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NONDEGENERATE CURVES ON A RIEMANNIAN
MANIFOLD

E. A. FELDMAN

1. Introduction

Let Z b e a connected Riemannian manifold of dimension n > 3. By a non-
degenerate curve we mean a C2 immersion γ of the interval / or the circle C
into X, such that the square of the geodesic curvature kg(γ)2 never vanishes.
By forcing the geodesic curvature to be positive we are able to associate with
γ a moving orthonormal 2-frame (t(γ)(t), n(γ)(t)), t(γ)(t),n(γ)(t)ζT(X)r{t) along
γ, where t(γ)(t) is the unit tangent to γ, and n(γ)(i) is the principal normal;
these all will be discussed in more detail in the next section. We can also as-
sociate with γ the continuous positive function kg(γ)(t) given by the geodesic
curvature. Let π0: V2(X) —> X be the Stiefel bundle of orthonormal two frames
constructed from T(X). Thus, we can associate with γ, a curve φ(γ)(t) =
(r(0, *(r)(0, w(r)(0, kg(γ)(t)) in the bundle Γ: V -> X where V = F 2(Z) X # +

CR+ being the positive reals) which is a cross-section over γ. Let us pick 0O e C,
and Ί; 0 = (xQ, tQ, n0, kQ) e VXQ. Let No be the nondegenerate immersions γ of the
circle C into X, such that φ(γ)(θo) = vo. Our main theorem states that φ, which
associates with each γ ζ. No a loop φ(γ) in F based at v0, in a weak homotopy
equivalence, and hence by Whitehead's theorem a homotopy equivalence
(provided No has a suitable topology). Hence we see that the arc-components
of Λf0 (nondegenerate regular homotopy classes) are in a one-one correspon-
dence with the elements of πλ{V2{X) X R+, vQ) = π1(v2(X), (xQ, tQ, n0)). In the
case where X = R3, with the Euclidean (flat) metric we recover the main
theorem of [3].

2. Definitions and an outline of the paper

Let X be a Riemannian manifold of dimension > 3 , g its Riemann metric,
and D the Riemannian connection (covarient derivative) induced by g (see [6]).
Let γ: I —• X be an immersion, t parametrize the interval [a, b] = I, γ(t) be the
parametrized curve, and γ(i) = dγ/dt\t = dγidjdt) εT(X)rU) be the tangent
vector of the parametrized curve γ(t). The square of the geodesic curvature is
g i v e n b y t h e f o r m u l a kg(r)(t)2=\ f(t) \;(%\DHt)t(γ)(t) \>ω w h e r e t(γ)(t) = f(t)/\ f(t) \ΐ(t)
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is the unit tangent vector of γ at γ(t), and \v\nt) = g(γ(t))(v9v)1/2 where
v e T(X)rit). It is easy to see by a direct calculation that this number is indepen-
dent of the orientation and parametrization chosen for /. Let us fix once and
for all, an orientation for /. If γ is nondegerate, we can define a unique princi-
pal normal vector by the formula

n(r)(t) = [Dr

We will always follow this convention. It is again easily seen that n(γ) is inde-
pendent of the choice of parameter on /. (It does depend upon the orientation
which we have fixed.) Finally, we set kg(γ)(t) = + </kg(γ)(t)2. We note that
kg(γ) and n(γ) are of class C fc"2, and t(γ) is of class C*"1, whenever γ is of
class Ck.

Let τr0: V2(X) —• X be the Stief el bundle of 2-frames in n-space associated
with the tangent bundle T(X). By this we mean for each xeX, the fiber
KQKX) = V2(X)X is the Stief el manifold of orthonormal 2-frames in the Euclidean
vector space {T(X)X, g{x)). We recall that V2(X)X is compact, and can be viewed
as a closed submanifold of Sx X Sx where Sx is the unit sphere in T(X)X. In
fact most of the time we will view V2(X)X as a closed bounded subset of
T(X)X X T(X)X, i.e., V2(X) = {(v,ω) € T(X)X X T(X)x,\v\x = \ω\x = 1, and
g(x)(v,ω) = 0}. Finally, let V = V2(X) X R+, where R+ denotes the strictly
positive real numbers, and let π: V —• X be the composition of the projection
onto the first factor followed by τr0.

Let us fix an orientation for the circle C, and let / = [0,2]. Let us set
E(I,X) = {/: [0,2] -^ X\f is C2, and / is a nondegenerate immersion}. Let
E(C, X) be those elements of E(I, X) which can be extended to a C2 periodic
map of period 2 and principal domain of definition [0,2]. Let us endow these
sets with the C2-topology. (The two possible choices of C2-topology agree be-
cause / and C are both compact, [2], [8]. In fact, these are open subsets of
the function spaces consisting of all mappings C2(I,X) and C 2(C,Z).) The
elements of E(I,X) and E(C,X) are the parametrized non-degenerate curves.
Let ND(I, X) and ND(C, X) denote respectively the set of equivalence classes
of elements of E(I, X) and E(C, X), where we identify / and g if and only if
they differ by an orientation preserving C2 reparametrization of / or C. If we
identify an element of E(I, X) which is parametrized proportional to arc length
with the corresponding unique element of ND(I, X), we can view ND(I, X) as
a subspace of £(/, X). Let us define R: E(I, X) x [0,1] -+ ND(I, X) by the
formula R(γ, u){i) = γ((l — u)t + usr(t)) where sr is the parameter proportional
to arc length, and t is the given parameter. R is continuous and defines a de-
formation retract of E(I, X) onto ND(I9 X), and therefore these spaces have
the same homotopy type. Let Ck(I, M) denote the Ck functions from / into a
manifold M with the Ck topology.

If γ <= ND(Iy X) or £(/, X), let t(γ) € Oil, T(X)) denote the map t(γ)(t) = unit
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tangent vector to γ at γ(t). The induced map t: E(I, X) —• C\I, T(X)) is clearly
continuous. Similarly we can define continuous maps n: E(I, X) —• C°(/, T(X))
and kg\ E(I,X) -> C°(I,R+) by the formulas n(γ)(t) = principal normal to γ
at γ(i), and kg(γ)(t) = geodesic curvature of γ at f(ί). We can also define
v: E(I, X) -> C°(/, F) by v( r)(0 = ( r(ί), ί( r)(ί), n( r)(ί), kg(γ)(t)). When we re-
place / by C all the same statements hold true. Let us pick v0 = (JC0, tQ, nQ, k0) € V,
let Eo = {γe E(I, X) \ v(γ)(Q) = vo}, and give EQ the induced topology. We can
now state precisely our main theorem.

Theorem A. Let p: EQ-*V be defined by p(γ) = v(γ){\) p is clearly a con-
tinuous map. Let us pick a base point γQ € p~ι(vQ), and let p^: πk(EQ, p~ι(v0) γ0)
—> πk(V, v0) be the usual induced map on homotopy groups (and sets). Then
p^ is an isomorphism for all k > 2, and a bijection fork— 1.

We prove this by showing that the triple p: EQ-+V satisfies enough of a
homotopy lifting property to imply p* is a bijection. We define and discuss this
property in some detail in § 3, and show among other things that it is a local
property.

Pick a point θoeC, and let iV0 = {γeND(C,X)\v(γ)(θQ) = vQ}. Thus the
deformation retract defined by R gives us a homotopy equivalence between the
spaces p"Kvo)9 P~ι(vd ΓΊ E0(C, X) and NQ. We show in § 7 that πi(E0, γ0) = 0
for all /. Therefore the homotopy sequence implies that πi(N0, γ0) s πi+ι(V, v0)
= ^«+1(^2(^0> (χ09 h> πo)) J assuming γ0 is parametrized proportional to arc length.
If we set / = 0, we can classify the arc-components of JV0, i.e., the based non-
degenerate regular homotopy classes, by looking at πλ(V2(X), (x0, tQ, nQ)). Let
β 0 = {γ e C°(C, V)\γ(θ0) = vQ}9 where Ωo has the C° (compact-open) topology.
Let φ: No -* Ωo be defined by φ(γ)(t) = (γ(t), t(γ)(t), n(γ)(t), kfy)(t)) φ is con-
tinuous and by our theorem a weak homotopy [equivalence. Both No and Ωo

carry the structure of paracompact Banach manifold [10]. Hence by theorems
of Palais [9] these spaces satisfy the hypotheses of the Whitehead theorem.
Thus φ: No —• Ωo is a homotopy equivalence.

We will close this section by outlining the remainder of this paper. § 3 as
mentioned deals with a local lifting property which will imply Theorem A. In
§ 4 we compare locally the case of an arbitrary metric and the flat metric
induced by taking Riemann normal coordinates as orthonormal coordinates of
a flat space. We can then reduce the "curved" space problem to a slightly more
involved "flat" problem. The crucial lemma of this paper is Lemma 5.1. It is
a generalization of the proposition in [5] also see [3,2.1]. The idea is as fol-
lows. Let λ: [0,1] —• S71'1 be an immersion, and p(t) > 0 a C1 function. Then

γ(t) = Γλ(τ)p(τ)dτ is nondegenerate, ί(r)(l) = λ(l),n(γ)(l) = ί«)(l), and
0

kQ(γ)(l) = 1//>(1). If we use Proposition 4.1 to reduce the problem to a Eucli-
dean one, we can then try to apply Smales immersion theorem [11], to curves
on the sphere, and then try to construct the desired nondegenerate curves γ by
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picking the appropriate weighting function p. However, in our lifting problem we
must be able to construct p such that γ(l) = x, x being some relatively arbitrary
point near 0. In § 5.1 we see how arbitrary x can be, provided λ has some nice
properties. In § 6 we prove some technical lemmas which enable us to apply
Lemma 5.1 by insuring that our >Γs have the desired properties. § 7, entitled
odds and ends, contains a technical reparametrization, Lemma 7.1, and the
proof that Eo is weakly contractable, Corollary 7.2. In § 8 we reduce the proof
of Theorem A to an abstract Theorem 8.2, which we prove in § 9. In § 8 we
have to introduce certain Sobolev spaces. Anything we need can be found in
[ l ,pp. 165-168].

