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CURVATURE AND THE EIGENFORMS OF
THE LAPLACE OPERATOR

V. K. PATODI

1. Introduction

Let X be a d-dimensional compact oriented Riemannian manifold of class
C°° without boundary, Ap the space of smooth exterior p-forms, d: Ap—> Λ p + 1

the operator of exterior differentiation, d*: Ap+1 —• Ap the adjoint of d with
respect to the Riemannian metric, and Δ — — (dd* + d* d) the Laplace operator
acting on exterior p-forms for 0 < p < d. It is known that Δ: Λ p —• Λ p has
an infinite sequence

0 > Λ > λ2 > - - > λn I - oo

of eigenvalues, each of which is repeated as many times as its multiplicity in-
dicates, and the corresponding sequence {<pn} of eigenforms forms a complete
orthonormal set in the space Λ p with Riemannian inner product. The sum

Σ exp (λnt)φn(x) ® φn(y)

converges uniformly on compact subsets of (0, oo) x X to the fundamental
solution ep(t,x, y) of the operator d/dt — Δ acting on p-forms, and the trace
Zv — Σ e x P UnO c a n be expressed as the integral over the manifold of the

n>0

pole Ύr ep = Σ e x P (λnOζψni ψny> (ψn> ψny being the Riemannian inner pro-
n>0

duct of p-ίorms at a point of X, that is,

Zp = Γ T r ^ .
X

Let Z be the alternating sum of Z p , that is,

z=Σo(-i)pzp,

and Tr e = Σ (— l ) p Tr ep. It is proved in [2] that

Communicated by I. M. Singer, April 20, 1970.



234 V. K. PAΊΌDI

Z = Tr e — the Euler Poincare characteristic of X.

On the other hand Chern's extension of the classical Gauss-Bonnet formula
states that for manifolds of even dimension d, the Euler Poincare characteristic

E = I C, where C is a homogeneous polynomial of degree d/2 in the compo-

nents of the curvature tensor. On account of these two results, one can expect

that some fantastic cancellation will also take place in the alternating pole sum

Tr e and one will have the following theorem (see [2]):
Theorem. Let ep(t, x, y) be the fundamental solution of the heat operator

d/dt — Δ acting on p-forms, 0 < p < d, and let

Tre = Σ (-l)PΎτep .
p = 0

Then

(0 [odd
( 1 ) Tτe= \ + 0 ( 0 ford\ , ί J O .

[C [even

The result with 0(ί) = 0 is a triviality for odd d in view of the Poincare
duality Tr ep = Tr ed~p. The authors [2] have proved result (1) for d = 2.
The main purpose of this paper is to prove the above theorem for all even d.
§ 2 and § 3 are devoted to some preliminaries, and in § 4 the fundamental so-
lution for the heat operator d/dt — Δ is constructed. Finally in § 5 we prove
the theorem.

The author wishes to express his thanks to Professors M. S. Narasimhan and
S. Ramanan for their suggestions which enabled him to simplify the proof.

2. Algebraic preliminaries

Let V be a finite dimensional vector space over the field R of real numbers,
d its dimension, F* the dual space of V, and A a linear operator from V into
itself. Then for 1 < p < d, there are two naturally defined linear operators
Λ M (p-th exterior power of A) and DPA ("derivation extension" of A) from
ApV into itself,

Λ - Λ vp) = {Avx) Λ Λ (Avp) ,

ΦpA){yγ A - Λ vp) = Σ Vι Λ • Λ vr_x A (Avr) A vr+ι Λ Λ t ; , ,
r = l

V19 •• , V p € V .

We define A°A,D°A respectively to be the identity endomorphism, zero
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endomorphism of the field of scalars. For a linear operator B of V into itself,
we shall denote the trace of B by Tr B.

Lemma 2.1. Let A19 ,Ak be linear operators from V into itself, k < d.
Then

p=0

0 if k <d ,

= (— l)d coefficient of xλ xk in det (x1A1

s + x2A2 + . + xkAk) if k = d .

