we have

η(aX) = 0. ForZ<=ί?2 w + 1,
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(dηKaX, Z) = (dηXaX, a(a~ιZ)) = a*(dη)(X, a~ιZ) = dV(X, a~ιZ) = 0 ,

which implies i(aX)dη = 0. Therefore S2q and also £2p are invariant under a.
Next, we show (2.5). Let X<z£2p. Then we get

(2.8) (Lξψ)X = Lξ(φX) - φLξX .

By the definition of ψ we have ψX = φX. Since S2v is invariant under exp tξ,
LξX e £2p and therefore ^L fZ = φLξX. Thus

= Lξ(φX) - φLξX = (Lξφ)X ,

and (Lξφ)X = 0 by (1.11). If Z β ί2« Θ ^ , then (L^)Z = 0 follows from
(2.8). Hence we have Lξφ = 0. Further, LξΨ = 0 follows from Ψ(X, Y) =
g(X,φY) and (1.12), L ^ = 0 from Lξφ = O,Lf0 = 0 and φ = 0 + 0, and
Leg* = 0 from (2.3) and L ^ = dLξη = 0. Finally, by (2.4) we have Lξg = 0.

Remark, dφ — 0 is used only for L ĝ = 0.
Lemma 2.3. For Z € *f2w+1, we

(2.9) Vxξ = -φX .

Since L ff = 0 by Lemma 2.2, we have (Vxη)Y + (Fγη)X = 0,
which implies

(2.10) dη{X, Y) = (Vxη)Y -

Next, we show that

(2.11)

for Z, Yz£2n+\ If Z, y g f , then (2.11) is (2.3). If Xzg2«®gι or
Y € (ί2<z Θ A then both sides of (2.11) vanish. Thus we have (2.11), and finally
(2.10) and (2.11) give (2.9).

Remark, dφ = 0 is used to apply Lξg = 0. Thus, if Lξg = 0, then Lemma
2.3 holds for a normal almost contact Riemannian manifold of rank 2p + 1.

By K(XX, Yx) we denote the sectional curvature with respect to g for a 2-
plane determined by Xx and Yx at * of M.

Theorem 2.4. Lei M(φ, ξ, η, g) be a quasi-Sasakian manifold of rank
2p + 1, and assume that g* defined by (2.3) is positive definite on £2v. Then,
with respect to g, we have

K(ξx,Xx) = 1 i f Z , β ^ 2 / - 0

= 0 if Xxε £2« - 0 .

Proof. Let X € £2p 0 <ί2<? and assume that Z is a unit vector field (locally).
Then, by (2.5) and (2.9),
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g(R(ξ,X)ζ,X) = f((F [ f i J r ] + FxFξ - V,Vx)ξ,X) = -g{fX,X) .

T h u s , if Xx e £**, t h e n K(ξx, X x ) = l;i£Xxe S^, t h e n K{ξx, X x ) = 0 .
Proposition 2.5. In a quasi-Sasakian manifold, we have

(2 12) ( F * φ ) ( y ' z ) =
( =

, Z) - η(Z)g(θ2X, Y) .
(2 13)

// M is of rank 2p + 1 αwd Φ is also closed for the metric g defined by (2.4),
then (2.13) holds jor P, φ, g.

Proof. In [4] under the assumptions Λ̂ 1 = 0, dφ = 0 and Lξg = 0, it was
proved that

VιΦik = -ViP\ηhφi - VicPjViφi ,

which is nothing but (2.12) since P^ = —P^j. If M is of rank 2p + 1 and
Pxξ = -ψX, then we obtain (2.13) from (2.12) on account of (1.4),_# = Φ\
and φ2 = —/ + f ® 27 — #2. If Φ is closed, we have (2.12) for F, Φ, g, and
hence the last statement of Proposition 2.5 follows from (2.9).

Next we have (cf. [1, Theorem 5.2])
Corollary 2.6. A quasi-Sasakian manifold is cosymplectic if and only if

Pφ — 0 (or equivalently Pφ = 0).
In fact, if a quasi-Sasakian manifold is cosymplectic, then dη — 0 and L fg

= 0, which imply Pη = 0. Thus by (2.12) we have FΦ = 0. The converse fol-
lows from [φ,φ] = 0 and (1.5).

