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A THEOREM OF CARTAN AND GUILLEMIN

ROBERT J. BLATTNER

Introduction

In a paper [3] on the formal algebraic foundations of the theory of infinite
pseudogroups, V. Guillemin proved that certain kinds of topological Lie alge-
bras, which are naturally associated with such pseudogroups, possess a sort of
Jordan-Holder decomposition: if L is such a Lie algebra, there exists a se-
quence of closed L-ideals L = Lo D Lλ Z) ZD Lk = {0} such that for / =
1, , k either (a) L ^ / L * is abelian or (b) there are no closed L-ideals lying
properly between L ^ ! and Lt; moreover, the non-abelian quotients L^jLi
are unique except for the order in which they appear in the composition series.
Guillemin was working in the category Lκ of linearly compact topological Lie
algebras over a field K of characteristic 0. An L<ε Lκ possessing an open sub-
algebra containing no L-ideals has a Jordan-Holder decomposition.

Guillemin's result in the category Lκ was conjectured by E. Cartan in [2]
for his category of infinite infinitesimal groups. Moreover, Cartan had proved
[2, Theoreme XII] that the non-abelian quotients in the series (the simple in-
transitive groups) has a simple structure: they consist of "arbitrary" functions
of a finite set of variables with values in a simple transitive group. Guillemin
was able to prove a similar result for the category Lκ [3, Theorem 7.1]; the
proof is long and the methods are cohomological.

The main purpose of this paper is to give another proof of Guillemin's Theo-
rem 7.1 using the method of produced representations which we developed in
a previous paper [1]. The proof proper of the theorem (Theorem 2.4) is short
and canonical. However, we are forced to impose certain restrictions on the
field K. Our main tools are: (1) a modification (Theorem 1.2) of our Lie alge-
bra analogue [1, Theorem 4(b)] of a theorem of G. W. Mackey to deal with
linearly compact Lie algebra modules and (2) a way of extending bilinear pro-
ducts between Lie algebra modules to the modules produced by them. In order
to give an interpretation of Guillemin's theorem in terms of primitive actions,
we also prove a theorem on "Induction in Stages" (Theorem 1.3). These tech-
nical preliminaries take up § 1. § 2 is devoted to the proof of Theorem 2.4 and
to the construction of a representation which leads in § 3 to the interpretation
in terms of primitive actions mentioned above. The main problem in § 3 is to
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show that every continuous derivation of a simple (or more generally, primitive)
L<εLκ differs from an inner derivation by a derivation of degree > 0. This proof
is messy and makes use of the classification of primitive Lie algebras. We also
show that our primitive interpretation is essentially unique.

We wish to thank Shlomo Sternberg, Victor Guillemin, and Martin Golu-
bitsky for many stimulating conversations on the subject of this paper.

1. Linear compactness, production, and products

Let K be a field, give K the discrete topology, and let V be a topological
vector space jK. We shall denote the topological dual of V by F * and give it
the weak-* topology. The space continuous linear maps from one topological
vector space V into another W will be denoted by Hom^(F, W). Following [3],
we shall say that F is linearly compact (I.e.) if V is separated and has a neigh-
borhood base at 0 consisting of subspaces of F, and every family of closed
affine subsets of F having the finite intersection property has non-void intersec-
tion. Proposition 1.2(d) of [3] asserts that the cartesian product of I.e. spaces
is I.e. According to [3, Propositions 1.3 and 1.4], if V is I.e., then F * is dis-
crete and the canonical map of V into F * * is a topological isomorphism. Thus
we can, and will, regard an I.e. F as the topological dual of the discrete space
F * .

Let F and W be I.e. Every s € Hom^ (F, W) has a transpose
ιs e Hom^ (W*, F*) and us = s under the identification of F * * with F and
W** with W.

Let L be a Lie algebra over a field K, and F an I.e. vector space over K.
V will be called a linearly compact L-module (I.e. L-module) if it is an L-
module such that for every x e L, the map γ(x) e Hom^ ( F , F) defined by
γ(x)v = xv for all v € F is continuous. We turn F* into an L-module by setting
xv* = — ιγ(x)v*. Then F is the L-module contragredient to F * in the sense of
[1, Proposition 1].

