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CURVATURE AND THE EIGENFORMS OF
THE LAPLACE OPERATOR

V. K. PATODI

1. Introduction

Let X be a d-dimensional compact oriented Riemannian manifold of class
C= without boundary, A ? the space of smooth exterior p-forms, d: A?— AP*!
the operator of exterior differentiation, d*: A?*! — A? the adjoint of d with
respect to the Riemannian metric, and 4 = — (dd* + d*d) the Laplace operator
acting on exterior p-forms for 0 < p < d. It is known that 4: A? — A? has
an infinite sequence

0> A >h> - >2pr | —oo

of eigenvalues, each of which is repeated as many times as its multiplicity in-
dicates, and the corresponding sequence {p,} of eigenforms forms a complete
orthonormal set in the space A ? with Riemannian inner product. The sum

I exp (g, () ® 9,0)

converges uniformly on compact subsets of (0, ) X X to the fundamental
solution e?(¢, x, y) of the operator 3/d¢t — 4 acting on p-forms, and the trace

Z? = 3 exp (1,7) can be expressed as the integral over the manifold of the
n>0

pole Tr e? = 3 exp (A,0<¢n> ¢rny> {@n> ¢, being the Riemannian inner pro-
n=0
duct of p-forms at a point of X, that is,
Z? = | Tre?.
X
Let Z be the alternating sum of Z?, that is,

d
Z=yx(-zv,
p=0

and Tre = f] (—1? Tre?. It is proved in [2] that
p=0
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7z = fTr e = the Euler Poincaré characteristic of X.

On the other hand Chern’s extension of the classical Gauss-Bonnet formula
states that for manifolds of even dimension d, the Euler Poincaré characteristic

E = fC, where C is a homogeneous polynomial of degree d/2 in the compo-

nents of the curvature tensor. On account of these two results, one can expect
that some fantastic cancellation will also take place in the alternating pole sum
Tr e and one will have the following theorem (see [2]):

Theorem. Let e?(t,x,y) be the fundamental solution of the heat operator
d/ot — 4 acting on p-forms, 0 < p < d, and let

d
Tre= > (—1)?Tre?.
p=0

Then

odd
, t10.

even

(1) Tre={0C+O(t) ford{

The result with 0(f) = O is a triviality for odd d in view of the Poincaré
duality Tr e? = Tr e?~?. The authors [2] have proved result (1) for d = 2.
The main purpose of this paper is to prove the above theorem for all even d.
§2 and § 3 are devoted to some preliminaries, and in § 4 the fundamental so-
lution for the heat operator 3/dt — 4 is constructed. Finally in § 5 we prove
the theorem.

The author wishes to express his thanks to Professors M. S. Narasimhan and
S. Ramanan for their suggestions which enabled him to simplify the proof.

2. Algebraic preliminaries

Let V be a finite dimensional vector space over the field R of real numbers,
d its dimension, V* the dual space of ¥, and A4 a linear operator from V into
itself. Then for 1 < p < d, there are two naturally defined linear operators
APA (p-th exterior power of A) and D?A (‘“‘derivation extension” of 4) from
APV into itself,

(A2A) (v, A - - /\’Up) =UAv) A -+ A (A'Up) >
(DPA)(’Ul/\ ctt /\vp): val/\ ttt /\vr-l/\(Avr)/\vr+1/\ e /\’Up,
r=1
Vi, 5 Vpe V.

We define A°4, D°A respectively to be the identity endomorphism, zero
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endomorphism of the field of scalars. For a linear operator B of V into itself,
we shall denote the trace of B by Tr B.

Lemma 2.1. Let A, - --, A, be linear operators from V into itself, k < d.
Then

d
ZE)(——I)" Tr (D?A,0 --- o D?A})
p=

0 if k<d,
= {(—=1)? coefficient of x, - - - x;, in det (x4,
+ x4, + -0+ x4y if k=d.