3. Locally product quasi-Sasakian manifolds

Let Mlp+ι (φ19 ξ19 η19 gλ) be a Sasakian manifold, and M\q(J29 G2) a Kahlerian
manifold. Then M1 X M2 has a quasi-Sasakian structure (φ,ξ,η,g) of rank
2 p + l scuh that

(3.1)

(3.2)

(3.3)

(3.4) g(Z, Y) = 8ι(Xl9 Yλ) + G2(X2, Y2)

for the canonical decompodition X — (X19 X2) of a vector field X onM1 x M2

(cf. [1, Theorem 3.2]).
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Conversely, we have
Theorem 3.1'. Let M(φ, ξ, η, g) be a quasi-Sasakian manifold (more gen-

erally, a normal almost contact Riemannian manifold) of rank 2p + 1. // g*
defined by (2.3) is positive definite on <^2p, and Fθ — 0 'with respect to the
Riemannian metric g defined by (2.4), then (φ, ξ, η, g) is also a quasi-Sasakian
structure of rank 2p + 1, and M(φ, ξ, η, g) is locally the product of a Sasakian
manifold and a Kahlerian manifold.

Proof. Clearly, Fxθ = 0 implies Fxθ
2 = 0 and [φ, φ] = 0. Then the

almost product Riemannian structure (defined by — ψ2 + ξ®'η and — θ2) is
integrable. Let x be an arbitrary point of M. Then we have some open set W
containing x such that W = U2p+1 X V2q, which is a Riemannian product. From
(2.11) and Fθ = 0, it follows that 2Ψ = dη is closed, FΘ = 0 and, in particular,
dθ = 0, so that Φ = Ψ + θ is closed. Hence the structure (φ, ξ, η, g) is quasi-
Sasakian, and Lξg = 0 by (1.12). In order that U2p+1 X V2q be the product of
a Sasakian manifold U2p+1 and a Kahlerian manifold V2q, it must be shown that

(3.5) Fχξ = 0 io

(3.6) Pχψ = 0 for X etf2*.

(3.5) follows from Lemma 2.3 (cf. remark to Lemma 2.3), and (3.6) is equiv-
alent to FXΨ = 0 for Z β i2q. Since Φ = Ψ + θ and Fθ = 0, we have
(FXΦ)(Y, Z) = 0. On the other hand, an application of Proposition 2.5 to the
quasi-Sasakian structure (0, ξ, η, g) yields

(3.7) (FXΦ)(Y, Z) - η(Z)(Pxη)(φY) - η(Y)(FxV)(φZ) .

Since Fxξ — 0 implies Fxη = 0 for X e S2q, we have FXΦ = 0.
Now the Sasakian structure on U2p+ι and the Kahlerian structure on V2q de-

fined in Proposition 2.1 (cf. remark to Proposition 2.1) give the product quasi-
Sasakian structure on U2p+1 X V2q, which and the quasi-Sasakian structure on
W, restriction of (φ, ξ, η, g) to W, are isomorphic by (3.5), (3.6) and Fθ = 0.

Theorem 3.1. Let M(φ, ξ9 η) be a normal almost contact manifold such that

(i) η Λ (dη)p φ 0 and (dη)p+1 = 0 on M,

(ii) -(dη)(X, φX) > 0 for any X 6 S2n+ι .

Then we have a normal almost contact Riemannian structure (φ,ξ,η,g) which
admits the canonical almost product structure (—ψ2 + ξ ® η, —θ2). If Fθ — 0,
then M(φ, ξ, η, g) is locally the product of a Sasakian manifold of dimension
2 p + l and a Kahlerian manifold of dimension 2n — 2p.

In fact, let gr be any Riemannian metric associated with (ψ,ξ,rj). Then
(φ, £> η> g') is a normal almost contact Riemannian structure, and therefore we
obtain Theorem 3.1 by using Theorem 3.V for (φ, ξ, η, g').
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4. A simple example

Let Ez be a 3-dimensional Euclidean space with coordinates (x,y,z), and

define φ, ξ, η, g by

Then (φ, ξ, η, g) is a Sasakian structure (cf. [3]). Let β be a non-constant posi-

tive function of x and y, i.e., /3(JC, y) > 0, and define

Then (^, f, gy, g*) is a normal almost contact Riemannian structure. In this case,

φ* = βφ = λβdv = JLJSΛC Λ dy .

Since β is a function of c and y, we have dφ* = 0, and therefore E\φ, ξ, η, g*)

is a quasi-Sasakian manifold of rank 3, which is not Sasakian.
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