Let H be a Lie subalgebra of L, and F an I.e. #-module. As in [1], we may
form the L-module X = Hom^ ( f f ) (C/(L), F), where U is the universal envelop-
ing algebra functor. According to [1, Proposition 1], X is algebraically iso-
morphic to the L-module contragredient to U(L) ®U{H) F * . The corollary to that
proposition asserts that X in the finite-open topology is homeomorphic under
that isomorphism to (U(L) ®UiH) V*)*, which is I.e. since U(L) ®^ ( H ) F * is
discrete.

Lemma 1.1. X is an I.e. L-module.
Proof. We must show that for each x e L, u ^ xu is continuous from X to

X. Let ae U(L), and {ua} be a net in X with limit u. Then limα (xuj(a) =
limα ua(ax) = u(ax) = (xu)(a) so that limα xua = xu.

In what follows if V is any L-module and H is a subalgebra of F, we let VH

denote the H-module V becomes by restriction of the set of operators.
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We may now reformulate Theorem 4 of [1] in our I.e. setting.
Definition. Let V be an I.e. L-module. V will be called topologically irre-

ducible if V contains no nontrivial closed L-invariant subspaces. V will be called
topologically absolutely irreducible, if it is topologically irreducible and the
commuting ring of γ(L) in Hom^ (V,V) — {multiplications by K}.

We observe that V is topologically absolutely irreducible if and only if F * is
algebraically absolutely irreducible. Let / be an ideal of L, and V a topologi-
cally absolutely irreducible I.e. /-module. Let H consist of all x e L for which
there exists s e Hom^ (V, V) such that γ[x, z] = [s, γ(z)] for all z e /.

Theorem 1.2. Suppose K is of characteristic 0. Let W be a topologically
(absolutely) irreducible I.e. H-module such that Wτ is topologically module
isomorphic to the cartesian product of copies of V. Then the L-module
Hon% ( / ί ) (U(L), W) is topologically (absolutely) irreducible.

Proof. The proof is that of Theorem 4(b) in [1]. Write W ~ \[aVΛ, where
the Va are copies of V. Then W* ~ Σ β F * . Thus W* is an //-module and Wf
is a direct sum of copies of the absolutely irreducible //-module F * . It follows
from the properties of transpose and the definition of H that H =
{xeL : is£Hom^(F*, F * ) : [x,z]v* = szv* — zsv* for allv* € V* and ze/}.
Moreover, W* is an (absolutely) irreducible //-module. Applying Theorem 3
of [1], we see that U(L) ®U{H) W* is (absolutely) irreducible, whence
Hon%(iy) (U(L), W) is topologically (absolutely) irreducible.

We next prove a theorem on "Induction in Stages". Let L be a Lie algebra
over K, M and N be subalgebras of L with M cz N, and V be an M-module.
If w € Hoπv ( Λ ί ) (U(L), V), set w(a)b = w(ba) for a <= U(L) and b e U(N).

Theorem 1.3. (1) For each a € U(L), w(a) <= H o m ^ ^ (U(N), V).
(2) w e H o m T O (U(L), H o m ^ , (U(N), V)).
(3) Λ is an L-module isomorphism.
(4) // V is an I.e. M-module, Λ is a homeomorphism.
Proof. (1) Let ceU(M). Then w(a)(cb) = w(cba) = cw(ba) = cw(a)b

for b β U(N) so that w(α) € H o n v ^ (t/(N), »0.
(2) Let c e J7(iV). Then w(ca)b = w(Z?cα) = w(α)bc = [cw(α)]fc for fc e U(N)

so that w 6 Hom, ( i V ) (C/(L), Hom^^) (l/(Λ0, K)).
(3) Suppose w = 0. Then w(α) = w(α)l = 0 for a € C/(L) so that w = 0.

Thus Λ is injective. Let c<εU(L). Then (cH>)(fl)Z> = w(αc)fc = w(fcαc) =
(c>v)(6α) = (cw)A(a)b for ^ e t/(L) and b € U(N) so that cw = (cw)A. Thus Λ

is an L-module homomorphism. Let u e Hom^(7V) (C/(L), Hom^ ( 3 f ) (U(N), V)).
Set w(α) = u(a)l, and let ce C/(M). Then w(ca) = u(ca)\ = [c«(α)]l = w(α)c
= c[«(fl)]l = cw(a) for aeU(L) so that w e H o m ^ (ί/(L), F). Finally,
w(α)6 = w(ba) = u(ba)l = [bu(a)]l = u(a)b for aeU(L) and beU(N) so
that w = u. Thus Λ is surjective.