Proof. Let x,, - - -, x; be k-parameters. Then we have
a
det (I — em4r ... k) = 31 (—1D)? Tr (A P(e=4 - - - e7k4K))
p=0
d » )
= Z (—l)p Tr (e:uD 41, ., gTkD Ak) ,
p=0

and the lemma follows by equating the coefficients of x, - - - x; in det (I — e=4:
d

-+ k%) and 3 (—1)? Tr (e=10741 . . . gakD?4E),
p=0

For any integer p between O and d, the map ¢, from (V*® V) X (V* Q@ V)
into Hom (A ?V, APV), defined by

¢,(4,B) = (D?4) - (D*B) , A,BeV*Q®V =~ Hom (V, V),

is bilinear and therefore defines a linear map @, from V* @ V ® V* ® V into
Hom (A ?V, A\?V). We shall denote the image of an element 4 e V*QV QV*QV
under ¢, by D?4.

Lemma 2.2. Let l, 1, be nonnegative integers such that I, + 21, < d, ¢ be
a permutation of {1,.--,, + L}, 4,4, ---,A,q, be arbitrary elements of
V*®V,and A4, ., .1y, -+ > Aya,41, be arbitrary elements of V¥QV QV*QV.
Then

d
pZJO(—-l)p Tr (DA, 0 - -- o D?4,,,,) = 0.

Proof. Since every element of V* @ V' ® V* @ V can be written as a finite
sum 3 4;® p, A € V@V, Lemma 2.2 immediately follows from
Lemma 2.1.

Lemma 2.3. Suppose that the dimension d of the vector space V is an even
integer 2n. Let A be an arbitrary element of V*QVRV*QV,e,, --+,e,, bea
basis for V, and e¥, ..., e}, be the dual basis for V*. Suppose that A =
> ayef Qe; ®ef Qe,. Then
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d
Zo(—l)f’ Tr (D?A)") = 3 e.68mismomsm ** * Gon-nisen-teemaen »
o=

where on the right hand side the sum runs over all permutations a,d of
{1, .-.,2n} and «,, ¢, are the signatures of the permutations o, d respectively.
Proof. We have

3 (—1)° T (D?4)")

d
= 20(— l)p Tr (Z Aiyjrings * " aizn—lhn-xiznhnDp(e‘?i ® ejl)
p=

o DI’(e;’; ® eja) 0 ++s0 Dp(e;‘;n_l ® ehn_l) o Dl’(e;"fm X ejm))
= D1 Gujrinis ** Qigy—sjan—rismian X coefficient of x, - -« x,, in

i1, 0 ian
Sty dan

det (% x.ef & eh) , by Lemma 2.1
r=1

= 2 &l mamemam * * Foan-naen-neamian >
which proves Lemma 2.3.
Now suppose that we are given a nondegenerate bilinear form B in V. Then
B induces a linear map ¢ from ¥V ® V into the field R such that

B, w) = ¢(v @ w) , v,welV.

Also the bilinear from B induces an isomorphism of ¥ onto its dual ¥*. Thus
wehave VQV = V*QV =~ Hom (V, V). Suppose that under this isomorphism
the element x of ¥V ® V' corresponds to the element @(x) of Hom (V, V). Then
it is a trivial fact that

o(x) = Tr @(x) forallxeVQ®V.

3. Commutation formulas for covariant differentiation

Our next considerations are with respect to the manifold X. Let U be an open
subset of X such that U is diffeomorphic to an open subset of R?. We shall
denote the coordinate functions by y,, - - -,¥,, and the tangent space and the
cotangent space at a point y of U by T',(X) and Tj(X) respectively.

Let A e C*(U, T(X) ® T*(X)). Then for each point y of U, A(y) is an endo-
morphism of T3(X) and hence defines an endomorphism D?A(y) of N\PT3(X).
Thus we get a linear operator D?A4 from the space of exterior p-forms defined
on U into itself:

(D?A(@))¥) = (D?A)(a®) ,
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where « is an exterior p-form defined on U, and y e U.