3. Abstract topology

LetIn = the n-cube={(jc15 , x n ) | 0 < J C £ < 1,1 </<n}CjRw,Iΐ^={xzln\xk

= /}, i = 0,1, Fn~ι = U I*-* dln = U Iϊϊ\ and Jn~l = {xedln\x$Int I^1}.
k = l ' (*,ΐ) ' '

Definition 3.1. A one parameter family of maps ht: In -* In, 0 < t < 1,
is said to be an admissible deformation of ln if:

i) the induced map H:I χln^>ln defined by Hit, x) = ht(x) is continuous,
ii) h0 = id, Λί | F 7 1 " 1 = id for all t e [0,1], and

iii) ht(dln) e dln for all / e [0,1].
Remark. Let ht be an admissible deformation of In, and X: {ln,Fn~ι) ->

{In,Jn-χ) a homeomorphism mapping F 7 1 " 1 homeomorphically onto J72"1. Let
At = A: O ht o K1 and let H: / x /n -> /w be the induced map defined by H(ί, JC)
= ht(x) = KoH{t,K~lx). Then H is continuous, A4(Λ:) = x for all jceZ71"1,
ίe[0,1], Λo = id and ht(dln) c a/w. Hence, if we replace F " " 1 by Z71"1 in Defini-
tion 3.1 we get a completely equivalent notion.

Definition 3.2. Let ht: In -+In,0 <t < 1, be an admissible deformation of
In. We say ht is a strong admissible deformation if Λ^/Jj1) cz /jfj1 for 1 < & < «.

Definition 3.3. Let π: E -* 5 be a triple where £ and 5 are topological
spaces, and π is a continuous map.

We "sa y {π: £ —• 5} has (strong) property P, if for each n and each pair of
continuous maps φQ: In —• B and 0: F 7 1 " 1 —• E such that TΓ O ψ — φQ\Fn~ι, we
can find a (strong) admissible deformation ht of P and an extension Ψ of 0 to
all 771 such that πoψ =z φ0oh1.

Let us note that there is a notion exactly equivalent to Definition 3.3 if we
replace F71'1 by Jn~ι. In fact, {π: E —> β} has property P if and only if it has
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property P with J71'1 replacing Fn~ι in Definition 3.3. If we use this remark,
and then apply the usual proof in the case where π: E —* B is a Serre fibration
(see [7]) we get the following important proposition.

Proposition 3.4. Let π: E-+B be a triple consisting of two topological
spaces and a continuous map which satisfies property P. Pick bQzB, and
yQ^π~\b^ = F. Then the canonical map π*: πn(E,F; yQ) -> πn(B,bQ) is a
bijection (1 — 1 and onto).

The following elementary proposition follows immediately from the defini-
tions.

Proposition 3.5. Let π: E1-^B, and p: E2-*EX have (strong) property P.
Then π o p: E2—>B satisfies (strong) property P.

Definition 3.6. Let E and B be topological spaces, and π: E -+ B a con-
tinuous map. Let φ: In —• B, and φ: Fn~ι —• E be continuous maps such that
π o ψ = φ\Fn~K By a deformation of (φ, φ) we mean a continuous map
φ: Fn~ι xI^E such that π o φt = ψ on Fn~ι and φQ=φ where φt — φ\ Fn~ι X {*}•

Proposition 3.7. Let π: E —> B be as above. Then π has (strong) property
P if and only if, for each n and each pair of continuous maps ψ\ ln —> B and
φ: F71'1 such that π o φ = φ\Fn~\ we can find:

ϊ) a deformation φt of (φ, φ),
ii) a (strong) admissible deformation ht of In, and

iii) an extension ψ of φx to In such that π o ψ = ψ o hλ.

Proof. If π: E —> B has (strong) property P, this is a triviality. Let ψ: In —• B
and φ: Fn~l —> E be a pair of continuous maps such that π o φ = ψ\Fn-χ. We
want to find a (strong) deformation ht of ln and an extension Ψ of φ to In such
that π o ψ — ψ o hx. Let us define a (strong) admissible deformation ht of In as
follows. Let ht be the (strong) admissible deformation given by ii) in the hypo-
theses. L e t C ^ O c e / ^ l ^ ^ c ^ D f o r O ^ ί ^ l , andΓ^={(* ! , . >,xn)\xeln,

xk = st/2, st/2 < xt < 1 for / φ k, 0 < s < 1}. Then In = \J Γg>0 U Ct for
k = l

each fixed t. Let us introduce the following shorthand if v = (x, , xn) e Rn

and a e R, by x — a we mean (xλ — a, , xn — a). We will now define ht. If

Λ:€ Ct, then define (Λ^Λ:)),, = (htl
x~ ^2\\ , and if x€ Γ<% then xk = jί/2,

\ \ 1 — tjZii Ik

0 < s < 1, and set (ht(x))k = 0 and (AXJC))^ = (Λ:Z - Jί/2)/(l - st/2). We then
see by direct calculation that hQ = id, ^ IF7 1"1 = id, and ht is well-defined and
is a (strong) admissible deformation of In. Let ^ be the extension of φ1 to ln

given by i) and iii). We define the desired Ψ on Cx by Ψ(x) = r ^ ~ ^ 2 ) . If

JC € Γgi, then 0 < xk < 1/2, say xk = s/2,0 < s < 1, and therefore s/2 <xt<\

for lφ k. Ψe then set ?Γ(Λ:) = φs(hι(x)). We can then check directly that Ψ

extends φ, and ^ is continuous and well-defined, and that π oψ = ^ o hλ. This

completes this proof.
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Definition 3.8. Let E and B be topological spaces, and π: E -> B a con-
tinuous map. We say π: E —> B has strong local property P if for each x e B
there exists a neighborhood C/ of x such that π: π~ι(JJ) -^U has property P.

Theorem 3.9. // π: E -+ B has strong local property P, then it has strong
property P.

Proof. For each b eB, let Ub be an open neighborhood of b such that
7Γ: π~ιiUb) —> ί/6 has property P. Let φ: In ->B, and ψ: F7*"1 —>E be continuous
maps such that πoφ = φ on Fn~λ. The sets φ~\Ub) forms an open cover of 7W.
Hence by the Lebesgue covering lemma there exists an integer N > 0 such that
any subcube of In, with sides parallel to those of In and side of length 1/iV, is
contained in one of the sets φ~\Ub). Let Bτ = Biχt...Λn = {x € In \ ik/N <xk< ik

+ l/N},0 < ik < N - 1,1 < k < n. Set BItk\ = {xeBz\xk = h/N},BItkfl

= {x e Bj \xk = ίk + 1/N}, and F 7 = U J57A;>0. The .Bj's cover In, and each 5 7
fc = l

is contained in one of the sets φ~\Ub). We will order the (N)n n-tuples
/ — (iί9 . . . , ϊn) lexicographically. If / is an n-tuple, let / + 1 be the n-tuple
immediately succeeding /, and v(I) the number of π-tuples less than or equal
to /. We now construct the continuous extension Ψ of ψ and the strong admis-
sible deformation ht of ln by induction.

Induction step I. Let Cτ = Fn~ι U U BIt. Assume there exist a continuous

mep ΨI:CI-*E extending ψ, and a continuous function Hj: [0, /(/)] χln-^>ln

where 7(7) = v(I)/Nn with the following properties. Set / ^ O ) = Hz(t,x).
Then A7>0 = \ά,hItt\Fn-1 = id for 0 < ί < /(/),A/,ί(/?J1) c '/f j 1 and Γ O f7

= Ψohi,jσv

We will now prove our theorem by showing that step I implies step I + 1,
and noting that step 0 is trivially true, and step (N)n is the desired result. Look
at BI+ί and note that F 7 + 1 = £ 7 + 1 Π C 7 . Letf=<pohItJ(I)\BI+l, and/? = ? F 7 | F 7 + 1 .
But we know that BI+1 is contained in one of the φ-ι(JJb). Hence we can find
continuous maps K: [/(/),/(/ + 1)] x BI+1-+BI+1, and P : BI+ι->E extending
p with the following properties. K(J(I),x) = x,K(t,x) = x for *<=F 7 + 1 and
t e [7(7), 7(7 + 1)], K(t, x) 6 BI+1>k>λ for x € BI+1>ktl and / € [7(7), 7(7 + 1)], and
π o P(x) = f(K(J(I + 1), JC)) for x e BI+ι. Define ΨI+1: C J + 1 = C 7 U 5 7 + 1 -> ^
by ^7+11C7 = ?Γ7 and WI+1\BI+1 = P. ¥I+ι is clearly a well-defined contin-
uous extension of ψ. We now extend K: [7(7), 7(7 + 1)] X BI+1 —• ^ 7 + 1 to a
map £ : [7(7), 7(7 + 1)] x 7W -> 7n as follows. If for some Λ, JCΛ < 4/Λ^w, then
we set K(t, (x19 - ,jcn)) = (*!,.••,*„). We are left with the case where
*Λ > ik/Nn for all A:. We then set K(t,x)k = ^fc provided *fc > (ik+ί)/Nn. We
define jc by the formula (x)t = Λ:Z if /i/Nw < ^ < (iί+1)/Nn for some index /,
and by (jc)Λ = (ik+1)/Nn it xk > (ik+1)/Nn. Then x e £ 7 + 1 , and we set £(* ,*) ,
= jfiC(ί, jc)j where / is an index such that it/Nn < xx < (iι+ι)/Nn. Note if we
set kt{x) = K(t,x), the kt have the following properties. kt(x) = x for all
x ^ C 7 , kJ{I)(x) == Λ: for all JC € 7W, and kt{ln

k^) c 7^jx for all ί. Let us define
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ht(x), 0<t<

and set HI+ι(t9x) = AJ+lft(jc). It is then easy to directly check that HI+1 and
ΨI+1 have all the desired properties.