Proof. Let x19 9xk be ^-parameters. Then we have

d

det (/ — exlAl - eXkA*) = Σ (— ! ) p T r ( Λ ^ 1 ^

(i

and the lemma follows by equating the coefficients of xx jcfc in det (/ — e^1^1

a n d | ι ( _ ! ) p T r (^XP^X . . .

p=0

For any integer p between 0 and d, the map <pp from (V* ® F) x (F* (x) F)
into Horn (Λ P F ? APV), defined by

φp(A, B) = (DM) o φ*B) , ,4,5 € F* ® F « Horn (F, F) ,

is bilinear and therefore defines a linear map φp from V* ®V ®V* ®V into
Horn(Λ pV, A PV). We shall denote the image of an element A e V*®V®V* ®V
under ^ p by DM.

Lemma 2.2. Lei /15 Z2 Z?e nonnegative integers such that lx + 2l2 < d, σ be

a permutation of {1, ,Zi + l2},Aσω, -9Aσ(h) be arbitrary elements of

F*(g)F, mdAσai+1)9 ,Λα1+ι,) ^ arbitrary elements of F*(x)F(g)F* ® F.
ΓAen

Proof. Since every element of F* (x) F ® F* ® F can be written as a finite
sum Σ h ® i"i? ̂ > j"i € F* ® F, Lemma 2.2 immediately follows from
Lemma 2.1.

Lemma 2.3. Suppose that the dimension d of the vector space V is an even
integer In. Let A be an arbitrary element of V* ®V'(x) F* (g) F', e19 , e2n be a
basis for V, and ef, 9efn be the dual basis for V*. Suppose that A =
Σ *tj*ιef ®ej® e* ® et. Then
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d

2_l V -U *•* \\L) A) ) = n-\)a (2n)δ(27l)

where on the right hand side the sum runs over all permutations σ,δ of
{1, , 2ή} and εσ, εδ are the signatures of the permutations σ, δ respectively.

Proof. We have

I 0 eh) o . . o D"(β4*,_x 0 ehn_) o D*(e*n 0 *,,„))

= _Σ βi,Λ«,Λ β<,»-,Λn-i<..J.» X coefficient of *, x2n in

det Σ χre*r ® ̂ r ) , by Lemma 2.1

Σ

which proves Lemma 2.3.
Now suppose that we are given a nondegenerate bilinear form B in F . Then

B induces a linear map φ from F (8) F into the field R such that

2?(i;, w) = φ(y ® >v) , v,w eV .

Also the bilinear from i? induces an isomorphism of F onto its dual F * . Thus
we have F ( x ) F « F * ( x ) F » Horn (F, F). Suppose that under this isomorphism
the element xoίV ®V corresponds to the element φ(x) of Horn (V,V). Then
it is a trivial fact that

φ{x) = Tr φ(x) f or all x <ε V ® F .

3. Commutation formulas for covariant differentiation

Our next considerations are with respect to the manifold X. Let U be an open
subset of X such that U is difϊeomorphic to an open subset of Rd. We shall
denote the coordinate functions by y19 ,yd, and the tangent space and the
cotangent space at a point y of U by Ty(X) and T^CX) respectively.

Let A € C~(L/, Γ(Z) (g> Γ*(X)). Then for each point y of £/, ,40) is an endo-
morphism of T*(X) and hence defines an endomorphismDM(j) of ΛPT*(X).
Thus we get a linear operator DPA from the space of exterior p-forms defined
on U into itself:
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where a is an exterior p-form defined on U, and y eU.
If a is a C°°-form on U, then so is DpA(a). Similarly, if A β C°°(U, T(X) ®

T*(Z) (g) T(X) (x) Γ*(X)), we have a linear operator D M from C°°(U, A PT*(X))
into itself.

Curvature tensor field R is a tensor field of type (1.3). But for all y e X, the
Riemannian metric induces a natural isomorphism of T*(X) onto Γ̂ CST) and
hence an isomorphism of Ty(X) ® T*(X) <g) T*(X) <g) T*(Z) onto Γ^Z)
(g) Γ*(X) (x) Γ^X) (x) T*(Z). Under this isomophism, R can be considered as
a tensor field of type (2,2) and thus defines a linear operator D^i? from
C"(U, ΛPT*(X)) into itself.