If @ is a C~-form on U, then so is D?A(a). Similarly, if 4 ¢ C=(U, T(X) ®
T*(X) ® T(X) ® T*(X)), we have a linear operator D?A4 from C~(U, A\ ?T*(X))
into itself.

Curvature tensor field R is a tensor field of type (1.3). But for all y ¢ X, the
Riemannian metric induces a natural isomorphism of T3(X) onto T,(X) and
hence an isomorphism of T,(X)® TH(X)® TH(X) ® TH(X) onto T, (X)
& IF(X) ® T,(X) ® T¥(X). Under this isomophism, R can be considered as
a tensor field of type (2,2) and thus defines a linear operator DR from
C=(U, N?T*(X)) into itself.

Lemma 3.1. The Laplace operator 4 acting on p-forms is given by

(3.1) A=Y g0, — ¥ gV, + DR,
i, 7 i, j,a

where the matrix (g%%) is the inverse of the matrix (g;;), g;; being the compo-
nents of the Riemannian metric, and I'}; are the Christoffel symbols defined by

1 08q: |, 08a 08;
r;s.z_zgka( 4 08y _ 98y
214G 0y; 0y, 0Yq

Proof. This lemma is well known; see [4], [5].

Lemma 3.2. Let X, ---,X, be C=-vector fields on the open set U,
A eC>(U,T(X) ® T*(X)), and the operators Vy,, - - -,V of covariant deri-
vation (with respect to Levi-Civita connection) be denoted respectively by
V. - ,Vn. Then we have the following commutation relation:

ViowrvolV,oD?A) = DPA oV, 0 ... oV,
+ 2 hX DP(V”(I)O °Va(k>(A))°Vo<k+1)° OVa(m >

k=1 g (1)< <a (k)
o (k+1) < e e la(m)

3.2)

where the second sum on the right hand side runs over all permutations ¢ of
{1,.--,m}such that (1) < ... <g(k)and o(k + 1) < --. < a(m).

Proof. We shall prove the lemma by induction on m. First we prove the
lemma for m = 1, that is,

VioD?A(a) = D?A o V\(a) + D?F (D)) ,  aeC(U, \?T*X)) .

For p = 1, the above formula can be verified by direct calculations. But noting
that I/, and D?(A) are derivations, one easily observes that if the above formula
is true for a?, a?, a? e C*(U, APT*(X)) and ? € C=(U, N\T*(X)), then it also
holds for &« = @® A «?. Hence by induction on p, it follows that (3.2) holds for
m=1.

Let r be a positive integer, and suppose that the lemma has been proved for
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m < r. Then we complete the proof of the lemma by the fact that (3.2) holds
for m = r + 1 since

Vie-+-oV,, oD
=Vl°"'OVfonAOV'r+1+VIO"'OVrODp(Vr+1(A))
=DpA°V1°"'°Vr°Vr+l

+ (Z Z Dp(V,m) A Va(k)(A)) o Va<k+1) O s O Vau»)) ° Vr+1

k= 15(1)< «<3(k)
3(k+1) <+ <a(r)

T

+Z Z Dp(Vp(l)o"'on(k)oVT+l(A))OVp(k+l)o"'OVP(T)
RSB
P

by the induction hypothesis

r+1

=DpA°‘71°"'°Vr°Vr+1+Z Z Dp(Va(I)O"‘OVa(k)(A))
LRSS 80

° Va(k+1) ©¢*ro0 Vv(r+1) .

Lemma 3.3. Let X,,---,X,, be C=-vector fields on the open set U,
AeC~(U, T(X) ® T*(X) ® T(X) ® T*(X)), and the operators Vx,, -- -,V
of covariant derivation be denoted respectively by V., - - -,V . Then the formula

(2) holds.
Proof. It is enough to prove the lemma when 4 = B® C,B e C>(U,
T(X) Q T*(X)),Ce C=(U,T(X) ® T*(X)). Then we have