(4) is obvious.
Let L be a Lie algebra with subalgebra H, and V19 V2 be //-modules.

Then VX®V2 is an //-module. In [1], we introduced an operation (x)
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which maps H o m ^ ^ (C/(L), V,) x H o m ^ ^ (U(L), F2) bilinearly into
Hon% ( i 7 ) (U(L), V, (g) F 2). If wt e Hom^^, (U(L), K<), then wx (g) w2 is defined
as follows: Let Δ denote the canonical diagonal homomorphism of U(L) into
U(L) <g) ϋ(L) determined by Δx = x <g) 1 + 1 <g) JC for all x e L. Then wx and
H>2 determine a linear map wλ Kl w2 of U(L) ® C/(L) into V1 (x) F 2 , and we set
wλ®w2 = (wλ El w2) o Δ. Suppose now that * is a bilinear map of Vλ X F 2

into an //-module F 3 such that hvλ * v2 + ^ * /ry2 = A ^ * v2) for vt e Vt and
A e //, and let a be the corresponding linear map of Vλ (x) V2 into F 3 . Then a
is an //-homomorphism. Let Wt = H o m ^ ) (C/(L), F<), / = 1,2, 3, and define
a bilinear map, also called *, of Wx X W2 -+ W3 by w1 * w2 = α o (w! (x) w2).
It is obvious from [1, Proposition 3] that xwλ * w2 + wλ * x w2 = jcί^! * w2) for
w< € ^ and JC e L.

Let V19 , Vn be ^/-modules and set Wt = Hom^^) (C/(L), 7<) for / = 1,
• , n. Let ^ be a set of products of the above type between the Vt: if * e ^ ,
then *: F r U ) x Fs,+) -> F ί ( , . Extending * € ^ to the ^ we have *: JF r ( }

x wSU)^wtu).
Proposition 1.4. Lβί P^: Fj x x Vn —> F ί o Z>e α multilinear map which

is a (non-associative) monomial using members af & as products, j = 1, , m,
and Pji Wλ X x Wn^> Wio be the map obtained from Pj by replacing
each * £0* by its extension to the Wt. Suppose Σ CJPJ — 0, cό e K. Then

Σ CJPJ = 0.
j

Proof. For each * € ^ , let ύf(*): F r u ) ® F S U ) —> F ί u ) be the associated linear
map. For each /, there is a permutation σ̂  of {1, ,n} and linear maps
r y i, , τin_ι such that τjk is the tensor product (in some order) of a(*jk),
where * i f c e ^ , and k — 1 identity maps, and such that P/^i, -,vn) =
^ i ° ° ^ n - i K ^ d) ® <8> ^ y ( n)) For each / and k, let ^ fc: ®fc U(L) ->
® f e + 1 £/(L) be the tensor product of & — 1 identity maps and the diagonal
homomorphism J , where Δ stands in the same position in δjk as a(*jk) in τjk.
Now wσ.ω E . . . El w, y ( n ): ® w £/(L) -> Vσ.ω ® ; ® F, . ( r ι ) . One checks by
working from the middle out to both ends that Pj(w19 , wn) — τjί o o
^i»-i ° (W^(D S - IEI w^ ( n )) o 3j»-i o o 3 i l β But 3 ^ . ! o . . . o j i l = Δn~\
the unique homomorphism of U(L) —• (g)n i7(L) which, when restricted to L,
is the diagonal map of L —> 0 W L. (This is just the coassociativity of the co-
product J.) Letting άj be the usual permutation linear map of Vx ® ® Vn

-> ^ σ , (D ® ® F^. ( w ) and letting Tj = Tjlo ... o τjn_x o ̂ , we have
^•(^i, - ,vn) = Tjiv, (x) ® v J . Therefore Σ cjTj = 0. But then

P(wλ, . ,wn) = Σ c,Tj. o (W l El H wn) o Δn~ι = 0.

