NONDEGENERATE CURVES ON A RIEMANNIAN MANIFOLD

E. A. FELDMAN

1. Introduction

Let X be a connected Riemannian manifold of dimension $n \geq 3$. By a nondegenerate curve we mean a C^{2} immersion γ of the interval I or the circle C into X, such that the square of the geodesic curvature $k_{g}(\gamma)^{2}$ never vanishes. By forcing the geodesic curvature to be positive we are able to associate with γ a moving orthonormal 2-frame $(t(\gamma)(t), n(\gamma)(t)), t(\gamma)(t), n(\gamma)(t) \in T(X)_{\gamma(t)}$ along γ, where $t(\gamma)(t)$ is the unit tangent to γ, and $n(\gamma)(t)$ is the principal normal; these all will be discussed in more detail in the next section. We can also associate with γ the continuous positive function $k_{g}(\gamma)(t)$ given by the geodesic curvature. Let $\pi_{0}: V_{2}(X) \rightarrow X$ be the Stiefel bundle of orthonormal two frames constructed from $T(X)$. Thus, we can associate with γ, a curve $\varphi(\gamma)(t)=$ $\left(\gamma(t), t(\gamma)(t), n(\gamma)(t), k_{g}(\gamma)(t)\right)$ in the bundle $\pi: V \rightarrow X$ where $V=V_{2}(X) \times R^{+}$ (R^{+}being the positive reals) which is a cross-section over γ. Let us pick $\theta_{0} \in C$, and $v_{0}=\left(x_{0}, t_{0}, n_{0}, k_{0}\right) \in V_{x_{0}}$. Let N_{0} be the nondegenerate immersions γ of the circle C into X, such that $\varphi(\gamma)\left(\theta_{0}\right)=v_{0}$. Our main theorem states that φ, which associates with each $\gamma \in N_{0}$ a loop $\varphi(\gamma)$ in V based at v_{0}, in a weak homotopy equivalence, and hence by Whitehead's theorem a homotopy equivalence (provided N_{0} has a suitable topology). Hence we see that the arc-components of N_{0} (nondegenerate regular homotopy classes) are in a one-one correspondence with the elements of $\pi_{1}\left(V_{2}(X) \times R^{+}, v_{0}\right) \cong \pi_{1}\left(v_{2}(X),\left(x_{0}, t_{0}, n_{0}\right)\right)$. In the case where $X=R^{3}$, with the Euclidean (flat) metric we recover the main theorem of [3].

2. Definitions and an outline of the paper

Let X be a Riemannian manifold of dimension $\geq 3, g$ its Riemann metric, and D the Riemannian connection (covarient derivative) induced by g (see [6]). Let $\gamma: I \rightarrow X$ be an immersion, t parametrize the interval $[a, b]=I, \gamma(t)$ be the parametrized curve, and $\dot{\gamma}(t)=d \gamma /\left.d t\right|_{t}=d \gamma(d / d t) \in T(X)_{\gamma(t)}$ be the tangent vector of the parametrized curve $\gamma(t)$. The square of the geodesic curvature is given by the formula $k_{g}(\gamma)(t)^{2}=|\dot{\gamma}(t)|_{\gamma(t)}^{2}\left|D_{\dot{\gamma}(t)} t(\gamma)(t)\right|_{\gamma(t)}^{2}$ where $t(\gamma)(t)=\dot{\gamma}(t) / /\left.\dot{\gamma}(t)\right|_{\gamma(t)}$

[^0]is the unit tangent vector of γ at $\gamma(t)$, and $|v|_{\gamma(t)}=g(\gamma(t))(v, v)^{1 / 2}$ where $v \in T(X)_{r(t)}$. It is easy to see by a direct calculation that this number is independent of the orientation and parametrization chosen for I. Let us fix once and for all, an orientation for I. If γ is nondegerate, we can define a unique principal normal vector by the formula
$$
n(\gamma)(t)=\left[D_{\dot{\gamma}(t)}(t(\gamma)(t))\right]|\dot{\gamma}(t)|^{-1}\left(+\sqrt{\left(k_{g}(\gamma)(t)\right)^{2}}\right)^{-1} .
$$