Lemma 3.1. The Laplace operator Δ acting on p-forms is given by

(3.1) Δ = Σ 8ίjPj ° F* - Σ

the matrix (gίJ) is the inverse of the matrix (gij),gij being the compo-
nents of the Riemannian metric, and Γ^ are the Christoffel symbols defined by

™ — X v σ
ij " 2 V g y, ^ yα

Proof. This lemma is well known; see [4], [5].
Lemma 3.2. Lei AT1? •• , ^ m be C°°-vector fields on the open set U,

A € C°°(U, T(X) (x) Γ*(Z)), αnί/ the operators FXl, , F X m of covariant deri-
vation (wiψ respect to Levi-Civita connection) be denoted respectively by
Fi, , FTO. Γ/zen we /ιαve ί/ze following commutation relation:

(3.2) + £ Σ DP({7 o , . . o Γ M ) ) o Γ t+

where the second sum on the right hand side runs over all permutations σ of
{1, , m} such that σ(l) < < σ(k) and σ(k + 1) < < σ(m).

Proof. We shall prove the lemma by induction on m. First we prove the
lemma for m = 1, that is,

Vλ o DpA(a) = D M o F,(a) + D*(P\(A))(a) , a € C°°(C/, ΛPT*(X))

For p = 1, the above formula can be verified by direct calculations. But noting
that Vx and DP(A) are derivations, one easily observes that if the above formula
is true for ap, aq, ap <= C°°(£/, Λ ί )T*(Z)) and aq e C°°(C/, ΛqT*(X)), then it also
holds for a — ap/\ aq. Hence by induction on p, it follows that (3.2) holds for
m = 1.

Let r be a positive integer, and suppose that the lemma has been proved for
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m <r. Then we complete the proof of the lemma by the fact that (3.2) holds
for m — r + 1 since

Vλ o . o F r + 1 o D M

= Γ 1 o . . . o F r o D M o F r + 1 + F 1 o . . . o F r o D*(Fr

= D M o Fj o . . . o Vr o F r + 1

l)< .<ί(r)

o Fδik)(A)) o F 3 ( f c + 1 ) o . . . o VδΔ o F r + 1

/

V h) o F r + 1 U ) ) o F , ( ί + 1 ) o . . . o F , ( r )

by the induction hypothesis

= D M o Fx o . . . o Γr o F r + 1 +
 r g Σ

λ = l σ(l)< <«7(Λ;)
ί ( k + i X <<r(r +

Lemma 3.3. Let Xl9 —9Xm be C°°-vectόr fields on the open set £/,
A e C-(J7, T(Z) (x) T*(Z) ® Γ(Z) ® T*(X))9 and the operators F X l , . , VΣm

of covariant derivation be denoted respectively by F 1 ? , FTO. Then the formula
(2) holds.

Proof. It is enough to prove the lemma when A = B (x) C,B e C°°(U,
T(X) (x) T*(Z)), C e C°°(ί7, T(X) ® T*(Z)). Then we have

λ o DpA = Fi

= DpB o Vx o DPC + D*(Pι(B)) o D^C , by Lemma 3.2

D*C o Fx + D*B o D^CFiCO) + D^V^B) <g> C) , by Lemma 3.2

8) C) o Fx + D^(β ® FxCO) + Dv(Vι(B) ® C)

= D M o Fj +

Thus we have proved the lemma for m = 1, and the lemma follows for all
m by arguing inductively on m as in the proof of Lemma 3.2.

Let R = Σ Ί^jkiOldyd ® dyj (g) dyk (x) dyt be the curvature tensor field, and
for any two vector fields X, Y on U let R(X, Y) be the tensor field of type (1,1)
defined by

R(X, Y) = Σ Rί

jkιX{dyk)Y{dyι)±- ® dy, .
dy

Lemma 3.4. Let X, X19 . . , Z w fee C°°-vβcίor ^e/J5 defined on U, and the
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operators PXl, , V'Σm of covariant derivations be denoted respectively by

ru ,Pm. Then

m - 1

+ Σ Σ D'(V.m o o P,ΦR(X, X,a+Ό))
j = 0 ff(l)<...<ff(i + l)

σ(j + 2)<'-'<σ(m)

° ^ ( i + 2) ° * * * ° F, ( T O )

m

+ Σ F x o . . o Vi_x o F [ X . , X ] o F U 1 o . . . o F m .
ί = l

For m = 1, formula (3.3) for forms of degree one is just the defini-
tion of curvature tensor, and for forms of degree p > 1 it follows easily by
arguing inductively on p and using the derivation properties of the operators.
Then proof of Lemma 3.4 can be completed by induction on m as in the proof
of Lemma 3.2.