Corollary. // ^ w «n associative (resp. Lie) algebra upon which H acts via
derivations, then B = H o m ^ ^ (U(L),A) is an associative (resp. Lie) algebra
upon which L acts via derivations. If A is abelian, so is B. If, in addition, V
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is an H-module and an A-module such that x(av) = (xa)v + a(xv) for a ε A,

xεH, and veV, then W = Hon% ( H ) (C/(L), V) is a B-module such that

y(bw) = (yb)w + b(yw) for b eB,y e L, and w eW.
Lemma 1.5. Let Vi9i= 1,2,3, be I.e. H-modules and suppose that

*: Vλ X V2 —• V3 is continuous. Then ^: Wλ X W2^ W3 is also continuous.
Proof. Let {wia\ be a net in Wt such that limα wia = w€,i = 1 , 2 . Let

α e E/(L), and write Δa = ^ ^ ® ty, Z?7 and ĉ  € t/(L). Then (wlβ * w2β)(fl) =
ΣXJ W\JJ>j) * W2α(^)? whose limit is clearly (wλ * w2)(a).

Suppose that Vt, i— 1,2, 3, are M-modules, and M, N are subalgebras of L
with M^N. As in Theorem 1.3 form Wt = Hom^ ( M ) (C/(L), K<) and #% =
Hom^^) ( C / ^ ^ o m ^ ^ ) (U(N), K<)),i = 1,2,3. Let * be a bilinear map of

^i X Vi —> ̂ s s u c h t n a t Λ V i * ̂ 2 + Vi * -̂ 2̂ = ^ 1 * vθ ί ° r ^ t e V and Λ € M.
Extend * as above to a map of W1 X W2^ W3 and (in two stages) to a map
of WγχW2^ Wz.

Proposition 1.6. (wλ * w2)
A — wx * w2-

Proof. Let q, , Jtr € L and y19 , ys € iV. Using multi-index notation,
we set ;tα = x"1 xa

r

r € t/(L)(resp. j α ' =yfί yf* 6 t/(N)) for any r-tuple α
(resp. 51-tuple a') of nonnegative integers. Let ε = (1, ,l)(resp. ε' = (l, ,1)).
Now J(yf/jc ) = (zί>e/)(Axε) Hence

(w,

= Σ Σ w!(> e V)*w 2 (> e / - e V-

= Σ Σ W,(A-)>«'* W2(A—)>•'-

= ( Σ Λ iU α ) * w2(Λ-β))> '
0<α<s

Since the products xx- 'Xr,xteL,0<r < oo (resp. yx ys, yt e N, 0 < s < oo)
span C/(L)(resp. U(N)), the proposition is proved.

2. A theorem of Cartan and Guillemin

Let L be an I.e. topological Lie algebra over a field K of characteristic 0,
that is, a Lie algebra over K which is also an I.e. space such that the Lie bracket
[ , •] is continuous from L x L to L. Suppose L has a nonabelian minimal
closed ideal /. According to [3, Proposition 6.1] / has a maximal proper ideal
/. / is closed, and / = /// is a nonabelian simple I.e. Lie algebra. Let N =
NormL /, the normalizer of / in L. N is open by [3, Proposition 6.2], and / is
an I.e. L-module under the adjoint action of L on /. We denote this action by
ad and extend it to an action of U(L). Let ψ be the canonical map of / onto I.
J is an Λf-submodule of 7^, so that 7 is an TV-module. We will denote the action
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of N on 7 by ad. ψ is an N-homomorphism. Thus, by [1], we have an L-homo-
morphism θ of / into UomU(N)(U(L), 7) given by the formula θ{x)a = ̂ ((ad a)x).

Lemma 2.1. θ is a continuous injection.
Proof, ad y is continuous on / for each y e L so that ad a is continuous for

a € £/(L). By the continuity of φ, x i-> 0(jt)α is continuous for each a € t/(L). But
this is just the definition of the continuity of θ. Now let /0 be the kernel of θ
and let x e Io. If y e L, then θ([y, x])a = θ(x)(ay) = 0 for all a e U(L) so that
θ([y, x]) — 0. Moreover, ψ{x) = θ(x)l — 0 so that xeJ. Therefore Io is a closed
ideal of L contained in J, which is properly contained in /. By the minimality
of/,/0 = {0}. _

Let K! be the commuting ring in Horn^ (/, /) of ad(/). By [3, Proposition 4.4]
K' is a finite algebraic extension of K.

Lemma 2.2. Suppose Kf = K. Then θ is an I.e. L-module isomorphism.
Moreover, I is a topologically absolutely irreducible L-module.