In the remainder of this paper we will prove the following theorem.

Theorem A'. Let p: E0-*V be the triple defined in § 2. Then p: EQ->V
has strong local property P.

By using Proposition 3.4 and Definition 3.8 we see that Theorem A' implies
Theorem A. Let (*0, v, k) e V, we want to look at neighborhoods U of this point
of the form U = W χV2χ (Λo, oo), where kQ < k and W is a sufficiently small
neighborhood which is the domain of x0 centered Riemann normal coordinates
(x19 - , xn). The exact form of the neighborhood U will be chosen in the next
section. However, given ψ:Fn-χ-^p-\V) and φ: In->U such that poψ=(p\Fn-1

we cannot lift φ immediately because of the nature of our lifting mechanism.
We must first "reparametrize" the cube In, and preform some preliminary de-
formations on the curves in ψ. It is because of this that the topological abstrac-
tions of this section are needed.

4. A local comparison to determine the desired neighborhood

Let (X, g) be the given Riemannian manifold, and let (x, ϋ, k) € V, k e R+,
v = (?, n), and v € V2(X)~. Let U = W x V2 X (Jfc, oo), where 0 < k < k, W
is the domain of x-centered geodesic coordinates (x19 -,xn) and V2 is the
Stiefel manifold of orthonormal 2-frames in π-space. Let the metric tensor g
take its usual coordinate form g(x) = J] gίj(x)dxίdxj on W. We recall that
gijiO) = gijix) = δij, (dgij/dXjcXO) "= 0, and therefore the Christofϊel symbols
/^(O) = 0. If we identify the tangent space T(X)X9 xeW, withR71 in the usual
way (i.e., a = (a19 , an) is identified with Σ a^d/dXiXx)), then we note that
as x varies over W9 we identify V2(X)X with a slightly different subset of
Rn x Rn determined by the variation in the metric. This identification clearly
varies smoothly with xeW. We can also define upon W the flat metric gF =
2 δijdx^xK If γ: I —> W is a nondegenerate immersion with respect to g(gF)
we call it g(gF)-nondegenerate. If γ: I -+ W is ^(gF)- degenerate let t(γ), n(γ),
kg(γ)[tF(γ),nF(γ),kF(γ)] denote the unit tangent vector, the principal normal
vector, and the geodesic curvature of γ calculated with respect to g(gF).

Let us pick (JC, v, I) e W X V2 X (k, oo). Furthermore, assume v = (α, Z>) € .Rw

X jRw, where Σ (ai)2 = Σ (bι)2= 1 a n d Σ Λ i b i = ° (i e

 ? (
fl» fc) i s a 2-frame

with respect to the flat metric). Let t0 e I, and γ: I -> W be a g^-nondegenerate
curve such that /(ί0) = x, tF(γ)(t0) = a, nF(γ)(t0) = b, and kF(γ)(tQ) = I. We then
see ί(r)(ίo) = <i/(Σ gtjtoaiaj)1'2, and (^(r)(O)2 = ( Σ ^ , W ^ / ) " 3 ( [ Σ ^ , W « ^ ]

] - t Σ gίjWfl^]2), where ct = bj + Σ Γ^ix)^^. Hence
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t(γ)(t0) and kg(γ)(t0) depend upon x, a, b and / alone and not on our choice of
γ. We can use these formulas to define the functions t(x, a) = t(γ)(t0) and
* , ( * , a, b, I) = kg(γ)(tQ). Now kg(0, a, b, I)2 = l\ and 3(Λ,(0, a, b, ϊ)2)jdl = 21.
Hence because of the compactness of V2 we can find a neighborhood WY of
0,W,QW such that * , ( * , α, b, I)2 > (2£/3)2, if k < I and JC e Wλ. In that
^(^)(/0) = kg(x,a,b,l) > 0 if xeW19 we can define the principal normal
n(γ)(t0) = kg(x, a, b, Z ) " 1 ^ & / * K ^ )- 2 M where d = c(Σ ft/*)^) -
« ( Σ 8ij(x)^Cj)9Cj = bjl + Σ Πk(x)<*tak and c = (c1? , c j . We see that

n(^)(ί0) does not depend on γ but only o n ^ 5 v = (a, b) and /, and we can then

set n(x,a,b,l) = n(γ)(t0). Hence we have defined a smooth 1-1 map a:

W,χV2χ (k, oo) -> Wx X V2 x (2Λ/3, oo) by the formula a(x, (a, b), I) =

(x, t(x, a), n(x, a, b, I), kg(x, a, b, /)).

Let us pick (x, v,l)ζWχV2χ (k, oo) where we assume v — (a, b)ζ.Rn x Rn,

Σ 8ij(x)aίaj = Σ Sij(x)bibj = 1, and Σ SiM)Φj = 0 (i e., («, b) is an ortho-

normal 2-frame in the metric g(x)). Let toel, and let us choose a g-nonde-

generate curve γ: /-> W such that fO0) = x, t(γ)(t0) = a,n(γ)(t0) = b and

kg(γ)(tQ). We then see that tF(γ)(t0) = α/(Σ (fli)2)1/2 = ^(JC, α). We also see that

kF(γ)(toy = (Σ fe)2)"3[(Σ fe)2)(Σ fe)2) - (Σ*Λ)2] = kF(x,a,b,iy where
cfc — bkl— Σ Γίj(x)aίaJ' Hence A:^(^)(ί0)

2 depends only on (x, a, b, I). Further-

more /^(0, a, 6,1)2 z=z l\ and d(kF(O, a, b, l)2)/dl = 21. By the compactness of

V29 we can find a neighborhood ίF2 of 0, W2 c PF such that **.(*, α,fc,/)2 > (2λ/3)2

ίoτ l> k and r € Ψ 2 . Since kF(γ){Q = kF(x, a, b,l)>0 for xzW2(l> k),

we can define the principal normal nF(γ)(tQ) — nF(x,a,b,l) = kF(x,a,b,ΐ)~ι

(Σ fe)2)"2[Σ («fc)
2^ - (Σ akck)ά\, where cfc = 6tZ - Σ Π^a,. Thus

wF(^)(O depends only upon (x,a,b,l). Then as before, we have defined a
smooth 1-1 map β: W2 X V2 X (k, oo) -> W2 x V2 X (2Λ/3, oo) by the for-
mula β(x, (a, b), I) = (x, ^(JC, α), ̂ ( c, α, b, I), kF(x, a, b, /)). Finally we note
that a o β = id and β o ̂  = id whenever these compositions are well-defined.
This discussion can be summerized by the following proposition.

Proposition 4.1. Let us pick k > 0. Then we can find a neighborhood Wo

of 0, Wo c : W, which depends only upon our choice of k, with the following
properties:

1) If γ: 1 -+ Wo is g-nondegenerate, and kg(γ)(t) > k, then γ is gF-nonde-
generate and kF(γ)(i) > 2k/3. Furthermore, if γ: I —> Wo is gF-nondegenerate
and kF(γ)(t) > 2k/3, then γ is g-nondegenerate and kg(γ)(t) > k/3.

2) Let us pick (x, v - (*, b), l)εWQχV2χ (k, OO)[(JC, v = (a, b), I) e Wo

X V2 X (2k/3, oo)]. Pick toel, and let γ: I —> Wo be a g[gF]-nondegenerate
curve such that γ(tQ) = x, t(γ)(t0) = Λ, n(^)(ί0) = 6 fl«^ kg(γ)(tQ) = /[^(ί0) = Λ,
tF(rKO = a9nF(γXt0 = b and kF(γ)(tQ) = /]. Tλέ?Λ tF(γ)(Q,nF(γ)(Q and
kF(γ)(t0)[t(γ)(t0), n(γ)(t0) ond kg(γ)(t0)] are all well-defined and depend only upon
(x, α, Z?, /). W^ therefore set tF(γ)(tQ) = ^(^)(Λ:, α, fe, /), nF(γ)(t0) = nF(x, a, b, I)
and kF(γ)(tQ) = kF(x, a, b, l)[t(γ)(t0) = t(x, a, b, /), n(γ)(t0) = n(x, a, b, I) and
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kg(ϊ)(to) — kg(.χ > a> b, /)]. In this way we define smooth 1-1 maps a: Wo X V2

X (*, oo) _> WQ x V2 X (2Λ/3, oo) ^ £: W0χV2χ (2Λ/3, oo)-> Wo x V2

X (k/3, oo) defined by a(x, a, b, I) = (x, tF(x, a, b, I), nF(x, a, b, I), kF(x, a, b, /))
and β(x9 a, b, I) = (x, t(x, a, b, I), n(x, a, b, I), kg(x, a, b, I). Finally a o β = id
and β o a = id whenever the composition is well-defined.

5. A generalization of FencheΓs lemma

Let Rn possess its usual Riemann (Euclidean) structure, S71'1 C Rn be the
unit sphere with its usual Riemann structure, and γ: I —> Rn be an immersion.
We recall that γ is nondegenerate if and only if t(γ): / —> S71'1 is an immersion.
If we are given an immersion λ: [0,1] —> Sn~\ we want to find a curve γ: [0,1]
-• Rn such that t(γ) = λ, γ(l) — a predetermined point x, and k(γ)(t) > /: > 0,
A: being some some predetermined number.