4. Construction of a parametrix and the fundamental solution

We shall first introduce some notation. Let U be an open subset of X, and
φ, y) a C-(p, p) form on 17 x U. Then a e C~(U X U, A PT*(X) ® Λ *T*{X)).
Since for all x € X the Riemannian metric induces a natural isomorphism of
ΛPΓ*(Z) onto the dual of ΛPT*(X), there is a natural identification of
Λ*T*U0 (x) ΛpΓ*(X) with Horn (ΛPΓ*(Z)? ΛPΓ*(Z)), and therefore we can
regard a as an element of C°°(U X £/, Horn (ΛPΓ*(X), ΛPΓ*(Z))). Let JC € U
and v β ΛPΓ*(Z). Then a(x, y)(v) is a smooth p-form defined on U, and will
be denoted by a(v9y).

For p-forms we construct a parametrix H^(t,x,y) in a sufficiently small
neighbourhood of the diagonal in X x X, t > 0, as follows:

(4.1)
9y) /rf//2(Σ ί^^,

where r is the geodesic distance between jc,y, and the smooth (p,p) forms
Uί>p(x, y) are to be determined such that U°>p(x, x) is the identity endomorphism
of ΛpT*(X) and

(4.2) ( A - ΛJ^α,Λ,y) = - ^ ^ ^ 4 ° V j y t / ^ ^ , y ) .

The integer iV is to be chosen larger than d/2. These conditions determine the
double (p, p) forms UίtP(x, y) uniquely in a sufficiently small neighbourhood of
the diagonal as we shall see now.

Fix an arbitrary point x of X and introduce normal coordinates in an open



240 V. K. PATODI

neighbourhood U of x such that gij(x) = δi3 and x has the coordinates (0, , 0).
Let F(r(x, y)) be a function of y depending only on the geodesic distance of y
from the point x, and a be a C°° p-form defined on C/. It is well known that
(see for instance [3])

Δy(F{f)ά)

idΨ, Λ , d - 1 dF ( v , \ dg dF r Λ < 2 dF, λr7 , , , „, , A
2 r dr 2g dr dr I r dr ^

where d/dr denotes the differentiation along the geodesic, and g(y) = det fe
Thus

4/2 It It Agtdr

and therefore

ί - d/2 _ j ^ _ 1 ,

ί 4/2 2ί

4 ί d /

4/2 2ί 2/

Equating the coefficient of e x P (-^7W)^-i i n /_9_ _ j W ^ ^ - y ) to zero,
(4πt)d/2 \dt I

n g t h e c o e f f i c i e n t o f P ( 7 W ) ^ i i n / 9
(4πt)d/2 \

we get

f\UKxty) + FrAUKx9y) ΔyΌKx.y) = o ,
dr I d

that is,

(4.3) Fr±U*'Kx9y) + [i + —^λυ*'* = άyU'-^ix,y) .
dr \ Ag dr I

Fix an arbitrary vector v e Λ P T*(Z). Then we shall show that in the open set
U the equations

(4.4) FrAU^(v,y) + (i + JL*L) &•*(?, y) =
d \ Ag dr I
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have unique solutions with the condition UOtP(y,x) = v; of course
U~ltP(x9y) = 0.

We rewrite equation (4.4) in the form

(4.5) Vr<L(?igιμUί'v(v> y)) — rίg1/*ΆyUί~1'p(v9y) .
dr

Let y be an arbitrary point of U, and uy(t),0 < t < r(x,y), be the geodesic
curve joining the points x and y. The curve uy(f) defines, with respect to the
Riemannian connection, an isomorphism TVtto of ΛpT*y{to)(X) onto ΛPT*(X),
0<t0< r(x, y). Let U°'p(v, y) = g-iμ(y)Ty>0(v). Then U°'p(v, x) = υ, and equa-
tion (4.5) is satisfied for / = 0. Let m be a positive integer, and suppose that
for / < m we have determined the forms UίtP(v9y) satisfying equation (4.5).
Then we define Um*p(y,y) as

Um'p(v,y)

It can easily be seen that Um'p(v, y) is a C°°-form and satisfies equation (4.5)
for i = m.