Proof. Since θ is a continuous injection, Θ(J) is a closed L-submodule of
ΉomU{N) (U(L),7). But we have assumed that 7 is a topologically absolutely
irreducible /-module a fortiori, it is a topologically absolutely irreducible TV-
module. Thus Theorem 1.2 will tell us that Hom σ ( i V ) (C/(L), 7) is a topologically
irreducible L-module providing we can show that N is the algebra H of that
theorem. Plainly N C1H, since for each xeN,wc can let s = ad x. Conversely,
let x e H and choose s € Hom^ (7,7) corresponding to it. If z e / , tben ad[*, z]
= 5 ad z — (ad z)s = 0 because ad z = 0. Since 7 has no center, φ([x, z\) = 0
i.e., [JC, z] € 7. But this just says that x e 2V. Therefore N = # , as desired. Hence
0(7) = Honitf^) (ί/(L), 7) and the lemma is proved.

Now 7 is an I.e. Lie algebra upon which N acts via derivations. It follows
from the corollary to Proposition 1.4 that Hom^^) (t/(L),7) is an I.e. Lie
algebra upon which L acts via derivations. Let V be any N-module such that
J annihilates V. Then V becomes an 7-module. Plainly the hypotheses of the
corollary to Proposition 1.4 are satisfied. Therefore W = H o m ^ ) (ί/(L), V)
is a Hon% ( i V ) (U(L), 7)-module as well as an L-module.

Lemma 2.3. Let xel and weW. Then xw = (θx)w.

Proof. Let y19 , yr e L. Using the multi-index notation of Proposition 1.6,
we have (xw)yε = w(yex). Applying the main antiautomorphism [ l ,ρ . 458] to
[1, Lemma 7], we have

y x = Σ ((adrW/"α

Therefore

(xw)y= Σ ((adya)χ)w(y-«)= Σ ((θχ)y)w(y-) = {{θχ)w)y .
0<α<ε 0<α<e

Since the products yx -yr, yi e L, 0 < r < oo span ί/(L), our lemma is proved.
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Corollary, θ is a homomorphisrn of I into Hom^(ΛΓ) (U(L), / ) .
Proof. Let V = 7. If x19 x2 e /, then θ([x19 x>]) = xtfxj = [ft^, &t2].
The foregoing proves the following special case of Guillemin's version [3,

Theorem 7.1] of a theorem of Cartan [2, Theoreme XII] concerning simple
intransitive groups:

Theorem 2.4. / is a Lie algebra and I.e. L-module isomorphίc via θ to a
closed subalgebra L-submodule of Hom^^, (L/(L),7). // K! — K, the iso-
morphism is surjective.

To translate Theorem 2.4 into the terms of Guillemin's paper, use Proposi-
tion 7 of [1] to see that Hom^(ΛΓ) (£/(L), 7) is isomorphic as a Lie algebra to
Hom^ (S(L/N), J) it is easy to see that this is isomorphic K[[(L/N)*]] ® 7
in the notation of [3](cf. the corollary to Proposition 7 in [1]). Observing that
the filtration subalgebras Is of / as defined in [3, § 6.3] are nothing more than
Is = {x e I: (ad d)x € / for all a e U8_1(L)}9 we see that θ preserves filiations.
Thus, if Kf = K, then / is isomorphic to the completion of gr / where gr is the
gradation functor. In this way we obtain in short order all of the results of § 7
of [3] in the case Kf = K. This includes the important case where K is alge-
braically closed.

We close this section by constructing a representation of L which is associat-
ed with the structure of / as given by Theorem 2.4. Let L be any I.e. Lie alge-
bra over K. As in [3], we will call a proper open subalgebra A of L primitive
if it is maximal and contains no non-trivial ideals of L. L is called primitive if
it contains a primitive subalgebra. Every simple L is primitive.

Let L, /, 7, and N be as above, A be a primitive subalgebra of J, and A be
its complete inverse image in 7. A lies properly between / and J. Let M =
NormL^4, the normalizer of A in L. The proof of Proposition 6.2 of [3] shows
that M c N. M is open by [3, Lemma 6.1]. We consider the I.e. L-module
TΛomU{M) (U(L),K), where K is the 1-dimensional trivial M-module. Accord-
ing to Theorem 1.3, this is isomorphic via Λ as an I.e. L-module to
H o m ^ ) (ί/(L), H o m ^ ) (U(N),K)). Now K is trivially an abelian I.e. algebra
over K with jointly continuous product. Moreover, M acts on K via derivations,
namely, by the trivial action. According to the corollary to Proposition 1.4 and
Lemma 1.5, Hom σ ( J f ) (U(L),K), Hom σ ( J f ) (U(N),K), and H o m T O (C/(L),
Hon% (^ } (U(N),K)) are also abelian I.e. algebras with jointly continuous pro-
duct. According to Proposition 1.6, the above isomorphism is an algebra iso-
morphism.