VioD?A =V, 0 D?B o D?C
= DPBoV,o D?C 4+ D?(V,(B)) o D?C , by Lemma 3.2
= D?BoD?C oV, + D?B o D?(V,(C)) + D*(V,(B) ® C) , by Lemma 3.2
=DB®C)oV, + D(BRV,(C)) + D*V(B) ® C)
= D?(A) oV, + DV (B® O))
= DPA oV, + D?(V (4)) .
Thus we have proved the lemma for m = 1, and the lemma follows for all
m by arguing inductively on m as in the proof of Lemma 3.2.
LetR = 3 R;,,(0/0y,) ® dy; ® dy, ® dy, be the curvature tensor field, and

for any two vector fields X, Y on U let R(X, Y) be the tensor field of type (1,1)
defined by

RX,Y) = ¥ Rz-kzxwyk)Y(dyl)B?y_ ® dy, .
%

Lemma 3.4. Let X,X,, --,X,, be C=-vector fields defined on U, and the
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operators Vy,, - --,Vx, of covariant derivations be denoted respectively by
V- - Vn. Then

Vlo"’onoVXzVXono"'OVm

|
-

m

+ Z Dp(Va(l) 0 ses0 V,(j)R(X’ Xu(j+1)))
J=00(1)<-+-<a(j+1)
(3.3) g (j+2) <00 <a(m)
oVa(j+2)° °Va(m)
m
+ ZVIO oo OVi—loV[Xi,onVi+1° e on .

.
I
-

Proof. For m = 1, formula (3.3) for forms of degree one is just the defini-
tion of curvature tensor, and for forms of degree p > 1 it follows easily by
arguing inductively on p and using the derivation properties of the operators.
Then proof of Lemma 3.4 can be completed by induction on m as in the proof
of Lemma 3.2.

4. Construction of a parametrix and the fundamental solution

We shall first introduce some notation. Let U be an open subset of X, and
a(x,y)aC=(p,p)formon U x U. Then « € C*(U X U, APT*(X)® N PT*(X)).
Since for all x e X the Riemannian metric induces a natural isomorphism of
APT*#(X) onto the dual of APT#(X), there is a natural identification of
NAPT*(X) ® A?T*(X) with Hom (A ?T*(X), A?T*(X)), and therefore we can
regard « as an element of C*(U X U, Hom (A?T*(X), A?T*(X))). Let xe U
and v € A?T#(X). Then a(x,y)(v) is a smooth p-form defined on U, and will
be denoted by a(v, ).

For p-forms we construct a parametrix H%(¢,x,y) in a sufficiently small
neighbourhood of the diagonal in X X X, ¢ > 0, as follows:

> _exp(—r/@ (&
@.1) H3t,3,) = SRLED( 5 e, )

where r is the geodesic distance between x,y, and the smooth (p,p) forms
U%?(x,y) are to be determined such that U%?(x, x) is the identity endomorphism
of APT*#(X) and

@) (L - a)mp ) =~ LI AUy

The integer N is to be chosen larger than d/2. These conditions determine the
double (p, p) forms U??(x, y) uniquely in a sufficiently small neighbourhood of
the diagonal as we shall see now.

Fix an arbitrary point x of X and introduce normal coordinates in an open
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neighbourhood U of x such that g;,(x) =4d,; and x has the coordinates (0, - - -, 0).
Let F(r(x,y)) be a function of y depending only on the geodesic distance of y
from the point x, and « be a C= p-form defined on U. It is well known that
(see for instance [3])

4,(F(Na)
2 dF

= (%0 + 2= L) idﬁdl( n)a+ 207 0@ + FO)a,

where d/dr denotes the differentiation along the geodesic, and g(y) =det (g;,;(»)).
Thus
4,((exp (—r*/41))a)

rz){(rZ 1 d—1 r dg) 1 }
=exp|—— _—— = — 2 Ja— —F, + dat ,
p( 4t (N4 2t 2t 4gt dr T *

and therefore

(% - Ay)HI%(ta Xy y)