Lemma 5.1. Let D C Rn be a disc radius R,0<R< 1, centered at 0.
Let c(ή) = 18n/o/n, andB(n) = some number, Bin) > 1, >v/ι/c/ι depends only
upon n and which we will determine in the next section. Let k be a real num-
ber such that 0 < k < [c(ή)B(ή)]~ι, (tQ9 n0) and (ί15 nλ) be two given orthonormal
2-frames, and ku i — 0 ,1, be two positive numbers such that /^ > k,i — 0 , 1 .
F/cA: x € D ^wc/ι //ι^ |JC| < R^n/(2n). Let λ: [0,1] ^ 5 n - 1 fte.έiΛ immersion
such that

1) Λ(0) - i0, Λ(l) = tl9 t(λ)(O) = n0 and t(λ)(l) •= nί9

2) λ\[0,1/2] 'is parametrized proportional to arc length and \λ'(s)\ < B(ή)
for J6 [0,1/2],

3) the set {λ(t) \ 0 < t < 1/2} contains the 2n vertices of the inscribed cube.
Then we can find a C°° function p(t),0 < p(f) < I/A:, such that the curve

γ{i) = I λ(τ)p(τ)dτ has the following properties:

a) γ(l) = x, t(γ)(ί) = ίt, n( r)(0 = ni9 k(γ)(ί) - Λ4, i = 0, 1.
b) \γ(t)\ < R, and k(γ)(t) > k.

Proof. It is easy to see k(γ)(t) = (pit))'1. Hence if 0 < p(t) < c(ri)B(ή),

then k(γ)(t) > A:. Furthermore t(γ)(t) = λ(i) and n(γ)(t) = t(λ)(t). Let K =

y\y = I p(τ)λ(τ)dτ, where ^(τ) is smooth, 0 < p(τ) < 1/k, p(ί) = {k^1 for

i = 0 ,1, and p(τ)dτ < .9R\. We note that K is a convex set. Let

0

tj € (0,1/2), 1 < / < 2n, be the points such that λ(tj) are the vertices of the

inscribed cube. If we can show that each vertex .9Rλ(tj) of the inscribed cube

in the sphere of radius .9R is within .9R<Jn/(3ή) of K, then we see that K~z±

open ball about 0 of radius R^n/(2n), which implies that xeK.
Pick one of the tj9 0 < tό < 1/2, such that λ(t3) is a vertex of the inscribe

cube. Let us pick pj(t) as follows. Let pj(O) = (ko)-\ pj(l) = (kj
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Γpj(t)dt = .9R,pj(t) > 0, and pj(t) be smooth.

1/2

Pick an interval [a, b] about ts such that [a, b] c (0,1/2) and b — a = 2(.9R)/
(c(ή)B(ri)). But ((b — ά)/2)c(ή)B(ri) = .9R, so we can choose pό(i) to also

satisfy the relations Japj(t)<l/2(.9R</n/(9n)), Γpj(t)dt<l/2(.9RVn(9n))
0 δ

and pj(t) < 1/k. Let λj = Γpj(t)λ(t)dt. Then λjtK, and \λj - .9Rλ(tj)\

ΓU(O - λ(tj))pj(t)dt because .9Rλ(tj) = Γpj(t)λ(tj)dt. Therefore
0 0

- .9Rλ(tj)\ 2 . But

<\b - a\ sup |/(ί) | < |& - a\ B(ή) by Taylor's formula. There-

fore (λ(t) - λ(tj))Pj(t)dt s\b - a\ Bin) Pj(t)dt < l.SR

1 = (.9R)Wn/(9n)). Hence | ^ - .9Rλ(tj)\ < .9RVn/(3n), which
is what we wanted to show.

6. Smashing and stretching

Let us fix some notation for this section. Let D c Rn be an open disc of
radius R centered at 0. Give D its usual Riemann structure, and let (e19 e2) be
an orthonormal 2-frame. Let E = {γ: [—1,1] —̂  Z> | a C2-nondegenerate im-
mersion γ), where we give E the C2 topology. Let k0 be some strictly positive
real number, and set E0(kQ) = {γζE\γ(0) = 0, ί(r)(0) = e19 n(γ)(0) =
e2,k(γ)(t)>k0,t€[-l,l]}.

In this section we will prove two main lemmas (6.3, and 6.4) which easily
imply the following theorem.

Theorem 6.1. Let X be a compact set, and φ: X —> E0(kQ) a continuous
map. Then we can find a continuous deformation Φ: X x [0,1] —> EQ(k0) of
ψ (i.e.,^(Λ:) = Φ(x, 0)) with the following properties:

1) There exist numbers S and T, 0 < S < T < 1, such that Φ(x, u)(t)
= <p(x)(t) for all\t\>T,xεX,ue [0,1], and φ(x, 1) = φ(y, l)(ί) = f(t) for
all 0 < |ί| < S, x, y e X, and C°° f(t).
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2) The path t(f(t)),0 < t < S, passes through each of the 2n vertices of

the inscribed cube, and Γk(f)(t)dt < Bin) = 2w+5(80 + (n - 1)1/2).
0

If we are to employ Lemma 5.1 it is clear that a theorem of this type is
needed.

Sublemma 6.2. Let X be a compact set, and a: X -» C2([— 1,1] R) be a
continuous map, and assume a(x)(0) = α'(jt)(O) — α"(*)(0) = 0. Then there
exist continuous functions bt: X —> &%[— 1,1], R),i = 0,1, swc/i

l) α(jc)(j) - Λ O W(5), α'wω = ^ ω ω and

2) &0(*)(0) = fc^JcXO) = 0.

Proof. This is a direct consequence of the fact a(x)(s) = s j Da(x)(st)dt
0

where D denotes differentiation with respect to the variable v = st.
Lemma 6.3 (Smashing lemma). Let X be a compact set, and φ\X-+ EQ(kQ)

a continuous map. Let U = [ — a, a],0 < a < 1, and assume φ(x) \ U is para-
metrized by arc length for all xεX. Let us extend (e19 e2) to an orthonormal basis
(eλ, ,en) of Rn, and use these as coordinates. Then we can find two neigh-
borhoods V = [ — c,c] and W = [ — b,b] such that 0 < c < b < a, and a con-
tinuous deformation Φ: X X [0, 2] —> E0(k0)(i.e.,Φ(x, 0) = φ(x)) of φsuch that

1) Φ(x, u)(t) = ψ(x)(t) ifb<\t\ < 1, Φ(x, 2)(t) = Φ(y, 2)(ί) = (t, fK/2,. . . ,0)
for \t\<c,x,yeX,K> max (k(x)) where k(x) = k(φ(x))(0),

2)
- δ

Proof. Step I. Let us restrict ourselves to the interval [ — a, a]. We see

φ(x)(s) = se, + (s2k(x)/2)e2 + a(x)(s), a(x)(s) = Σ α.WW^, and α4(jc)(j)
i = l

satisfy the hypotheses of Sublemma 6.2: 0 < \s\ < a. Let λ be a C°° function so
chosen that Λ0) = 1 on [-//2,//2],0 < λ(s)<l,λ(s) = 0 for |,s| >l,l< a,
and that there exists positive constants Q and C2 which are independent of our
choice of /, such that | / 0 ) | < CJl and \λ"(s)\ < C2/l2. Set p(x,s) = seγ

+ (s2k(x)/2)e2, and let Φ(JC, M)(,J) = P(JC,,S) + a(x)(s)[l - λ(s)u],0 < u < 1.
Φ(JC, M)^) = φ(x)(s) if\s\ > I. Note that we have not yet chosen /. There exists
an ε > 0 such that if || φ(x) - Φ(x, u) ||2 < ε for all x € X, u <= [0,1] where || ||2 is
the C2-norm, then Φ(x, u) <= Eo. But Φ(x, u)(s) — <p(x)(s) = a(x)(s)uλ(s), \s\ < I,
and Φ(x, u)(s) — ω(x)(s) = 0, | s| > /. Hence | Φ(x, u)(s) — <p(x)(s) \ < sup |a(x)(s) \,
\Φ\x, u)(s) - φ\x)(s)\ < \λ'(s)\ \a(x)(s)\ + \λ(s)\ \a'(x)(s)\, and \Φ"(x, u)(s) -
p"W(j) | < \λ"(s)\\a(x)(s)\ + 2\λ'(s)\\a'(x)(s)\ + \λ(s)\\a"(x)(s)\. Hence by
Sublemma 6.2, the compactness of X and the estimates on λf and Λ", we can

find an Z so small that || Φ(x, u) - ψ{x) ||2 < ε and I k(Φ(x, u))(t)dt < 1/10.
- I

Set b = / (fc = fc in the statement of Lemma 6.3).
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Step II. Let us limit ourselves to \s\ < 1/2. Hence Φ(x, l)(s) = 0, s2k(x)/2,
0, , 0), and let Φ(x)(s) = Φ(x, l)(s). Let ψ{s) be a C°° function so chosen
that φ(s) = 0 for |s | > d, 00) = 1 for \s\ < 5d/6, and 0 < ψ(s) < 1, and we
can choose positive constants Cx and C2 independent of d such that | ψ\s) \<Cι/d
and |0"O)| < C2/d2. Let us assume Id < 1/2. Let Φ(JC, w)0) = 0, s2/2(Kψ(s)u
+ (1 - M0(J))Λ(JC)), K£(J), 0, . , 0), where £0) is an even (£(j) = £ ( - * ) ) C°°
real-valued function such that £ 0) = 0ίoτ\s\<d/6 and \s\> 2d, and where 0 <
u < 1. By this formula there exist Λx and .Bj such that if \ξ(s) \<A1 and d < B19

then Φ(JC, u)(s) e D for all (x, u, s). Φ\x, u){s) = (l,sh(x, u, s), uξ'(s), 0, , 0)
where h(x, u, s) = s[Kuψ(s) + (l - uψ(s))k(x)] + (s2/2)[K - ^ ( J C ) ) ^ ^ ) ] . Pick
ε < 0 so small that k(x)2/(l + ε)2 > k\. There exist A2 and B2 such that if
| f ' 0 ) | < A2 and d < B2, then \Φ\x, u)(s)f < 1 + ε for all (JC, ύ) and |,s| < 2d.
Φ"(x, ύ){s) = (0, m{x, u, s), uξ"is), 0, , 0), where mix, u, s) = k(x) + w(X
- kix))μ(s) and ^(j) = [φis) + 2 J ^ / ( 5 ) + ( J 2 / 2 ) 0 / / ( J ) ] . There exists a positive
constant C3 independent of our choice of d such that \μ(s)\ < C3, | J | < //2. If
I j | < 5d/6 or \s\>d, then m(jc, w, s) Φ 0 and hence Φ(JC, M)(,S) is nondegenerate.
We assume £"Cs) ^ 0,5d/6 < \s\ < d. This implies Φ(x, w)0) is everywhere
nondegenerate.