/ cz N so that / acts on Hom^^) (U(N), K) via continuous derivations.

Lemma 2.5. The ideal of I annihilating H o m ^ ^ (U(N), K) is J.

Proof. J is an ideal of N contained in M, and M annihilates K. Application
of the main anti- automorphism [ l ,p . 458] to [1, Lemma 7] shows that U(N)J
= JU(N). Therefore / annihilates H o m ^ ^ (U(N),K). Now M ^ /, or else ,4
would be a proper ideal of / properly containing /, contradicting the maximality
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of J. The argument at the bottom of p. 459 of [1] shows that elements of N
not in M certainly act non-trivially on ΐίom.U{M) (U(N),K). Hence / does not
annihilate everything, and the annihilating ideal is / by the maximality of / in /.

Theorem 2.6. For each x<εl and w e H o m ^ ) (C/(L),K), (xw)A = (θx)w.
Proof. Note that (xw)A = xw by Theorem 1.3(3). Because of Lemma 2.5,

we can then apply Lemma 2.3 to obtain our result.

3. Geometric interpretation

In this section we will suppose, for simplicity, that K is algebraically closed

and has characteristic 0. In the notation of [3], Theorems 2.4 and 2.6 say the

following: / ~ K[[(L/N)*]] ®Ί. L operates by derivations on K[[(L/M)*]]9

which is isomorphic to K[[(L/N)*]] (g) K[[(N/M)*Ί\. ϊ acts on K[[(N/hf)*]].
The action of / on ^[[(L/M)*]] is just the action one would expect of

KIKL/N)*]] (g) 7 on K[[(L/N)*Ί\ ® X[[(N/Aί)*]].
Suppose that M contains no L-ideals (which we can always arrange for by

dividing out by the largest L-ideal in M-this leaves /, A, and J essentially un-
changed) and suppose K = C. Using the terminology and notation of [5], the
above statements correspond to the following geometrical situation: L is the
formal algebra at some p<εX,X a complex manifold, of a transitive holomorphic
Lie algebra sheaf J2f. M is the closure of the image in L of J270. / determines a
normal subsheaf J of S£, / determines a normal subsheaf / of / , and N
determines a completely integrable differential system Q). 3) is invariant under
J. Let Y be a local leaf (integral submanifold) of 2. Then f\γ — {0}, so that
we have a weak Lie algebra sheaf J\γ\ β\γ on each such Y, which we denote
by yγ. We can choose a Y through p, a local cross-section Z to ̂  through p,
and a diffeomorphism ψ of a neighborhood of y onto Z x Y in such a way that
ψ*(S) consists of all holomorphic functions on Z with values Jγ.

We would like to show that ~JY is transitive and primitive. In formal terms,
this amounts to showing that the action of 7 on K[[(N/Af)*]] is transitive and
primitive. Looking at the action of / on Hom^^) (U(N),K), we see that the
subalgebra of / giving rise to derivations of degree > 0 is / Π M. Clearly
/ ί l M D A Since A is not an ideal of /, / Π M Φ I. Therefore / Π M = A
by the maximality of A in /. Thus the action of / will be primitive if it is transi-
tive. For transitivity we must show that I + M = N. Let N=N/J and A = A/J.
Then M = M/J is the normalizer of A in N, and A is a primitive subalgebra
of J. Looking at the derivations ad7 x, x € N, it suffices to show (with a change
of notation) the following:

Theorem 3 . 1 . Let A be α primitive subalgebra of the I.e. Lie algebra L
over the algebraically closed field K of characteristic 0, and d be a continuous

derivation of L. Then there exists an xeL such that (d — a d x ) A c A.