We will always follow this convention. It is again easily seen that $n(\gamma)$ is independent of the choice of parameter on I. (It does depend upon the orientation which we have fixed.) Finally, we set $k_{g}(\gamma)(t)=+\sqrt{k_{g}(\gamma)(t)^{2}}$. We note that $k_{g}(\gamma)$ and $n(\gamma)$ are of class C^{k-2}, and $t(\gamma)$ is of class C^{k-1}, whenever γ is of class C^{k}.
Let $\pi_{0}: V_{2}(X) \rightarrow X$ be the Stiefel bundle of 2-frames in n-space associated with the tangent bundle $T(X)$. By this we mean for each $x \in X$, the fiber $\pi_{0}^{-1}(x)=V_{2}(X)_{x}$ is the Stiefel manifold of orthonormal 2-frames in the Euclidean vector space $\left(T(X)_{x}, g(x)\right)$. We recall that $V_{2}(X)_{x}$ is compact, and can be viewed as a closed submanifold of $S_{x} \times S_{x}$ where S_{x} is the unit sphere in $T(X)_{x}$. In fact most of the time we will view $V_{2}(X)_{x}$ as a closed bounded subset of $T(X)_{x} \times T(X)_{x}$, i.e., $V_{2}(X)=\left\{(v, \omega) \in T(X)_{x} \times T(X)_{x},|v|_{x}=|\omega|_{x}=1\right.$, and $g(x)(v, \omega)=0\}$. Finally, let $V=V_{2}(X) \times R^{+}$, where R^{+}denotes the strictly positive real numbers, and let $\pi: V \rightarrow X$ be the composition of the projection onto the first factor followed by π_{0}.

Let us fix an orientation for the circle C, and let $I=[0,2]$. Let us set $E(I, X)=\left\{f:[0,2] \rightarrow X \mid f\right.$ is C^{2}, and f is a nondegenerate immersion $\}$. Let $E(C, X)$ be those elements of $E(I, X)$ which can be extended to a C^{2} periodic map of period 2 and principal domain of definition [0,2]. Let us endow these sets with the C^{2}-topology. (The two possible choices of C^{2}-topology agree because I and C are both compact, [2], [8]. In fact, these are open subsets of the function spaces consisting of all mappings $C^{2}(I, X)$ and $C^{2}(C, X)$.) The elements of $E(I, X)$ and $E(C, X)$ are the parametrized non-degenerate curves. Let $N D(I, X)$ and $N D(C, X)$ denote respectively the set of equivalence classes of elements of $E(I, X)$ and $E(C, X)$, where we identify f and g if and only if they differ by an orientation preserving C^{2} reparametrization of I or C. If we identify an element of $E(I, X)$ which is parametrized proportional to arc length with the corresponding unique element of $N D(I, X)$, we can view $N D(I, X)$ as a subspace of $E(I, X)$. Let us define $R: E(I, X) \times[0,1] \rightarrow N D(I, X)$ by the formula $R(\gamma, u)(t)=\gamma\left((1-u) t+u s_{r}(t)\right)$ where s_{γ} is the parameter proportional to arc length, and t is the given parameter. R is continuous and defines a deformation retract of $E(I, X)$ onto $N D(I, X)$, and therefore these spaces have the same homotopy type. Let $C^{k}(I, M)$ denote the C^{k} functions from I into a manifold M with the C^{k} topology.