To prove the uniqueness, we first observe that equation (4.2) implies
iUitP(v9 x) = (J y t/*"1>p(v, y))(v9 x). Therefore it sufficϊes to prove that any C°°-
solution a of Vr±(a) = 0 satisfying the initial condition a(x) = 0 vanishes iden-

dr

tically. But this is obvious because Vr±(a) = 0 implies that for all y € [/, a is
invariant under the parallel displacements along the geodesic joining the points
x and y. Thus we can construct the parametrix H^(t, x, y) in a sufficiently small
neighbourhood W of the diagonal mX X X. Let W be an open neighbourhood
of the diagonal such that the closure of W is contained in the interior of W,
and φ(x,y) be a C°°-function o n Z x Z such that ψ(x,y) iszerooutside W and
is one in a neighbourhood of the diagonal. Then we define

Gp

N(t9 x , y) = ψ(χ, y)Hp

N(u x> y) ,

The double form G&(ί, JC, J ) is a parametrix in the large, and is a C°° -double
form. It can be verified that for any smooth p-form ψ(t9 x) one has

Lt f G&(*,*,)0 Λ *φ(t9x) = p(0,y) ,
ί-»0 J

where in the limit t tends to zero only through positive values. For the sake of
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simplicity of notation we shall fix p, N and denote K%(t, x, y) by K(t, x, y).
We now complete the construction of the fundamental solution of the opera-

tor — — J. We first observe that if M, N19 N2 are vector spaces and there is
dt

given an inner product in M, then there is a natural map r: ( M ® ^ ) x (M®N2)
-^Nλ®N2 such that

τ((m (8) fli), {mf ® n2)) = (m, m ' ) ^ (x) n2 , for ra, m! e M, nve N19 n2 e N2 ,

<, > being the inner product in M. We shall denote the element τ(x, y) for
xeM®N1 and y €M(x)N2 by the symbol O,y) itself.

Inductively we now define

K™(t, x, y) = J'ds j(Km-\s, x, z), K(t - s, z, y))*,l , m > 1 ,
X0 X

*21 being the volume element. Since X is compact, there exist finitely many
open sets F15 , Vq and £/15 , Uq such that Vr C ί7r, C/r is diffeomorphic

q

to i?ώ, 1 < r < q, and X — y}Vr. Choose a partition of unity {φr}i^r^q relative
r = l

to the open covering {Vr}^^, and let ψr be C°°-functions which are 1 on Vr

and have supports contained in Ur. For any double form L(x,y) define

LitJ(x9y) = ψi(x)ψj(y)L(x,y) ,

and for a form

£(*,y) = Σ U^iv,)x...hdxiχ A -" Adxip(S}dyjlA " A dyjp

ίi< ••• <ip

with support contained in Ot X Uj define

l | i Ί k i = Σ Sup \Lix...ipJx...JV\.
< i < < i p x € U £ U

Then by (4.2), || JKĴ  ||ipi < MtN~d/2 for some constant M. Suppose we have
proved that

with a constant C. Then
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KTj(t,x,y) = j'ds J (ψlx) Σψr(z)Km-\s,x,z), ψj(y)K(t - j,z,y)) *, 1
OX

= Σ f'ds j [φ£x)φr(z)K»-\s, x, z), Krj(t - s, z, yή *21 .
0 X

Therefore

II Kfjif, x, y) || < Cx Γ(m(N — d/2) + m)

. Γsm(N-d/2) + m-l(t _ s)N-d/2ds ?

0

where CΊ is a constant independent of m, so that, by choosing C > C1?

1 ) W~ώ / 2 ) + w
()

< ( C M ) m + 1 / ( m +

Γ((m + 1)(N - rf/2) + m + 1)

We set

(4.7) n r

= G%(t,x,y) + Σ ( -D m + 1 ds (Km{.s,x,z),Gl(t - s,z,y))*z\ .
m^O J J

0 2Γ

On account of the estimate (4.6) and the similar ones which we can obtain by
introducing partial derivatives also in above norms, the series on the right hand
side of (4.7) converges nicely to a double form. Hence ep(t, x, y) is a C°°-(p, p)
form, and we have

1 - JyW(/,*,)0) = K(t,x,y) + Σ (-Όm+1(K™(t,x,y) + Km+1(t9x,y))
at I m^o

= K(t,x,y)-K(t,x,y) = O.