Proof. This theorem is trivially true if L is a finite dimensional semi-simple
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Lie algebra since every derivation is inner. So suppose L is not finite dimen-
sional semi-simple. Let {Lt} be the Weisfeiler filtration on L associated with
A: L_! is a minimal subspace of L properly containing A and invariant under
ad A Lf, j < —2 is defined inductively by Lό = Lj+ι + [Lj+19 Lj+ι] Lo = A;
Lj,j > 1 is defined inductively as { j teL^j : adx(L_ι) (Z Lj_ι}. Then (see [4]
for details): (1){LJ} makes L into a filtered Lie algebra; (2) the {Lj} form an
open neighborhood base at 0 (3)1^ = L for / < — 2 (4) if gr L is the corre-
sponding graded algebra, then gr0 L acts irreducibly on gτ_λ L (5) if x € gr̂  L,
/ > 0, and [gr_! L,x] — {0}, then x = 0; and (6) if L is infinite dimensional,
then L is isomorphic to the completion of gr L in the topology of its downward
filtration, that is, L ~ Π j &j L. If L is finite dimensional but not semi-simple,
let / be a nontrivial abelian ideal of L. Then one shows easily that A + / =
L, A Π / = {0}, / is irreducible under ad/I, and A acts faithfully on / via ad7. It
follows that L_! = L, Lo = ,4, Z^ = {0}, gr_x L - /, and gr0 L ~ ,4. Thus (6)
holds in this case also. If x e L, then JĈ  will denote the component of x in gr^ L,
where gr̂  L is regarded as a subspace of L by (6).

We define maps dn on gr L: dnx = (dx)n+j it xe gry L. It is trivial that dn

is a derivation of grL, homogeneous of degree n. Now properties (4) and (5)
imply that gr0 L is either semi-simple or else has a 1-dimensional center acting
faithfully as multiplication by scalars on gr_x L by a well-known theorem of
E. Cartan and N. Jacobson.

Cace I. gr0 L has a one-dimensional center. Choose zs the center of gr0 L
such that [z, x] = * for Λ: 6 gr_! L. Then (see the proof of Proposition 7.2 in [4])
ad z acts as multiplication by — / on gr^ L. If x e gij L, then —jdnx = dn[z, x]
= [dnz,x] + [z,dnx] = [dnz,x] — (j + n)dnx. Therefore ad(<inz) = ndn on

gr, L. It follows that dn = —ad(dnz) on gr Lίoτnφ 0. Since d is continuous,

d — 2 — ad (dnz) modulo derivations of degree 0 onL, and the theorem holds
nΦO Π

in this case.
Case II. gr0 L is semi-simple. Then (a) L is finite dimensional, (b) L is the

algebra of divergence free formal vector fields, or (c) L is the Hamiltonian
algebra (see [4, §6] and [5, Chapter V]). We first claim that dn = 0 if n < - 2 .
This is evident in subcase (a).

Lemma 3.2. Let L be a graded Lie algebra with gx0 L — {0} for / < — 2
and also satisfying (5), and d be a derivation of degree n, n < — 1 . If d = 0
on gr_w_! L, then d = 0.

Proof. Since gr̂  L = {0} for / < —2, d = 0 on gr,- L for / < —n — 1.
Suppose inductively that d = 0 on gr̂  L for / < m with m > — n — 1, and
let x 6 grm + 1L. Then for every y e gr^L, 0 = d[y, x] = [y, dx], because d = 0
on gr_! L. Now dx € grn+m+1L and n + m + 1 > 0. By property (5), dx = 0.
q.e.d.
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Now in subcases (b) and (c), gr,- L = {0} for / < — 2, [4, § 6]. Let n < —2.
We note that dn — 0 on gr0 L so that dn[x, y] = [x, dny] for all x e gr0 L and
y egτ_n_ίL; i.e., dn intertwines the representations of gr 0L on gr_n_1 L and

In subcase (b) gr,L ^V® SJ+ι(V*) where V = gr_x L, dim F > 2, and the
action of gr0 L is the natural one induced by the action of gr0 L = sl(V) on V
(see [5, § 1.10]). Since every finite dimensional representation of sl(V) is com-
pletely reducible, dn\gτ_n_ιL is the restriction of an s/(F)-homomorphism
σ of V (g) S~n(V*) into F. σ may be regarded as an sl(V)-invariant of
V Θ ( F <8> S-"(F*))* - F <g) F * (8) S~n(V), and this invariant may be regarded
as an j/(F)-homomorphism τ of Hom^ ( F , F) into S~n(V). Now Hom^ ( F , F)
is the direct sum of the one-dimensional trivial sl(V)-module and the adjoint
sl(V)-module. These modules, as well as S~n(V), are well-known to be ir-
reducible and non-isomorphic. Thus τ = 0 so that a — 0 and dw = 0 on

gΓ-rz-l^.