If $\gamma \in N D(I, X)$ or $E(I, X)$, let $t(\gamma) \in C^{1}(I, T(X))$ denote the map $t(\gamma)(t)=$ unit
tangent vector to γ at $\gamma(t)$. The induced map $t: E(I, X) \rightarrow C^{1}(I, T(X))$ is clearly continuous. Similarly we can define continuous maps $n: E(I, X) \rightarrow C^{0}(I, T(X))$ and $k_{g}: E(I, X) \rightarrow C^{0}\left(I, R^{+}\right)$by the formulas $n(\gamma)(t)=$ principal normal to γ at $\gamma(t)$, and $k_{g}(\gamma)(t)=$ geodesic curvature of γ at $\gamma(t)$. We can also define $v: E(I, X) \rightarrow C^{0}(I, V)$ by $v(\gamma)(t)=\left(\gamma(t), t(\gamma)(t), n(\gamma)(t), k_{g}(\gamma)(t)\right)$. When we replace I by C all the same statements hold true. Let us pick $v_{0}=\left(x_{0}, t_{0}, n_{0}, k_{0}\right) \in V$, let $E_{0}=\left\{\gamma \in E(I, X) \mid v(\gamma)(0)=v_{0}\right\}$, and give E_{0} the induced topology. We can now state precisely our main theorem.

Theorem A. Let $p: E_{0} \rightarrow V$ be defined by $p(\gamma)=v(\gamma)(1) ; p$ is clearly a continuous map. Let us pick a base point $\gamma_{0} \in p^{-1}\left(v_{0}\right)$, and let $p_{*}: \pi_{k}\left(E_{0}, p^{-1}\left(v_{0}\right) ; \gamma_{0}\right)$ $\rightarrow \pi_{k}\left(V, v_{0}\right)$ be the usual induced map on homotopy groups (and sets). Then p_{*} is an isomorphism for all $k \geq 2$, and a bijection for $k=1$.

We prove this by showing that the triple $p: E_{0} \rightarrow V$ satisfies enough of a homotopy lifting property to imply p_{*} is a bijection. We define and discuss this property in some detail in § 3, and show among other things that it is a local property.

Pick a point $\theta_{0} \in C$, and let $N_{0}=\left\{\gamma \in N D(C, X) \mid v(\gamma)\left(\theta_{0}\right)=v_{0}\right\}$. Thus the deformation retract defined by R gives us a homotopy equivalence between the spaces $p^{-1}\left(v_{0}\right), p^{-1}\left(v_{0}\right) \cap E_{0}(C, X)$ and N_{0}. We show in § 7 that $\pi_{i}\left(E_{0}, \gamma_{0}\right)=0$ for all i. Therefore the homotopy sequence implies that $\pi_{i}\left(N_{0}, \gamma_{0}\right) \cong \pi_{i+1}\left(V, v_{0}\right)$ $\cong \pi_{i+1}\left(V_{2}(X),\left(x_{0}, t_{0}, n_{0}\right)\right)$, assuming γ_{0} is parametrized proportional to arc length. If we set $i=0$, we can classify the arc-components of N_{0}, i.e., the based nondegenerate regular homotopy classes, by looking at $\pi_{1}\left(V_{2}(X),\left(x_{0}, t_{0}, n_{0}\right)\right)$. Let $\Omega_{0}=\left\{\gamma \in C^{0}(C, V) \mid \gamma\left(\theta_{0}\right)=v_{0}\right\}$, where Ω_{0} has the C^{0} (compact-open) topology. Let $\varphi: N_{0} \rightarrow \Omega_{0}$ be defined by $\varphi(\gamma)(t)=\left(\gamma(t), t(\gamma)(t), n(\gamma)(t), k_{g}(\gamma)(t)\right) ; \varphi$ is continuous and by our theorem a weak homotopy 'equivalence. Both N_{0} and Ω_{0} carry the structure of paracompact Banach manifold [10]. Hence by theorems of Palais [9] these spaces satisfy the hypotheses of the Whitehead theorem. Thus $\varphi: N_{0} \rightarrow \Omega_{0}$ is a homotopy equivalence.