+ ii^f'O2] = [1 + h2 + w2(£02]-3[m2 + u2iξ")2 + imuξ' - huξ")2].
But mix, u, s) = kix) + u[K — kix)]μis), and therefore there exists u0 > 0
such that mix, u, s)2/il + ε)2 > k2

0 for 0 < u < uo;, uQ is clearly independent
of the choice of d and £. Set ξ"(s)2 = (1 + ε)2iK + l)(w0)"2 = α for 5d/6 <
\s\ < d, and let |f"(s)|2 < a for all other s. Then w2f"O)7(l + ε)2 > k\ for

,s| < d, uQ < u < 1 . Hence I f ' ^ l < Ida and | f θ ) | < 4d2a. kix, uXs)2

< mix, u, s)2 + u2ξ"is)2 < K2i\ + C3)
2 + a2, and therefore I k(Φ(x, u)Xs)ds

-2d

< 4d(K\l + C 3 ) 2 + aψ'2. Let d < min (B 1 ,B J , i4 ί /2α,U,/4α)v,(.9)(l/4)
(K2(l + C3)

2 + α2)-1 / 2). Then \ξ(s)\ < Alt \ξ'(s)\ < A2, k(Φ(x, M))(S) > kt, and

I Λ(Φ(x, u)Xs)ds < 9/10. This proves our lemma if we let c = d/6.

-2d

Lemma 6.4 iStretching lemma). Let D be a disc centered at 0, and with
radiusR < 1 and the usual metric, etc. Let 0 < A < 1, and let φ: [ — A,A]-+D

be a nondegenerate immersion such that φi§) = 0, kiφXi) > k0 > 0, I kiφ)it)dt
-A

< 1 and tiφXO) = voeSn~\ Pick ωeS71'1 such that the geodesic (great circular)
distance dsiv0, ω) < τr/6. Then we can find a deformation φu of φ, 0 < u < 3,
such that

1) φui0) = 0 /or all u, t(φ3X0) = ω, φQit) = φ(i),
2) φuit) is nondegenerate for all u and t, and kiφuXt) > k0,
3) there exists a real numbdr a, 0<a<A, such that φJJ) = φit),0<u<3,

\t\>a,
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4) φu defines a continuous curve in C2([ — A,A], D),

5) jΛk(φ,)(t)dt < L(ή) = 22(80 + V H ^ I ) .
-A

Proof. Step 1. Pick coordinates in Rn such that vQ = ex and n(φ)(0) — e2,
and a positive number K such that K > sup (1,29kQ, k(φ)(0)). Let us repara-
metrize ψ so that near 0, φ is parametrized by arc length. By applying Lemma
6.3, we can find a deformation φu(t) of φ, 0 < u < 1, and numbers B and C
such that 0 < C < 5 < ^ , ^( ί) = (t, fK/2,0, , 0) for 11\ < C, and φu(t) = p(ί)

for |f| > B. Furthermore choose φu so that k(φu)(t) > k0, k(φ^(i)dt < 1,

B

and 1^(01 < Λ/2 for 0 < \t\ < B. (\φu(t) < R, of course, for all u and
te[-A,A].)

Step 2. Let us pick a real number D > 0 such that D < min( C, (2K)"1).
Let λ be a smooth strictly increasing monotone function on [1,2] such that
λ(l) = 0 and Λ(2) = 1. Set w = (1,w2, -, wn)/(l + ^ + ^ O 1 7 2 . But
^ ( ^ 0 5 w) < τr/6 implies w\ + • • • + < < 3/4. Hence |w2| < V3/2. Let w2(ί)
be a C°° function such that w2(0) = 0, w'2(t) = w2 for 0 < \t\ < BQ. We can also
assume \w'2(t)\ < V3/2, w2(t) = 0 for | ί | > 45 0 , |w2(ί)| < V"3"50 and \w2(t)\ <
(BQ)-1. Pick Bo so small that 1650 < min (R/S, D). Finally, let us pick m such
that (2m+ιKYι < Bo< (2mK)~1 note m > 5. Let us choose another C°° func-
ion ζ(t) such that ζ(ί) = 0 for | ί | < J50/2, ζ(ί) = 0 for \t\ > 9B0, ζ(t) is even,
ζ"(t) = K2™-* = a for Bo < \t\ < 4B0, and \ζ"\ < K2m~" elsewhere. Further-
more, we can choose ζ such that |ζ ' | < (850)(K)(2m"4) = BQK2m~ι < 1/2.

We now set φu(t) = (t,t2K/2 + λ(u)w2(t),λ(u)ζ(t),O, ,0) for |ί | < D,

l < w < 2 . Foϊ\t\>9B0,φu(t) = Ψι(t). φ/

u(t) = (l,Kt + λw'2(t),λ(u)ζ/(t),O, . . . , 0 )

and ^;r(ί) = (0, K + ^ , Λζ", 0, , 0). By our choice of w2 and ζ we see

φu(t) is nondegenerate. Note that 1 < |p t t(ί)|2 < 1 + (1 /2 + V3/2)2 + K 4 = 2\

k(Ψu)(ty > [(K + M O 2 + uc")2]/ι?>cωr > 2 " 6 t ^ + ̂ o 2 + («;/)2i- NOW
K ( ί ) | < 1/J»O < 2m+1ϋC. Look at u0 such that λ(u0) = 2" ( m + 2 ) . Hence for
1 < u< uo,λ(uo) < 2 " ( T O + 2 ) and therefore μ ( w ) < ( 0 | < JC/2. So % J ( ί ) a

> K2/210 = (K/25)2> kl If | ί | < B 0 or Ul > 45 0, then < ( / ) = 0 and
k(ψu)(t)2 > K2/2« > kl Finally, letB 0 < \t\ < 4B0, and^(w) > (2)" ( w + 2 ) . Then

W > (2)- (m+2)ϋC2m-2 = K2~\ Therefore k(Ψu)(t)2 > (X/29)2 > ΛJ. Let
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us estimate / = I k{φ2){t)dt.
-95o

J < ΓB\\φί(t)\2\φ'Λt)\Ψ2dt<2 C(κ+wί'(ty+ζ"ι
J J9B0

< 2 Γ([K + 1/BOY + χ222m-8)i/2 < 2K f (1 + (2m + 1) 2 + (2m"4)2)1 / 2

< K2m+418B0 < K2m+ΊS(K2m)-1 = (9)(25) .

Note φu(t) = Ψl(t) + λ(u)(0, w2(t), ζ(t), 0, , 0) forjf | < D. \<pu(t)\ < R/2 +
R/A<R, because 16B0< m\n(R/S,D), \w2(t)\<^3B0 and |ζ(0| < (SB0)(l/2).

Step 3. Let us restrict ourselves to ψ2(t) = (t, (t2/2)K + tw2,0, , 0) for
\t\ < Bo/2. Now w\ + + w\ < 3/4. Let us pick Bλ = BQ/S and let wk(t),
3 < k < n, be C°° functions such that wk(t) = wk for \t\ < B19 wk(t) = 0 for

\t\ > 4B19 wk(0) = 0, 2 « ( 0 ) 2 < 3/4, \w'k
f(t)\ < to)"1, and f] wk(t)2

< (3/4) (Bo/2) < (R/A)2. Let λ(u) be a strictly increasing monotone C°° func-
tion on [2, 3] such that λ{2) = 0 and Λ(3) = 1. Let φu(t) = (t, ?K\2 + tw29

λ(u)w3(t), , w n ( 0 ^ ( w ) ) . T h e n φ'Jj) = (l,tK + w2, λw'3(t), , λwf

n(t)) a n d
^ ( 0 = (0,X,λw", ,̂ vμ )̂ Hence φjj) is nondegenerate, and |^w(ί)| <
3fl/4 + R/A = # . 1 < |^( ί) | 2 < 1 + (JKί + w2)

2 + 3/4"< 4 = (2)2. Hence
k(φuXt)2 > (K/S)2 > (k0)

2. Look at

J 45i Γ 2 // 2 1 2 Γ

J J
< 2 Γ(A:2 + (n - 2)£ 2(2) 2 w + 2) 1 / 2 < 2K2m+1(n - l)ι/2B0 < Ajn - 1 .

/

A

k((p3)(t)dt < 1 + 1 + 32.9 + A^n — 1, which completes the proof
-A

of this lemma.
7. Odds and ends

Lemma 7.1. Let X be a compact set, ψ: X —* R be a continuous function
such that φ(x) > 0 for all x e X, and K be a fixed positive number. Then there
exists a continuous function λ: X —> °̂°(/, /), / = [0,1], such that λ(x)(0) = 0,
λ(x)(l) = l,λ'(x)(t) XU'(*)(0) = ψ0d/K, and λ(x)(t) = t if ψ(x) = K.