The double form ep(t, x, y) is the fundamental solution for the heat operator
acting on p-forms.

From now on we shall fix a point x of the manifold X. We introduce
normal coordinates in an open neighbourhood U of x such that gij(x) = d.^.
By the estimate (4.6) we have

J
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= 0 Γ d s f e x p / ( K z , * ) ) 2 \ ( , _ s y a n s N - d / 2 χ β l 9 t I o
J J \ 4(t-s)l

= 0 Γds Pexp ί- _ — ) ( t - s)-d/2sN-d/2rd-ιdr

= 0 Γds Γe~u\t - s)-d/2sN-d/2ud-ι(t - s)d/2du ,
0 0

by making the substitution r \-+ 2u(t — s)1/2

= 0 ΓsN-d/2ds = 0(^" d / 2 + 1 ) , ί I 0 .
0

Therefore by (4.7) we get

ςΐτe*)(f9x,x) =

= (4τrO-d/2 Σ ί* Tr l/« *(jt, *) + 0 ( ^ ' d / 2 + 1 ) , by (4.1) .
i = 0

The double forms UitP(x9y) satisfy equation (4.1). Since U°'p(x,x) is the
identity endomorphism of ΛPT*, we have

(Tr «*)(*,*,*)

= (4τrO-d / 2 | ί^) + Σ ί* Tr C/' ̂ JC, JC)| + 0(^" ώ / 2 + 1 ) , t[0.

5. Proof of the theorem

Suppose that the dimension d of the manifold is an even integer In. In view
of (4.8), the theorem is an immediate consequence of

d (0 for / < n ,
Lemma 5.1. (4π)~n Σ ( - * ) p Tr U^p(x, x) =

P=O (C for i = n ,
C being Chern's polynomial at the point x:

3 W % f

ί/zβ .swrn ΓWAW over all the permutations σ,δofl, < 9 2n, εσ and εδ are the
signatures of the permutations σ and δ respectively, and Rijkι are the com-
ponents of the curvature tensor {see [1]):

R = Σ Rjiu~<8)dyj(8)dyk®dyι.
dy
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For the proof of Lemma 5.1, we will need the following
Main lemma 5.2. Let l19 l2, /3, i be nonnegative integers such that one of the

following conditions is satisfied
iCλ) k > 0 and h + 2/2 + l3 + 2i < d,
(C2) I1 + 2l2 + lz + 2i<d.
Let σ be a permutation of {1, , h + hh a n d Bβ{X)9 -9Belll) and Bβ{h+1)9

. . . , B α { I l + I | ) be arbitrary C°°-sections of Γ(X) (g) T*(Z) and T(X)®T*(X)
® T(Z) ® T*(X) defined over U respectively. Let {j19 ,jls} be a sequence
such that each j r is a positive integer between 1 and d, and the operators
V d , (7 a , . . . be denoted respectively by Vj9 FJ2, .. Then

3^ 3^

Σ ( - D p Tr [ D ^ o . . . o D ' B l l + ϊ β o Γ i 4 o . . . o FjWix, y))](x, x) = 0 ,

where all the operators act with respect to the variable y.
Proof of Lemma 5.2. We shall prove the lemma by induction on i and Z3.

Let ί be a nonnegative integer, and suppose that the lemma has been proved
whenever i < s and the integers l1912, /3, / satisfy at least one of the conditions
(Ci) and (C2). We shall prove the lemma for / = s.

Let Bv be the operator defined by

B? = D*BX o o D*Blι+ι% o Vjχ o . . o Fjh .

U*>p(x9y) satisfies the differential equation

rr±u(x9y) + Is + f
(5.1) dr \ 4g dr

= (Σ g'Wj o Vk - Σ ^ ^ J / α + DΊOE/ - 1 - ' ^ ) , by (1.2) .

First suppose that Z3 = 0. If s = 0, then the result follows from Lemma 2.2.
Therefore we can assume that s > 0. Since the double form Ψr±ϋ^v is zero at

dr

(x,x), we have

Σ (-l)pΊτ [BP(FrAUs>p)](x,x) = 0 .

By first applying the operator Bp to both sides of equation (5.1) and then taking
trace we thus obtain
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= Σ 8kJ Σ ( - D p Tr [B> O FJ O Vtϋυ-^x, y)Wχ, x)
kj p=0

(5.2)
- Σ skira

kJ Σ ( - Vp Tr \p> o rβ(t/-'.*(*, ?))](*, *)

+ Σ ( - D p Tr [B* o DPΛd/ -1.^*, y))](jc, JC) .