We will close this section by outlining the remainder of this paper. § 3 as mentioned deals with a local lifting property which will imply Theorem A. In $\S 4$ we compare locally the case of an arbitrary metric and the flat metric induced by taking Riemann normal coordinates as orthonormal coordinates of a flat space. We can then reduce the "curved" space problem to a slightly more involved "flat" problem. The crucial lemma of this paper is Lemma 5.1. It is a generalization of the proposition in [5]; also see [3,2.1]. The idea is as follows. Let $\lambda:[0,1] \rightarrow S^{n-1}$ be an immersion, and $\rho(t)>0$ a C^{1} function. Then $\gamma(t)=\int_{0}^{t} \lambda(\tau) \rho(\tau) d \tau$ is nondegenerate, $t(\gamma)(1)=\lambda(1), n(\gamma)(1)=t(\lambda)(1)$, and $k_{g}(\gamma)(1)=1 / \rho(1)$. If we use Proposition 4.1 to reduce the problem to a Euclidean one, we can then try to apply Smales immersion theorem [11], to curves on the sphere, and then try to construct the desired nondegenerate curves γ by
picking the appropriate weighting function ρ. However, in our lifting problem we must be able to construct ρ such that $\gamma(1)=x, x$ being some relatively arbitrary point near 0 . In $\S 5.1$ we see how arbitrary x can be, provided λ has some nice properties. In § 6 we prove some technical lemmas which enable us to apply Lemma 5.1 by insuring that our λ 's have the desired properties. $\S 7$, entitled odds and ends, contains a technical reparametrization, Lemma 7.1, and the proof that E_{0} is weakly contractable, Corollary 7.2. In $\S 8$ we reduce the proof of Theorem A to an abstract Theorem 8.2, which we prove in §9. In § 8 we have to introduce certain Sobolev spaces. Anything we need can be found in [1, pp. 165-168].

3. Abstract topology

Let $I^{n}=$ the n-cube $=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid 0 \leq x_{i} \leq 1,1 \leq i \leq n\right\} \subseteq R^{n}, I_{k, i}^{n-1}=\left\{x \in I^{n} \mid x_{k}\right.$ $=i\}, i=0,1, F^{n-1}=\bigcup_{k=1}^{n} I_{k, 1}^{n-1} \partial I^{n}=\bigcup_{(k, i)} I_{k, i}^{n-1}$, and $J^{n-1}=\left\{x \in \partial I^{n} \mid x \notin \operatorname{Int} I_{n, 1}^{n-1}\right\}$.
Definition 3.1. A one parameter family of maps $h_{t}: I^{n} \rightarrow I^{n}, 0 \leq t \leq 1$, is said to be an admissible deformation of I^{n} if:
i) the induced map $H: I \times I^{n} \rightarrow I^{n}$ defined by $H(t, x)=h_{t}(x)$ is continuous,
ii) $h_{0}=\mathrm{id}, h_{t} \mid F^{n-1}=\mathrm{id}$ for all $t \in[0,1]$, and
iii) $h_{t}\left(\partial I^{n}\right) \subseteq \partial I^{n}$ for all $t \in[0,1]$.

Remark. Let h_{t} be an admissible deformation of I^{n}, and $K:\left(I^{n}, F^{n-1}\right) \rightarrow$ (I^{n}, J^{n-1}) a homeomorphism mapping F^{n-1} homeomorphically onto J^{n-1}. Let $\tilde{h}_{t}=K \circ h_{t} \circ K^{-1}$ and let $\check{H}: I \times I^{n} \rightarrow I^{n}$ be the induced map defined by $\tilde{H}(t, x)$ $=\bar{h}_{t}(x)=K \circ H\left(t, K^{-1} x\right)$. Then \bar{H} is continuous, $\bar{h}_{t}(x)=x$ for all $x \in J^{n-1}$, $t \in[0,1], \breve{h}_{0}=$ id and $\breve{h}_{t}\left(\partial I^{n}\right) \subseteq \partial I^{n}$. Hence, if we replace F^{n-1} by J^{n-1} in Definition 3.1 we get a completely equivalent notion.

Definition 3.2. Let $h_{t}: I^{n} \rightarrow I^{n}, 0 \leq t \leq 1$, be an admissible deformation of I^{n}. We say h_{t} is a strong admissible deformation if $h_{t}\left(I_{k, 1}^{n-1}\right) \subseteq I_{k, 1}^{n-1}$ for $1 \leq k \leq n$.

Definition 3.3. Let $\pi: E \rightarrow B$ be a triple where E and B are topological spaces, and π is a continuous map.