Proof. Let us set ζ(x) = ψ(x)/K. Since Z is compact, there exists sϋ,
0 < t0 < 1, such that 0 < ζOK < 1. Set

- l)(ίβ - I)" 1 , J, < 5 < 2 .

Then ^(Λ:)(0) = 0, g(x)(l) = 1, and g(x) is continuous and is C°° everywhere
except at so; in fact, g: X -+ ^°([— 1,2], i?) is continuous. Extend g(jc) to all
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of R by making it 0 outside [—1,2]. Denote this extension also by g(x), and
note that g(x) e LP(R), 1 < p < oo, and that g: X -» LP(R) is continuous. Let
0 < ε < min (sQ/2, (1 — so)/2). Let φ£t) > 0 be the usual C°° approximate

/»oo

identity, φ£t) = φ£~t), support (<pε) cz [—ε, ε] and I φ£t)dt = 1.

- ε 0 ε

Set ΛO)(0 = (gOO^XO = j g(x)(s)φ£t — s)ds. Then by our choice of g and

the usual properties of the convolution, we can see that λ(x) is C°°, it has all
the desired properties, and λ: X —> ^k{l,ί) is continuous for each /: (this last
ί is ^ p . I [0,1]).

Corollary 7.2. Lei X be compact, K > 0 a real number, and ψt: X —> i?,
i =1,2, continuous real valued functions such that φ^x) > 0. Γ/ι̂ /ι there exists
a continuous function λ: Z —• ^°°(/,/) J«CA ί/wί Λ(*)(0) = 0, ^W(l) = 1,
r(jc)(O) = 01(jc)/X,r(jc)(O) = ί&2(jc),r(jc)(ί)>O, and λ(jc)(ί) = t provided
φ£x) = K and φ2(x) = 0.

Proof. Let l(x)(t) be the functions constructed by Lemma 7.1. Set ^(jc)(ί)
= l(x)(t) + φ(t)t2/2[φ2(x) - 2(JC)"(0)] where 9 is a C°° function, 0 < ψ < 1,
ψ{0) = l,φ(t) = 0 for ί > ε,^(0) = 0, | ^ ( ί ) | < 2/ε, and we will choose ε,
0 < ε < 1, as follows:

Hence we can find a number β > 0 such that if 0 < ε < B, then λ'(x)(f) > 0.
Let us choose ε so small that 0 < ε < B. Then λ(x)(f) is the desired family of
curves.

Remark. Let g be a Riemann metric on Rn,X a compact set, γ: X —>
C2([0,1], Rn) a continuous map such that γ(x) is g-nondegenerate for all xzX,
and f(t),—l <t<0, be another g-nondegenerate curve. Assume /(0) =
r(*)(0),ί(/)(0) = i(rW(0),n(rW)(0) = n(/)(0) and A,(/)(0) = Λ,(rω)(0) for
all t € Z . By applying Corollary 7.2 we can find r: X -> ^°°(/, / ) , r(jc)(#, re-
parametrization of the ^W(ί) with the following properties:

a) r(x)(t) = t if f (0) = rW^O) and /"(0) = rW r /(0),
b) f(0) - (dr(x)/dτ(x)X0) and Γ(0) = W2

r(x)/(Jr(x))2(0), where Γ(JC) -
r(jc)(ί) is the new parameter.
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Theorem 7.3. Let Eo be as in § 2, and pick e0 e Eo. Then πk(E0, eQ) = 0,
0 < k < oo.

Theorem 7.4. Let X be a compact set, and f: X —> Eo a continuous map.
Then f is homotopic to a constant map.

We note that Theorem 7.4 implies Theorem 7.3 so we now prove Theorem
7.4.

Proof. Let W be a neighborhood of x0, which is the center of geodesic
normal coordinates (x19 ,xn) so chosen that ex — d/dx^O) — tQ and e2 =
d/dx2(0) = n0. Let us reparametrize the f(x)(t) such that for 0 < t < S < 1,
f(x)(t) € W and f(x)(t) is parametrized by arc length for 0 < t < S (S > 0). There-
fore by Taylor's theorem, f(x)(t) = teλ + (t2kQ/2)e2 + a(x)(t), where k0 =

e, = U = t(f(x))(O), e2 = n0 = n(f(x))(0), and a(x)(t) = Σ ^

where αt(jc)(ί) satisfy the hypothoses of Sublemma 6.2 if we set
ciί(x)(t) [because a^xXO) = α{(jc)(O) = α 'OXO) = 0]. Hence we can find
0 <S0< S such that teί + t2k0/2e2 + ua(x)(t) is nondegenerate for all t,
0 <t < So and u,0 < u< 1. Let Λ(w) be a C°° function which is strictly mono-
tone decreasing, λ: [0,1 /2] -*Λ, such that Λ(0) = 1, #1/2) = So/2. Set /(JC, «)(0
f(x)(tλ(u)). Hence /(JC, l/2)(ί) = Kx)(tS0/2) = (tS0/2)e1 + ((tSQ/2)%/2)e2 +
a(x)(tS0/2) because 2S0/2 = So. Let λ: [1/2,1] ^R be another smooth mono-
tonically decreasing function such that #1/2) = 1 and #1) = 0. Set f(x, u)(t)
= (tS0/2)eι + (tS0/2)\k0/2)e2 + λ(u)a(x)(tS0/2), 1/2 < u < 1. This defines
the desired homotopy between / and the constant map /(JC, 2)(t) = (tSJ2)e1 +
(tS0/2y(k0/2)e2,O<t<2.

8. Proof of the main theorem

Let (JC, v,k)eV,v = (ί, ή) e T(X)X x T(X)X, g(x)(t, t) = g(x)(n, ή) = 1 and
g(x)(t, ή) = 0. Let kx be a real number 0 < kλ < min (/:, CC/i)"1^^)"1) where

5(n) = 2w+5(80 + VΛ - 1) and C(n) = lSn/V~n, W be the domain of JC-
centered geodesic coordinates O1 5 , xn)9 gF — Σ dίjdxίdxj be the flat metric
on W, and tF, nF, and kF be the unit tangent vector, the principal normal
vector, and the geodesic curvature computed with gF. We adopt the rest of the
notation of § 4. Let Wo be the disc Σ M2 < (2R)2R < 1 such that if γ is a
^-nondegenerate curve in Wo and kg(γ)(t) > k19 then γ is ^-nondegenerate and
kF{γ)(t) > 2AJ3. Furthermore, if γ is ̂  nondegenerate in Wo and ^ ( ^ ) ( 0 >
2kJ3, then 7- is ̂ -nondegenerate and kg(γ)(t) > ΛJ3. Let D = {JC € Ψ o | Σ (JC€)

2

< (R/2)KV~n/2n)2} and Fo = D x F2 X (Λ19 00). F o will be the desired neigh-
borhood of (x, v, k). We will now show that p: p'KVo) —• VQ satisfies strong
property P.

Let Iq be a ^r-cube, Fq~ι c: Iq the zero faces, and φ:Iq->V0 and
0: F 9 " 1 —> P ' ^ F Q ) continuous maps such that p o 0(c) = ^(c) for all c 6 Fq~ι.
Lot φ(c) = (x(c),t(c),n(c),k(c)).
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If a is the map of Proposition 4.1, then set aφ(c) = (x(c), tF(c), nF(c), kF(c)).
Note that we do not have to "lift" (φ, ψ) but only a deformation of (φ, φ) see
Definition 3.6 and Proposition 3.7.

Step I. Look at ψ(c)(t), 0 < t < 2. We see, by the compactness of F 9 " 1 ,
that there exists a number tq90<tq<2, such that 0(c)(ί) € D and kg(ψ(c))(t) > A:x
for all ί e [ίg, 2] and c 6 F*"1. By a deformation we can reparametrize ψ(c)(t) so
that ίβ = 1/2, so we can assume ίβ = 1/2. Since the group E(ή) of Euclidean
motions is connected, we can find a map M: Iq —> 2?(w) such that M(c)((0(c)(l),
ίF(0(c))(l), «F(0(c))(l)) = (0, e19 e2) where ^ = (1,0, . , 0) and e2 = (0,1,0,
• . , 0). Let m(c)(t) = M(c)(ψ(c)(t)), t e [1/2,2]. Then \m(c)(t)\ < R</7Γ/(2ή),
m(c)(t) is g^-nondegenerate, and kF(m(c))(f) > 2kJ3. Applying Theorem 6.1
to the curves m(c)0)(with 1 replacing 0, etc.), we can find a continuous defor-
mation mu(c)(t),0 < u < 1, of m(c)(t)[mo(c)(t) = m(c)(t)] and two numbers
S and T, 0 < S < T < 1/2, such that

0, and kF(mu(c))(t) > 2kJ3 for 0 < u < 1, t <= [1/2,2], and c € F«-\
2) /^(cXί) = m(c)(t) for |ί - 11 > Γ, 0 < u < 1, c 6 F*"1,
3) /iiiWω = m^XO = fit) where /(ί) is C", for |f-11 < S, and c, cr <

and
4) the path tF(f(t)), 1 < ί < 1 + 5, passes through each of the 2w-vertices

of the inscribed cube, kF(f)(l) > B(n)-ιC(n)-\ and Γ+1kF(f)(t)dt < B(n).

Let r: Fq~ι -> ^°°([l/2, 2], [1/2,2]) be a continuous map such that τ(c)(ί)
= t,l/2<t<l-T, τ(c)(l) = 1, r(c)(5 + 1) = 3/2, τ(c)(2) = 2, r(c)'(0 > 0.