=exp(—r2/(4t)) i {( r —d/j2 7 n 1 +d—-1

amer & \az +! ” w Ty

+ ZLZ—) £USH(x,Y) + 177,20 3(x,3) — 14,0425,

Equating the coefficient of M -1 in (E Ay) H%(t, x,y) to zero,

(dt) ¥
we get
r dg ” i1
t+— U“’(xy)-I-V U"(xy)—AU P(x,y) =0,
r
that is,
@3 Tave) + (4 Lﬁ&) Ube = 4,U5(x, y) .
ar 4g dr

Fix an arbitrary vector v ¢ A PT#(X). Then we shall show that in the open set
U the equations

@4 7oV + i+ L BV veaw,y) = 4,070,9),0 < i <N
dr 4g dr
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have unique solutions with the condition U%?(v,x) = v; of course
U-"?(x,y) = 0.
We rewrite equation (4.4) in the form

(4.5) V,a(rg”U*(v,y)) = r'g"4,U""2(v, ) .

Let y be an arbitrary point of U, and u,(¢),0 <t < r(x,y), be the geodesic
curve joining the points x and y. The curve u,(f) defines, with respect to the
Riemannian connection, an isomorphism 7', ,, of A?T5 .,(X) onto A?TH(X),
0< ¢, <r(x,y). Let U?(v,y) = g7 (0 T,,((v). Then U**(v, x) = v, and equa-
tion (4.5) is satisfied for i = 0. Let m be a positive integer, and suppose that
for i < m we have determined the forms U*?(v, y) satisfying equation (4.5).

Then we define U™?(v,y) as
Uum™2(v,y)

1 r(z,¥) m—1451/4 m—1
= mf (r(x, u (ON™ 184w, (DT, (4, U™ (v, u,(1))dt .

0

It can easily be seen that U™?(v,y) is a C=-form and satisfies equation (4.5)
for i = m.

To prove the uniqueness, we first observe that equation (4.2) implies
iU>*(v,x) = (4,U"?(v, y))(v, x). Therefore it sufficies to prove that any C=-
solution « of I/, 4 (a) = O satisfying the initial condition a(x) = O vanishes iden-

tically. But this is obvious because V, L4 () = O implies that for all ye U, « is

invariant under the parallel displacements along the geodesic joining the points

x and y. Thus we can construct the parametrix H%(¢, x, y) in a sufficiently small

neighbourhood W of the diagonal in X X X. Let W’ be an open neighbourhood
of the diagonal such that the closure of W’ is contained in the interior of W,

and ¢(x,y) be a C~-function on X X X such that ¢(x, y) is zero outside W’ and

is one in a neighbourhood of the diagonal. Then we define

G%(t, x,y) = ¢(x,y)HE(t, x,y) ,
9

K&(t, x,y) = (5 — Ay) G%(t,x,y) .

The double form G%(t, x,y) is a parametrix in the large, and is a C~-double
form. It can be verified that for any smooth p-form (¢, x) one has

Lt f GE(t, %, %) A *o(t, %) = 0(0,5) ,
X

t—0

where in the limit ¢ tends to zero only through positive values. For the sake of -
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simplicity of notation we shall fix p, N and denote K%(¢, x,y) by K(¢, x, ).
We now complete the construction of the fundamental solution of the opera-

tor % — 4. We first observe that if M, N,, N, are vector spaces and there is

given an inner product in M , then there is a natural mapz: (MON)X(MQN,)
— N, ® N, such that

(m® n,), (M’ @ ny)) = (m,m"»n, @ n, , form,m eM,n, eN,,n,eN,,

{, > being the inner product in M. We shall denote the element z(x,y) for
xeM ®N, and ye M @ N, by the symbol (x, y) itself.
Inductively we now define