We say $\{\pi: E \rightarrow B\}$ has (strong) property P, if for each n and each pair of continuous maps $\varphi_{0}: I^{n} \rightarrow B$ and $\psi: F^{n-1} \rightarrow E$ such that $\pi \circ \psi=\varphi_{0} \mid F^{n-1}$, we can find a (strong) admissible deformation h_{t} of I^{n} and an extension Ψ of ψ to all I^{n} such that $\pi \circ \Psi=\varphi_{0} \circ h_{1}$.

Let us note that there is a notion exactly equivalent to Definition 3.3 if we replace F^{n-1} by J^{n-1}. In fact, $\{\pi: E \rightarrow B\}$ has property P if and only if it has
property P with J^{n-1} replacing F^{n-1} in Definition 3.3. If we use this remark, and then apply the usual proof in the case where $\pi: E \rightarrow B$ is a Serre fibration (see [7]) we get the following important proposition.

Proposition 3.4. Let $\pi: E \rightarrow B$ be a triple consisting of two topological spaces and a continuous map which satisfies property P. Pick $b_{0} \in B$, and $y_{0} \in \pi^{-1}\left(b_{0}\right)=F$. Then the canonical map $\pi_{*}: \pi_{n}\left(E, F ; y_{0}\right) \rightarrow \pi_{n}\left(B, b_{0}\right)$ is a bijection (1-1 and onto).

The following elementary proposition follows immediately from the definitions.

Proposition 3.5. Let $\pi: E_{1} \rightarrow B$, and $p: E_{2} \rightarrow E_{1}$ have (strong) property P. Then $\pi \circ p: E_{2} \rightarrow B$ satisfies (strong) property P.

Definition 3.6. Let E and B be topological spaces, and $\pi: E \rightarrow B$ a continuous map. Let $\varphi: I^{n} \rightarrow B$, and $\psi: F^{n-1} \rightarrow E$ be continuous maps such that $\pi \circ \psi=\varphi \mid F^{n-1}$. By a deformation of (φ, ψ) we mean a continuous map $\tilde{\phi}: F^{n-1} \times I \rightarrow E$ such that $\pi \circ \psi_{t}=\varphi$ on F^{n-1} and $\psi_{0}=\psi$ where $\psi_{t}=\tilde{\phi} \mid F^{n-1} \times\{t\}$.

Proposition 3.7. Let $\pi: E \rightarrow B$ be as above. Then π has (strong) property P if and only if, for each n and each pair of continuous maps $\varphi: I^{n} \rightarrow B$ and $\psi: F^{n-1}$ such that $\pi \circ \psi=\varphi \mid F^{n-1}$, we can find:
i) a deformation ψ_{t} of (φ, ψ),
ii) a (strong) admissible deformation h_{t} of I^{n}, and
iii) an extension Ψ of ψ_{1} to I^{n} such that $\pi \circ \Psi=\varphi \circ h_{1}$.