If m^cXτ) denotes m^c) parametrized by τ(c)(t), then tF(mγ(c))(τ) is para-
metrized by the reduced arc length for 1 < τ < 3/2. Let m1+u(c)(t) =
m^cXuτicXi) + (1 — u)t), 0 < u < 1, and let m2(c)(t) be m^c) parametrized
by r(c). Hence m2(c)(t) is defined for 1/2 < t < 2, and the curve
tF(m2(c)) I [1, 3/2] is parametrized by the reduced arc length. Let

j0(c)(i), 0 < ί < 1/2,
Φ " ( M W I ^ f ί ) ) 1 / 2 < / < 2 , 0 < W < 2 .

φu(t) defines a continuous deformation of (φ, ψ), and it is ψ2(c)(t) which we will
try to lift.

Step II. Let T^S71'1) be the unit tangent bundle over the unit sphere
r ' C f f , Recall T^S"-1) is diffeomorphic to the Stiefel manifold V2 by re-
viewing the point x € Sn~ι as the first vector of a 2-frame and v e T0(Sn~1)x as
the second vector. Let EQ = U: [3/2,2] -• 571"11λ is an immersion, ^(3/2) =
tF(f)(3/2),t(λ)(3/2) - nF(f)Q/2)] where /(/) = m2(c)(ί), 1 ^ ί < 3/2. Define
τr0: F o -> To^71"1) by τr0U) = U(2), ίϋ)(2)). Let 0 5 : F 9 " 1 — Eo be a continuous
map defined by 0s(c)(ί) = tF(m2(c))(t), 3/2 < ί < 2, and ^ : /9 -> F 2 be the



204 E. A. FELDMAN

continuous map defined by φs(c) = (M(c)tF(c),M(c)nF(c)). We see that
π0oφs(c) = φs(c) for c e Fq~ι. By Smale's theorem [11], we can find Ψs extend-
ing ψs to all Iq such that πQoψs — φs. We now apply Lemma 7.1, and repara-
metrize Ws(c)(t), 3/2 < t < 2, so that we can assume (dtF(f)(t)ldt)(3/2) =
(dΨs(c)(t)/dt)(3/2), and we can do this in such a way that we need not repara-
metrize ψ(c)(t) at all if c e F 9 " 1 . Let us define λ(c)(t) = tF(f)(t) for 1 < t < 3/2,
and Λ(c)(0 = the reparametrized ψ(c)(t) for 3/2 <t < 2. Then ^(c)(ί) =
tF(m2(c))(t), cεFq-\ 1 < t < 2, λ(c)(t) is an immersion celq, 1 < t < 2,
λ: Iq — r ( [ l , 2] S""1) is continuous, ί(c)(l) = ^, /W(c))(l) = e29 λ(c)(2)
= M(c)tF(c), and t(λ(c))(2) = M(c)nF(c). We want to set γ(c)(t + 1) =

V(c)(τ)^(c)(τ + l)dr where p(c)(τ) is C1, 0 < p(c)(τ) < 3/(2^) for 0 < τ< 1,
o

= A,(c)- , (oCcXO) = AF(/)(1)-', Jl(K.c)(t)dt < R, and r(c)(2) = Af(c)*(c).
0

If we can find such function ^o(c)(r) and they depend continuously on c e Iq,

and p(c)(t) = d_
dt

? 0 < t < 1, for c e Fq~ι we would have our

problem solved, by reparametrizing the p's so the end points match up and
then translating back by M(c)~\

Step III. Let ^\S\ R) be the (^-periodic functions from R to R with period
2π. Then # = <gι(S\R) is a Banach space in the norm H^ = sup \φ(t)\ +

0<ί<2ff

sup |p'(0|. Let H2(Sι,R) be the Sobolev space of square integrable periodic
0<t<2π

functions of period 2τr, which possess square integrable weak derivatives f and
f. Then H\S\R) = H is a Hubert space with inner product

(f,g) =

By Sobolov's lemma (in this case an easy proposition about the absolute con-
vergence of the Fourier series of f )[1, pp. 165-168] we have a continuous linear
injection i: H —> <&. Furthermore i(H) is dense in <€. Let i*: ^* —> H* be the
formal adjoint, pick celq, and define the following linear functionals on

<€\ a{c) = p(0),ω(c) = p(l),μi(c) = i-th coordinate of Γp(t)λ(c)(t + \)dt. It
0

is easy to see that <x(c), ω(c), /^(c), 1 < / < n e C*: /9 —> C* are all continuous,
that α(c),ω(c) and j«i(c), 1 < i < n, are linearly independent for each fixed
cβ/ 9 , and that i*a(c)9i*ω(c) and z*^(c), 1 < / < n, are also linearly inde-
pendent for each c<zlq. Define n + 2 continuous real valued functions on lq

by: yj(c) = /-th coordinate of M(c)x(c); 1 < / < n,A(c) = kF(f)(l)-\ and

kF(c)-\ LetF= \peH\0<p(t)<3/(2k1) for 0< ί <



ω
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Then P is an open convex set. We now apply Lemma 5.1 and find for each celq

an element pc € P such that y^c) = μi(c)(p), 1 < i < n, a(c) = A(c)(p) and

(c) = Ω(c)(p). Therefore the curve r(c)(t + 1) = Γpe(τ)λ(cXτ + l)dτ has
0

the following properties: γ(c)(2) = M(c)x(c), tF(γ(c))(2) = M(c)tF(c),
nF(r(c))(2) = M(c)nF(c), kF(r(c))(t) > (2/3)k19 l<t<2, kF(γ(c))(2) = kF(c),
tF(γ(c))(l) = tF(f)(l),nF(r(c))(l) = nF(f)(l), γ(c)(l) = /(I) = 0, kF(γ(c))(l) =

kF{f){\). Let Pc = j ^ € C10 < ,1(0 < (2/3)^, ί 6 [0,1] I f >W(c)(ί + 1)Λ

< i?, τ 6 [0,1] . F c is convex, and P c P c . For each c β F^" 1 let p(c)(t) =

\m2(cY(t + l ) | ,0 <t < 1. Then p: Fq~ι -+ tf\[0,1],R) is continuous, and

m2(c)(t + 1) = Γp(c)(τ)ί(c)(r + l)^r. We want to extend each p(c)(t) to Sι

0

(i.e., to [0, 2π] so that it is C^periodic). It is clear that this can easily be done.
Hence assume we have defined a continuous map p: Fq~1 —• ^ ( S 1 , i?) = <€ such
that p(c)(ί) = \nφ)\t + l ) | ,0 < ί < 1.

We will now quote two facts; the first, Lemma 8.1 is a restatement of the
Gram-Schmidt process, and its proof follows word for word the usual proof,
the second, Theorem 8.2 is our main abstract analytic lemma, which we
prove in § 9.

Lemma 8.1. Let H and C be respectively a Hubert space and a Banach
space, i: H —> C be a continuous linear injection, /*: C* —> H* be its formal
adjoint, X be a topological space, φ^. X —> C*, 1 < i < k, be k continuous
maps such that φt(x), , φk(x) and i^ψiix), , i*φk(x) are linearly independ-
ent for each xeX,P: H* —> H be the duality isomorphism, and yt: X -^ R be
k continuous real valued functions. Then we can find Φt\ X —• C*, Yt: X -> R,
1 < i < k, continuous functions with the following properties:

a) Φλ(x), - - -,Φι(x) for each xeX span the same subspace of C* as
ψι(x), , ψι(x) for each I, 0 < I < k.

b) // Ft(x) = P(i*(Φt(x)), then <F/JC), Fk(x)> = δjk for all x.

c) ψί(x)(ρ) = yiix), 1 <i < k, if and only if Φt{x)p = Yi(x)91 < i < k.
Theorem 8.2. Let H be a Hubert space, C a Banach space, i: H —> C a

continuous linear inclusion, /*: C* —> H* its formal adjoint, D: H* —> H the

duality map, P C H an open convex set, In the n-cube, and Fn~λ the union

of zero faces.

a) Let vf: ln -> C* be continuous maps 1 < j < k, set Vj = D(i*(vf)),

and assume (Vi(x), Vj(x)y = δ^, xεl71.

b) Let hj\ In —• R,l < j < k, be continuous real valued functions.

c) For each xεl71 a convex set Pxc:C is given such that P ^Px. Assume

there exists pxeP such that (px, Vj(x)} = hj(x), 1 < / < k.
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d) Let p: Fn~ι —> C be a continuous map such that p(x)ePx and
vf(x)(p(x)) = hj(x) for each x e Fn~λ and 1 < / < k.
Then we can find a strong admissible deformation φt of ln and a continuous
map p: ln —> C extending pn: Fn~ι —> C WΪΪ/Z ί/ιe following properties:

i) pOc) e P^O) /or d/ c e /\
ii) ^ ( ^ W ) ^ ) ) ^ hjiφάx)), x e In, 1 < / < k.
We apply this to the case where H = H2(S\ R), C = Cι(S\ R), i = the Sobolev

inclusion, and P, PX(PC) and p: Fq~1 -+C are defined as in the discussion pre-
ceeding Lemma 8.1. We take a,β,μj91 < /' < n, as our families of linear
functionals, and A, Ω,yj91 < j < n, as our families of continuous functions.
Hence we find a strong admissible deformation vt of Iq and an extension p of
p: Fq~ι —> C with the following properties: Set

ro(c)(t + 1) - JVωω^WXτ + l)dτ.