In subcase (c), gr, L - Sj+2(V) where F = gr_xL, dim F = 2& > 2, and
gr0L = 5p(F)(see [5, § 1.12]). Since the action of sp(V) on ^ + 2 ( F ) is the natu-
ral one, dn interwines the non-isomorphic irreducible ^(F)-module S~n+1(V)
and F and hence is zero on gr_n_j L.

Applying Lemma 3.2 we see that dn = 0 for n < —2 in subcases (b) and (c).

Our final step in Case II is to show that d_x — ad z on gr0 L for some z e gr_xL.
It will then follow by Lemma 3.2 that (d — ad z)n = 0 for n < — 1 so that
(d — ad z)A QAby the continuity of d as required by the theorem. So let
x,yegτ0L. Then [x,d_λy] — [y,d_λx\ — d\x,y] — 0; i.e., d_x is acocyclefor
the natural representation of gr0 L on gr_x L. Since gr0 L is semi-simple, d_λ is
a coboundary, i.e., for some z 6 gr_2 L, rf_j = ad z on gr0 L, as desired. This
completes the proof of Theorem 3.1.

Remark. It would be desirable to have a proof of Theorem 3.1 which did
not use the classification of primitive Lie algebras. The machinery used here is
all out of proportion to the result proved.

Returning now to the situation and notation of the beginning of this section,
we know that / + M = N so that I is represented transitively and primitively
on Hor% ( Λ ί ) (U(N, )K). We next show that the open subalgebras N and M are
completely determined by the requirements (1) that M CΛί, (2) that the action
of / on HomU{M) (U(L),K) leaves the "differential system" determined by N
"leafwise" invariant, (3) that / acts on each "leaf" via the primitive action of 7
determined by A, and (4) that the actions on the "leaves" are completely in-
dependent of each other. In our formal setting, HomU(M) (U(L), K) ~
Hon% ( i V ) (U(L),ΉomϋiM) (U(N),K)). (2) clearly requires that / cz N. As for
(3), if / is to act on H o m W ) (U(N),K) transitively, then M + I = N; if this
action is to come from the primitive action of I determined by A, then M i l /
= A. This implies that M C NormL A c NormL /. Since / cz NormL 7, we
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have that N c Norm^ /. We will be finished if we can show N = NormL J,
for then the vector space isomorphisms N/ M ~ I/A ~ NormL //NormL A will
prove that M = Noπn L A.

Now requirement (4) is taken to mean that the set of operators / on
H o m ^ ^ (C/(L), H o m ^ ^ (U(N), K)) is precisely the set of operators
Hon% ( i V ) (U(L), J) . With our new N and M we can define the maps θ and Λ

exactly as in §2, for those constructions and the results of Lemmas 2.1,2.3,
and 2.5, and Theorem 2.6 depend only on N Q NormL /, / cz M C N, and
M ^ /. Thus / is a subalgebra of the set of operators Hom^^, (U(L),I)
on HomUiN) (U(L), Hom^ ( M ) (U(N), K)). But if N Φ NormL 7, then
Hom f 7 ( N o r m L j ) (U(L), J) is a proper closed subspace of Hom^^j (C/(L),J)(see
[1, p. 459]). We know that θ maps / into Hoπiff(Normi. ^ (U(L), Ί). Therefore
we get the full set of operators only if N = NormL /. This proves the correct-
ness of our characterization of M and N.

Finally, we mention that / is not in general the full ideal leaving the "differ-
ential system" determined by N "leafwise" invariant even if M contains no
L-ideals. In fact, let L be any infinite dimensional I.e. nonsimple primitive Lie
algebra; e.g., let L be the algebra of all formal vector fields of constant diver-
gence [5, p. 112]. Let / be the intersection of all closed nonzero ideals of L.
According to [4, Proposition 3.4], / is nonabelian and simple, and if A is the
unique primitive subalgebra of /, then M is the unique primitive subalgebra of
L. Thus M contains no L-ideals. Since / = {0}, N = L. Therefore the L-ideal
leaving the "differential system" determined by N "leafwise" invariant is L it-
self.
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