Proof. If $\pi: E \rightarrow B$ has (strong) property P, this is a triviality. Let $\varphi: I^{n} \rightarrow B$ and $\psi: F^{n-1} \rightarrow E$ be a pair of continuous maps such that $\pi \circ \psi=\varphi \mid F^{n-1}$. We want to find a (strong) deformation \widehat{h}_{t} of I^{n} and an extension Ψ of ψ to I^{n} such that $\pi \circ \Psi=\varphi \circ \breve{h}_{1}$. Let us define a (strong) admissible deformation \bar{h}_{t} of I^{n} as follows. Let h_{t} be the (strong) admissible deformation given by ii) in the hypotheses. Let $C_{t}=\left(x \in I^{n} \mid t / 2 \leq x_{k} \leq 1\right)$ for $0 \leq t \leq 1$, and $T_{k, 0}^{(t)}=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid x \in I^{n}\right.$, $x_{k}=s t / 2, s t / 2 \leq x_{l} \leq 1$ for $\left.l \neq k, 0 \leq s \leq 1\right\}$. Then $I^{n}=\bigcup_{k=1}^{n} T_{k, 0}^{(t)} \cup C_{t}$ for each fixed t. Let us introduce the following shorthand if $v=\left(x, \cdots, x_{n}\right) \in R^{n}$ and $a \in R$, by $x-a$ we mean $\left(x_{1}-a, \cdots, x_{n}-a\right)$. We will now define \bar{h}_{t}. If $x \in C_{t}$, then define $\left(\breve{h}_{t}(x)\right)_{k}=\left(h_{t}\left(\frac{x-t / 2}{1-t / 2}\right)\right)_{k}$, and if $x \in T_{k, 0}^{(t)}$, then $x_{k}=s t / 2$, $0 \leq s \leq 1$, and set $\left(\breve{h}_{t}(x)\right)_{k}=0$ and $\left(\breve{h}_{t}(x)\right)_{l}=\left(x_{l}-s t / 2\right) /(1-s t / 2)$. We then see by direct calculation that $\breve{h}_{0}=\mathrm{id}, \breve{h}_{t} \mid F^{n-1}=\mathrm{id}$, and \breve{h}_{t} is well-defined and is a (strong) admissible deformation of I^{n}. Let $\widetilde{\Psi}$ be the extension of ψ_{1} to I^{n} given by i) and iii). We define the desired Ψ on C_{1} by $\Psi(x)=\tilde{\Psi}\left(\frac{x-1 / 2}{1-1 / 2}\right)$. If $x \in T_{k, 0}^{(1)}$, then $0 \leq x_{k} \leq 1 / 2$, say $x_{k}=s / 2,0 \leq s \leq 1$, and therefore $s / 2 \leq x_{l} \leq 1$ for $l \neq k$. We then set $\Psi(x)=\psi_{s}\left(\breve{h}_{1}(x)\right)$. We can then check directly that Ψ extends ψ, and Ψ is continuous and well-defined, and that $\pi \circ \Psi=\varphi \circ \tilde{h}_{1}$. This completes this proof.

Definition 3.8. Let E and B be topological spaces, and $\pi: E \rightarrow B$ a continuous map. We say $\pi: E \rightarrow B$ has strong local property P if for each $x \in B$ there exists a neighborhood U of x such that $\pi: \pi^{-1}(U) \rightarrow U$ has property P.

Theorem 3.9. If $\pi: E \rightarrow B$ has strong local property P, then it has strong property P.

Proof. For each $b \in B$, let U_{b} be an open neighborhood of b such that $\pi: \pi^{-1}\left(U_{b}\right) \rightarrow U_{b}$ has property P. Let $\varphi: I^{n} \rightarrow B$, and $\psi: F^{n-1} \rightarrow E$ be continuous maps such that $\pi \circ \psi=\varphi$ on F^{n-1}. The sets $\varphi^{-1}\left(U_{b}\right)$ forms an open cover of I^{n}. Hence by the Lebesgue covering lemma there exists an integer $N>0$ such that any subcube of I^{n}, with sides parallel to those of I^{n} and side of length $1 / N$, is contained in one of the sets $\varphi^{-1}\left(U_{b}\right)$. Let $B_{I}=B_{i_{1}, \ldots, i_{n}}=\left\{x \in I^{n} \mid i_{k} / N \leq x_{k} \leq i_{k}\right.$ $+1 / N\}, 0 \leq i_{k} \leq N-1,1 \leq k \leq n$. Set $B_{I, k, 0}=\left\{x \in B_{I} \mid x_{k}=i_{k} / N\right\}, B_{I, k, 1}$ $=\left\{x \in B_{I} \mid x_{k}=i_{k}+1 / N\right\}$, and $F_{I}=\bigcup_{k=1}^{n} B_{I, k, 0}$. The B_{I} 's cover I^{n}, and each B_{I} is contained in one of the sets $\varphi^{-1}\left(U_{b}\right)$. We will order the $(N)^{n} n$-tuples $I=\left(i_{1}, \cdots, i_{n}\right)$ lexicographically. If I is an n-tuple, let $I+1$ be the n-tuple immediately succeeding I, and $\nu(I)$ the number of n-tuples less than or equal to I. We now construct the continuous extension Ψ of ψ and the strong admissible deformation h_{t} of I^{n} by induction.