Since each term on the right hand side of (5.2) is zero by the induction hypo-
thesis, we have

Σ(-~i)*τi[B*(U'>Kχ,y))}(χ,χ) = o .

Now suppose that /3 > 0 and the result has been proved for smaller values of
Z3. For first applying the operator Bp to both sides of equation (5.1) and then

taking the trace, we first note that ,r— = . In fact, r =
Idyi dr J dyt dr

Σ CVi — Xj) s o ώat

_ x
3

) γ(y x ) + r +
dr) ^ *1 3 dyt dyό dyt dr dyt dy,

Therefore by Lemma 3.4, Bp o F rA equals Z ) ^ o . . . o DpBll+ι%ofr± o F i i o

• o FiZa + /3JB
p plus a sum of operators for each of which the induction hypothe-

sis for Z3 is satisfied (with i = s). Also the form F rA ° Vjx o o Fjh(Us>p(x, y))

is zero at (JC, JC). Hence we have

Σ ( - 1 ) ' T r [ B * o pr±(U'>*)](x9 x) = l3Σ(- l ) p T r [Bp(Us>p)](x, x) ,
p = 0 <*r p = 0

and also

A d I I \Ag dr I I \ Ag dr

+ Σ Σ
ί ) ( )

By the induction hypothesis we therefore get
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Σ ( - D p Tr \βp ( i s + — 4 r - ) U'-A\x, x) = sΣ(- 1)P Tr [Bp(Us>p)](x,x) .
P=O L \\ Ag dr I IA p=o

Similarly,

Σ (-1)* Tr [B* o gWj o Fk(Us-^)](x, x) = 0 ,

Σ (-D p Tr [βί o g&^/α(t/s-^)](x,x) = 0 .
p = 0

Finally Lemma 3.3 together with the induction hypothesis gives

Σ ( - Vp Tr [B* o DpR(U8-^p)](x9 x) = 0 .

By first applying the operator Bp to both sides of equation (5.1) and then tak-
ing trace we thus obtain

(/3 + s) Σ ( - D p Tr [B*(U'>*(x,y))](x9x) = 0 .

Since /3 + s > 0, we have Σ ( - l ) p Tr [Bp(U8>p(x, y))](x, x) = 0, which com-
p=0

pletes the proof of Lemma 5.2.
Proof of Lemma 5.1. Using the Main Lemma 5.2, we shall now prove

Lemma 5.1. As an immediate consequence of the main lemma we have

Σ ( - D p Tr L/^O, JC) = 0 for i < n .
p = 0

On the other hand, by equation (5.1) we obtain

« Σ (-DpTr Un'p(x,x)
p=Q

= Σ fix) Σ ( - Dp Tr [Γ4 o Γ/t/"-1^)]^, x)
kj p = 0

(5.3)
- Σ 8kKx)ΓUx) Σ (-DpTr[Fa(C/"-

/ 0

The first two terms on the right hand side of (5.3) are zero by Lemma 5.2 so
that
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P=O n P=O

_ 2 g(x) Σ

1

( - 1 ) * Tr [Dm o Γj o F*(£/»- 2 *)](JC, JC)

Σ

( - D p Tr [D*Λ o DPΛ(t/«-2 *)](Λ, Λ) , by (4) .+ ^ Σ

Again by Lemma 5.2 the first two terms on the right hand side of (5.4) are
zero so that

Σ ( - l ) p Tr !/»•*(*, JC) = Σ (~ ! ) p T r \PVR ° DW(Un-2>p)](x9 x) .
P=O n(n — 1) 2>=o

Proceeding thus we finally get

Σ ( - l ) p T r 17»^(JC,JC) = — Σ ( - D p KDW)n(ϋ°>P)](x,x)
P=O n\ P=O

= — Σ (—l)p trace of the operator (DpR)l .
n\ P=O

Therefore by Lemma 2.3 we obtain

(4JΓ)» ^

1

22 n7rn/i! 7

J3n nΓ

ff(2)3(2)

ε f ε

by using the formula Rijkl — Rikjι + RUJk = 0

= C .
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