Then ί,(r,(c))(l) = tF(f)(Ό, «,(r.(c))(D = n,(/)(D,

), rβ(2) = M(Vl(.c))x(Vl(c)), A,(r,(c))(ί) >2AΓ./3, ίe [1,2], and |ro(c)(ί)|
< R. We now apply Corollary 7.2 in order to reparametrize 7Ό(c)(ί) so that

n(c)'(l) = f (1) and r,(c)"(l) = f (1), where n(c)(ί), ί 6 [1,2], are the repara-
metrized γo(c), and we do not reparametrize γo(c)(t) at all if γo(c)'(l) = f (1)
and 7Ό(C)"(1) = f (1). Let TΊ(C)(O denote the suitably reparametrized γo(c)(i).
Pick a retract Ω: I" -> F'" 1 , and define

r2(c)ω = l ( o ω i < / < 2 .
Then set ft(c)(0 = M(^(c))'ιγ2(c)(t). Finally set

\φXt), l/2<t<2.

Note that \Ϊ3(c)(t)\<2R, ^( r 3 (c))(0>2^/3, ίF(rs(c))(2) =
= nF(pι(c))9kF(γ3(c))(2) = ^(^(c)), and τ-3(c)(2) = ^ ( c ) ) . Hence ^(c) is £-
nondegenerate and has the correct terminal data. Ψ: Iq -> Eo is continuous,
F I F 9 " 1 = 02 (see end of Step I), andpoψ = φo Vί.

9. Proof of Theorem 8.2

Step I. For each x e In, pick px e P such that <j?x, Vj(x)y = A./W, 1 < / < k.
Look at the expression

k

Px>(χ) = Px> — Σ « / v >
1
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px,(x) is continuous in x, and there exists εx, > 0 such that if \x — x'\ < εx>,
then px,(x) e P , because P is open. Then ζpX'(x),Vj(x)y = A/JC), 1 < / < k,
and therefore px>(x) has all the desired properties in a neighborhood of xf.
Since these ε̂ / neighborhoods about xf form an open covering of the cube In,
by the Lebesgue covering lemma we can find an integer N > 1 such that any
cube with side of length = 1/N must lie in one of the ex, balls. Let Bilt...tin

= {(xv-,xn\h/N<xk<ik + l/N},O<ik<N-l. On each of the B^...'^
we have one of the px>(x) defined, call it piu...tin(x). Hence we have Nn boxes,
and Nn "good" functions.

Step II. Let us construct the φt: I
n —> In as follows. Let φt(xλ, , xn)k

denote the k-th coordinate of φt(x).
a) If t/3 < xk < 1 — ί/3 for all k, 1 < k < n, then we set

for

ί/3 + i t(l - 2t/3)/N - t/(9N) < xk < t/3 + ίk(l - 2t/3)/N + t/(9N) ,

and

φibi, , Xn\ = 4/̂ V + {JC, - [ί/3 + i t(l - 2ί/3)/// + ί/(9Λ01}[9/(9 - 8/)]

for

ί/3 + /fc(l - 2f/3)/tf + ί/(9Λ0 <xk< t/3 + (ik + 1)(1 - 2ί/3)/ΛΓ - ί/(9Λ0 .

A direct calculation shows <pQ = id, and ^j is continuous and well-defined on
the inside cube Ct = {(x19 ,x n \t/3 < xk < 1 — ί/3}.

b) Let us fix ί. Let Γfc,0>ί = {(x19 ,Λn)|Λfc = ts/39O < s < 1, and
ts/3 < x t < \ - ts/3,0 < s < 1, for Z =£ Λ}, and Γ t f l f ί = {fe, . . . , xn) \xk

- 1 - ts/3,0 < s < 1, and ίj/3 < ^ < 1 - to/3 for / 9̂  &, 0 < ^ < 1}. The
cube In is broken up into the inner cube Ct and the In "trapazoids" T M > ί ,
i = 0 , 1 . We now define ^ on Tk>Qtt. It xe Tkt0tt9 set-φt(x19 , xw)fc = 0. Let
* fc = St/3. Then ^ f e , , Λ J ^ = ίj/N if

- 2St/3) - St/(9N)

< xj < St/3 + (ΐ,/Λ0(l - 2Sί/3) + Sί/iV ,

and

φ&» ' -,Xn)j = ij/N + [xj - St/3 + i/l - 2Sί/3)/N

+ 5ί/(9Λ0][9/(9 - 8501

if

St/3 + (ij/N)(l - 2St/3) + St(9N)

< xj, < St/3 + (/,- + 1)(1 - 2St/3)/N - St/(9N)
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for / Φ k. It is easy to see that φ0 = id, and φt is well-defined and continuous
on Ct U T l i O f t U U Γn,Oft.

c) We will now extend φt to Tlιltt9 1 < / < n. Let x e TkΛtt. Then xk =
1 - St/3 for some 5,0 < S < 1, and'st/3 < xά< 1 - Sί/3 for / φ k. Let

- , x n )

where the ̂  on the right is the ψt defined on Ct. Again a direct calculation
shows that this formula makes sense. A further check shows that (<pt), 0<t<l,
define a strong admissible deformation of ln.

Step III. Note that ψ^Tj,^) = /J-1. We define ô on U Γ M f l by p(x) =
Jc=l

p{ψλ{x)). We immediately st^ ρ\Fn~ι — p. Let us look at the cubes

Ctu....in = ί f e — , J C Λ ) | 1 / 3 + 4/(3Λ0 + l/(9Λ0

< x* < 1/3 + (ik + l)/(3Λ0 - l/(9Λ0}

Since ψγ maps Cilt...tin homeomorphically onto Bilt...fin, we can define p on
Ciw-.in b y the formula p(x) = Pilt...,in(φλ(x)) for ^€C ί l t . . . f i n . We will now
extend p to all Cλ by the following induction hypothesis.

Hypothesis I — 1. We assume p is defined for all (JC1? , JCW) € Cx such that
1/3 < xfc < 2/3 for k = 1, - , / - 1, and 1/3 + ik/(3N) + 1/(9N) < xk

< 1/3 + (ik + l)/(3Λ0 - l/(9Λ0 for £ = /, . , n. Assume p satisfies i) and
ii) of the statement of Theorem 8.2 wherever p is defined. To show (/ — 1) => (/),
pick x = (xl9 - , xn) such that 1/3 < xk < 2/3 for k = 1, , /, and 1/3 +
4/(3Λ0 + l/(9Λ0 < JcΛ < 1/3 + h + l/(3Λ0 - l/(9Λ0 for k = I + 1, , n.
If 1/3 + ίJON) + l/(9Λ0 < xι < 1/3 + ιz + l/(3Λ0 - l/(9Λ0, then p is
already defined on x. If 1/3 < xt < 1/3 + l/(9Λ0, we see that ^ is constant
along the line O l 9 ,^ ι_ 1,1/3 + t/(9N),xι+u , ^ J 9 0 < / < 1. Hence
we can define p along this line by the formula

p ( x l 9 - > 9 X ι _ 1 9 1 / 3 + t / ( 9 N ) 9 x ι + 1 9 - , x n )

ι+i, - , x n )

0̂ is continuous in x and t, and has all the desired properties due to the con-
vexity of the Px. Set

Ctι.n+u....in = {bi, ' ,xJ 11/3 < xt < 2/3,1 < / < / - 1,1/3 + ik/(3N)

+ l/(9Λ0 <xk< 1/3 + (4 + D/(3Λ0 - 1/(9N)

for k = 1,1 + 1, ,/ι} .

If 1/3 + iι/(3Λ0 - l/(9Λ0 < ^ < 1/3 + iJQN) + l/(9Λ0,1 < ^ < V̂ - 1,
we look at the line (x1? . ,^_ 1 9 1/3 + (it - 1)/(3N) + 2/(9iV) + 2t/(9N),
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Xι+i, * -,xn),0 <t < 1, which joins (x19 , ^ _ 1 ? 1/3 + h/(3N) - l/(9Λ0,

* ι + 1 , •• , Λ B ) 6 C ί H ι l l + l ι . , . ι < J ι to (*„ •• , ^ _ 1 , 1 / 3 + h/(3N) + 1 / ( 9 Λ 0 , J C Z + 1 ,

• , Λ J e Ciltil+lt...tίn. ψλ is a constant along this line, and hence we can set

p(*!, . . , J t ι _ 1 , l / 3 + (h- 1)/ON) + 2/(9Λ0 + 2//(9Λ0,Jc i+1, ••-,*„)

= (1 - t)p{x19 ,xι_ι, 1/3 + (i, - l)/(3Λ0 + 2/(9N)9xι+l9 . ,jcn)

+ f ^ , •• , ^ _ 1 , 1 / 3 + Ϊ J O Λ O + l/(9Λ0,Jc i + 1, •• ,Jcn) .

If 2/3 — 1/(9N) < xt < 2/3, we again note that ^ is constant along the line

(* ! ,-••,*,_! ,2/3- l/(9Λ0 + t/(9N)9xι+19 •• , ^ ) , 0 < ί < 1. Set

^ , .9xt_l92/3 - l/(9Λ0 + t/(9N),Xι+1, ,* n )

It is easy to see that we have now constructed by induction p with the desired

properties o n Q U T l f O f l U • U Tn.O f l. TkΛΛ = {(x19 . . ,xn)\xk = 1 - 5/3,

0 < 5 < 1,5/3 < jĉ  < 1 — 5/3,/ ^ Λ}. For JC € Tfc x x we see xk = 1 - 5 / 3

for some * . Set λk{x) = [(x19 , x j - (1/2, . . , l/2)][l/3 - 25] + (1/2,

• , 1/2). Then λk defines a retraction of TkΛΛ onto TkΛΛ Π Cx. The λk's agree
n f n \

on the overlaps, so they define a retraction Λ: (J Γ*fifi —> U ̂ ,1,1 Π C l β We
fc=l ' ' \fc=l ' ' /

see immediately that ψλ(x) = ^UC*)) for Λ: € U T f e l l . Hence we can extend p

to Tfc.i.i, 1 < /: < π, by setting ^(x) = p(λ(x)).
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