Ko(t,x,}’) = K(t’x7y) s
K™(t,x,y) = ftds f(K"‘“(s,x,z),K(t — 52,1, m>1,
0 p.q

*,1 being the volume element. Since X is compact, there exist finitely many
open sets V,, ---,V,and U,, - - -, U, such that V,c U,,U, is diffeomorphic

to R, 1<r<q,and X = qu V,. Choose a partition of unity {¢,},,<, relative
r=1
to the open covering {V,};<,<,> and let ¢, be C=-functions which are 1 on V,
and have supports contained in U,. For any double form L(x,y) define
L (x,5) = ¢i(®)¢;()L(x,) ,

and for a form

L(x,y) = ) <Z<. Lil...ip’jl...jpdxil VANERIVAN dxip ®d}’jl VANKEIRVAN dy,p
FRE S

with support contained in U; X U, define

ILl;= 2 Sup |Liip gyl -
11<---<ip z€U4,¥eUj
J1<e+<ip
Then by (4.2),|K?;|l;,; < Mt¥-¥* for some constant M. Suppose we have
proved that o

(I'(N — d/2 + )™
I'(m(N —dJ2) + m)’

” K:r‘tj—l ”i,j S (CM)mtm(N—d/2)+m—1

with a constant C. Then
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K71, 1,) = f ‘ds f (sm(x) 53 0 @K™, %,2), 9,0)KG — s,z,y)) £ 1

r=1

=2 ftds f(sbi(x)sor(Z)K’"‘l(s,x, 2),K, (t — s,z, y)) %,1 .

Therefore

(I'N —d/2 + )™
T(m(N — dJ2) + m)

¢
_fsm(N—d/2)+’m—1(t — S)N—d/st s
0

||K;r,bj(t; X, }’) || S_ Cl(CM)m

where C, is a constant independent of m, so that, by choosing C > C,,

| Kz, x,9) |
(46) < (CM)m+1t(m+1)(N—d/2)+m F(N _ d/2 + l)ml'.1
- I'm+ 1)(N —d/2) + m + 1)

er(t,x,y)

t
= G}, x,y) + X2 (—D’"“f ds f(Km(s, x,2),G4(t — 5,2,y)) %, 1 .
m=0
X

0

On account of the estimate (4.6) and the similar ones which we can obtain by
introducing partial derivatives also in above norms, the series on the right hand
side of (4.7) converges nicely to a double form. Hence e?(¢, x,y) is a C=-(p, p)
form, and we have

(% - A%’)(ep(ta X, y)) - K(t: X, y) + Zzo(—l)m+1(Km(t7 X, }’) + Km+1(t7x>y))

= K(t,X,y) - K(t,x,)’) = 0 .

The double form e?(t, x, y) is the fundamental solution for the heat operator
acting on p-forms.

From now on we shall fix a point x of the manifold X. We introduce
normal coordinates in an open neighbourhood U of x such that g;;(x) = 4;;.
By the estimate (4.6) we have

mi:g(— 1)m+t f‘ds f(Km(s,x, 2),G5(t — 5,2,%)) %, 1
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0

ds exp( Elr((tzj)z)>(t s)"2gN=dzy 1, t]0

0

U
t ©

dsf ex < ) t — §)-drgN-drzpd-1g
J p 4(t— 9 (t — 5)~ %% ré=ldr

t

©

0| ds eVt — )" 2N -ayd-1(r _ g)alrdy

0% O% ogg
O%

by making the substitution r — 2u(t — s)¥?

=0 [ s¥-trds = O@¥-arty | 1] 0.

oLﬁ“

Therefore by (4.7) we get
(Tr e?)(t, x,x) = (Tr GE)(t, x, x) + O@FY~9/2+1)
= (Tr H})(t, x, x) + O(tV~-4/2+1)
N
= (4nt)~ 92 3 ¢ Tr U»P(x, x) + O(t¥-92+1) | by (4.1) .
=0

The double forms U*?(x,y) satisfy equation (4.1). Since U%?(x,x) is the
identity endomorphism of A?T%*, we have

(Tr e?)(t, x, x)

4.9 _ (47rt)“‘”2{<z) + g £ Tr Us?(x, x)} +0@E¥-ar+y 110,

5. Proof of the theorem

Suppose that the dimension d of the manifold is an even integer 2n. In view
of (4.8), the theorem is an immediate consequence of
0 fori <n,
Lemma 5.1. (4n)™" }_‘_, (=1D)?Tr Ub?(x,x) = .
p=0 C fori=n,
C being Chern’s polynomial at the point x:

= Z 5ueaRu(1)a(2)6<1)6<2) te Rﬂ(Zn—l)v(Zn)J(Zn—l)d(Zn) ’
AL 1078

where the sum runs over all the permutations ¢,é of 1, - - -,2n, ¢, and ¢; are the
signatures of the permutations ¢ and & respectively, and R;j,, are the com-
ponents of the curvature tensor (see [1]):

R= 3R,

ai Q dy, ® dy, ® dy, .
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For the proof of Lemma 5.1, we will need the following

Main lemma 5.2. Let l,1l,,1,,i be nonnegative integers such that one of the
following conditions is satisfied ;

C) L>0andl, +2I,+ I, + 2i < d,

C) L+2,+1 4+ 2i <d.

Let ¢ be a permutation of {1, ---,l,+1}, and B,,, - - -, B,y,) and B, .y,
-++,B,,.+1, be arbitrary C=-sections of T(X) ® T*#(X) and T(X) ® T*(X)
® T(X) ® T*(X) defined over U respectively. Let {j,, - - -, j;,} be a sequence
such that each j, is a positive integer between 1 and d, and the operators
Va ,V a,...bedenoted respectively by V,,,V,,, - - -. Then

iy ),
i (—=1D?Tr [DPB;o -+- o D?B,, 4, © le 0 -0 les(Ui,p(x, Ix,x) =0,
p=0

where all the operators act with respect to the variable y.

Proof of Lemma 5.2. We shall prove the lemma by induction on i and ;.
Let s be a nonnegative integer, and suppose that the lemma has been proved
whenever i < s and the integers [, [,, [, i satisfy at least one of the conditions
(C) and (C,). We shall prove the lemma for i = s.

Let B? be the operator defined by

B? = D?B,o --. o D?By,,;,0V; 0--- Oles.
Us?(x,y) satisfies the differential equation

V,aU?(x,y) + (S + “r-d—g) U»P(x,y) = 4,U"2(x, y)
dar 4g dr

= g0V, — X g¥I'eV, + DPR)U*%?(x,y) , by (1.2) .
k,j k,j,a

5.1

First suppose that I, = 0. If s = 0, then the result follows from Lemma 2.2.
Therefore we can assume that s > 0. Since the double form /7, 4 U*? is zero at

(x,x), we have

5" (= 1)? Tt [B*(W, s U "))(x,x) = O .
=0 dar

By first applying the operator B? to both sides of equation (5.1) and then taking
trace we thus obtain

s;é;o (— D2 Tr [B2(U*?(x, y)1(x, x)



246 V. K. PATODI

g+ }_, (—D?Tr[B?o VoV (U2(x, y)](x, x)

k,J p=0

(5.2) .
gHIs; 7:.0(~ D? Tr [B? o V(U= 2(x, y))1(x, X)

k,j,a

2,8
dg —1)? Tr [B? o DPR(U**(x, y))I(x, ) .

Since each term on the right hand side of (5.2) is zero by the induction hypo-
thesis, we have

&

2 (= 1? Tr [B2(US?(x, Y)](x,x) = 0 .

p=0

Now suppose that I, > 0 and the result has been proved for smaller values of
l,. For first applying the operator B? to both sides of equation (5.1) and then

taking the trace, we first note that [ 9 T d ] S fact, r—d— =
dy; dr 0y; dr
20y — xj)i so that
0y;
0 ( ) a a 0 ,d 9 0
— 4+ = .
oy; \ dr 0= ayz- 0y; 0y, dr 0y; 0y;