Induction step I. Let $C_{I}=F^{n-1} \cup \cup_{I^{\prime} \leq I} B_{I^{\prime}}$. Assume there exist a continuous $\operatorname{mep} \Psi_{I}: C_{I} \rightarrow E$ extending ψ, and a continuous function $H_{I}:[0, J(I)] \times I^{n} \rightarrow I^{n}$ where $J(I)=\nu(I) / N^{n}$ with the following properties. Set $h_{I, t}(x)=H_{I}(t, x)$. Then $h_{I, 0}=\mathrm{id}, h_{I, t} \mid F^{n-1}=\mathrm{id}$ for $0 \leq t \leq J(I), h_{I, t}\left(I_{k, 1}^{n-1}\right) \subseteq I_{k, 1}^{n-1}$ and $\pi \circ \Psi_{I}$ $=\varphi \circ h_{I, J(I)}$.

We will now prove our theorem by showing that step I implies step I +1 , and noting that step 0 is trivially true, and step $(N)^{n}$ is the desired result. Look at B_{I+1} and note that $F_{I+1}=B_{I+1} \cap C_{I}$. Let $f=\varphi \circ h_{I, J(I)} \mid B_{I+1}$, and $p=\Psi_{I} \mid F_{I+1}$. But we know that B_{I+1} is contained in one of the $\varphi^{-1}\left(U_{b}\right)$. Hence we can find continuous maps $K:[J(I), J(I+1)] \times B_{I+1} \rightarrow B_{I+1}$, and $\underline{P}: B_{I+1} \rightarrow E$ extending p with the following properties. $K(J(I), x)=x, K(t, x)=x$ for $x \in F_{I+1}$ and $t \in[J(I), J(I+1)], K(t, x) \in B_{I+1, k, 1}$ for $x \in B_{I+1, k, 1}$ and $t \in[J(I), J(I+1)]$, and $\pi \circ \underline{P}(x)=f(K(J(I+1), x))$ for $x \in B_{I+1}$. Define $\Psi_{I+1}: C_{I+1}=C_{I} \cup B_{I+1} \rightarrow E$ by $\Psi_{I+1} \mid C_{I}=\Psi_{I}$ and $\Psi_{I+1} \mid B_{I+1}=\underline{P} . \Psi_{I+1}$ is clearly a well-defined continuous extension of ψ. We now extend $K:[J(I), J(I+1)] \times B_{I+1} \rightarrow B_{I+1}$ to a map $K:[J(I), J(I+1)] \times I^{n} \rightarrow I^{n}$ as follows. If for some $k, x_{k} \leq i_{k} / N^{n}$, then we set $K\left(t,\left(x_{1}, \cdots, x_{n}\right)\right)=\left(x_{1}, \cdots, x_{n}\right)$. We are left with the case where $x_{k} \geq i_{k} / N^{n}$ for all k. We then set $K(t, x)_{k}=x_{k}$ provided $x_{k} \geq\left(i_{k+1}\right) / N^{n}$. We define \bar{x} by the formula ($\bar{x})_{l}=x_{l}$ if $i_{l} / N^{n} \leq x_{l} \leq\left(i_{l+1}\right) / N^{n}$ for some index l, and by $(\bar{x})_{k}=\left(i_{k+1}\right) / N^{n}$ if $x_{k} \geq\left(i_{k+1}\right) / N^{n}$. Then $\bar{x} \in B_{I+1}$, and we set $K(t, x)_{l}$ $=K(t, \bar{x})_{l}$ where l is an index such that $i_{l} / N^{n} \leq x_{l} \leq\left(i_{l+1}\right) / N^{n}$. Note if we set $k_{t}(x)=K(t, x)$, the k_{t} have the following properties. $k_{t}(x)=x$ for all $x \in C_{I}, k_{J(t)}(x)=x$ for all $x \in I^{n}$, and $k_{t}\left(I_{k, 1}^{n-1}\right) \subseteq I_{k, 1}^{n-1}$ for all t. Let us define

$$
h_{I+1, t}= \begin{cases}h_{t}(x), & 0 \leq t \leq J(I) \\ h_{J(I)}\left(k_{t}(x)\right), & J(I) \leq t \leq J(I+1)\end{cases}
$$

and set $H_{I+1}(t, x)=h_{I+1, t}(x)$. It is then easy to directly check that H_{I+1} and Ψ_{I+1} have all the desired properties.