Therefore by Lemma 3.4, B? o V,dg equals D?B,o---o Dl’BhMoV,;z_r ol 0

-+ oV, + L,B” plus a sum of operators for each of which the induction hypothe-
sis for [, is satisfied (with i = s). Also the form /, 4o Vio--r0ol jls(Us’P(x, )

is zero at (x, x). Hence we have

i (=D?Tr[B?o Vrdi(ys,p)](x,x) =1 i‘ (=1)? Tr [B2(U>?)1(x, %) ,
=0 r =0
and also
dg ) ) ( r dg) .
— | U*P %5 \Br(Use(x,
(( 4 ar ) VY + ag ar JEUTTED
+ 5 (P o P+ L)) oBie
I<k< sﬂ<1)< - <o (k) g dr
+D) <2 <o ls)

© DpBlH-lz ° Vja(k+1) 0+ 0 Vja(lg)(Us’p(x’ y)) .

By the induction hypothesis we therefore get
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zéo(—-l)l’ Tr [Bl’((s + 4Ld_g) US,P)](x,x) — szjo(_l)p Tr [B?(U*?)](x,%) .

g dr
Similarly,
5 (=12 Tr [B? o g7, o 7,(U2)](x, %) = 0,
p=0
% (— )P Tr [B? 0 4T3 (U )]06,0) = 0 .

3
Il

Finally Lemma 3.3 together with the induction hypothesis gives
3 (—1)? Tr [B? o DPR(US#)1(x, %) = O .
=0

By first applying the operator B? to both sides of equation (5.1) and then tak-
ing trace we thus obtain

(b + 9 33 (— 12 Tr [BAU(x, DICx, 1) = 0.

Since I, 4+ s > 0, we have Z (=12 Tr [B2(U* ?(x, y))1(x, x) = 0, which com-

pletes the proof of Lemma 5 2
Proof of Lemma 5.1. Using the Main Lemma 5.2, we shall now prove
Lemma 5.1. As an immediate consequence of the main lemma we have

S (—1)?Tr Usd(x,x) =0 fori <n.

=0
On the other hand, by equation (5.1) we obtain

n'3 (—1)? Tr Um2(x, x)
p=0
= ¥ 9@ 3 (—DPTr 7 o 7 (U 2)](x, %)

%, =0
(5.3) ! ’ )
— 2 89 (x) ZO(—I)" Tr [V (U "P)](x, x)

k,j,a =

+ 3 (=17 Tt [DRWH], ) .

The first two terms on the right hand side of (5.3) are zero by Lemma 5.2 so
that
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31 (= 1)? Tr Un2(x, x) = % 31 (—1)? Tt [DPR(U*9)](x, x)
2 Z
=1 Z gkI(x) Z.' (—D?Tr [D?R o Vo V(U 2P)](x, x)
(5.4) nn — 1) &
L % W0 1 (= 1)? Tr [7,U-27](x, x)
nn—1)« p=0
1 ¢ > (=1)? Tr [D?R « DPRU™7)](x,) , by (4)
nn — 1) o=

Again by Lemma 5.2 the first two terms on the right hand side of (5.4) are
zero so that

(—1)? Tr Un2(x, x) = Tl—l) 31 (—1)? Tt [D?R o DPR(U™>?)(x, %) .
0 _— p=0

Proceeding thus we finally get

M=

»

B (=D Tr Um0 = L 55 (= )2 [0PRU)iCx, 9

( 1)? trace of the operator (D"R)" .

”‘I\’L\ﬂa ?M&

S|= 3=

Therefore by Lemma 2.3 we obtain

Z (—=1D?Tr U»?(x, x)

(471)" p=0
N R - R
= W Z;s .81y e (e @8 * * * TNen-1neen-10@n)s@n)
. 0)

- 1 ST e,e(R _ R ).
= Swmonn 1 €€\ 51y 0 ()0 (2)5(2) 5(1)a (2)0 (1)3(2)

2"g*n! o

'(Ra(zn-1)a(2n—1)a(2n)a(zn) - Ra(zn—l)a(zn)v(zn-l)a(zn))

 Ammonal 1 Z ECalNsqys oo 7" 3(2n -1)3(2n)a (20 —1)a (2R)

ALY Lo7B a,6

by using the formula R;;;; — Rixji + Ruje = 0
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