In the remainder of this paper we will prove the following theorem.
Theorem \mathbf{A}^{\prime}. Let $p: E_{0} \rightarrow V$ be the triple defined in $\S 2$. Then $p: E_{0} \rightarrow V$ has strong local property P.

By using Proposition 3.4 and Definition 3.8 we see that Theorem A^{\prime} implies Theorem A. Let $\left(x_{0}, v, k\right) \in V$, we want to look at neighborhoods U of this point of the form $U=W \times V_{2} \times\left(k_{0}, \infty\right)$, where $k_{0}<\mathrm{k}$ and W is a sufficiently small neighborhood which is the domain of x_{0} centered Riemann normal coordinates $\left(x_{1}, \cdots, x_{n}\right)$. The exact form of the neighborhood U will be chosen in the next section. However, given $\phi: F^{n-1} \rightarrow p^{-1}(U)$ and $\varphi: I^{n} \rightarrow U$ such that $p \circ \psi=\varphi \mid F^{n-1}$ we cannot lift φ immediately because of the nature of our lifting mechanism. We must first "reparametrize" the cube I^{n}, and preform some preliminary deformations on the curves in ψ. It is because of this that the topological abstractions of this section are needed.

4. A local comparison to determine the desired neighborhood

Let (X, g) be the given Riemannian manifold, and let ($\tilde{x}, \tilde{v}, \tilde{k}) \in V, \tilde{k} \in R^{+}$, $\tilde{v}=(\tilde{t}, \tilde{n})$, and $\tilde{v} \in V_{2}(X)_{\tilde{x}}$. Let $U=W \times V_{2} \times(k, \infty)$, where $0<k<\tilde{k}, W$ is the domain of \tilde{x}-centered geodesic coordinates $\left(x_{1}, \cdots, x_{n}\right)$ and V_{2} is the Stiefel manifold of orthonormal 2-frames in n-space. Let the metric tensor g take its usual coordinate form $g(\mathrm{x})=\sum g_{i j}(x) d x^{i} d x^{j}$ on W. We recall that $g_{i j}(0)=g_{i j}(\tilde{x})=\delta_{i j},\left(\partial g_{i j} / \partial x_{k}\right)(0)=0$, and therefore the Christoffel symbols $\Gamma_{i j}^{k}(0)=0$. If we identify the tangent space $T(X)_{x}, x \in W$, with R^{n} in the usual way (i.e., $a=\left(a_{1}, \cdots, a_{n}\right)$ is identified with $\sum a_{i}\left(\partial / \partial x_{i}\right)(x)$), then we note that as x varies over W, we identify $V_{2}(X)_{x}$ with a slightly different subset of $R^{n} \times R^{n}$ determined by the variation in the metric. This identification clearly varies smoothly with $x \in W$. We can also define upon W the flat metric $g_{F}=$ $\sum \delta_{i j} d x^{i} d x^{j}$. If $\gamma: I \rightarrow W$ is a nondegenerate immersion with respect to $g\left(g_{F}\right)$ we call it $g\left(g_{F}\right)$-nondegenerate. If $\gamma: I \rightarrow W$ is $g\left(g_{F}\right)$ - degenerate let $t(\gamma), n(\gamma)$, $k_{g}(\gamma)\left[t_{F}(\gamma), n_{F}(\gamma), k_{F}(\gamma)\right]$ denote the unit tangent vector, the principal normal vector, and the geodesic curvature of γ calculated with respect to $g\left(g_{F}\right)$.

Let us pick $(x, v, l) \in W \times V_{2} \times(k, \infty)$. Furthermore, assume $v=(a, b) \in R^{n}$ $\times R^{n}$, where $\sum\left(a_{i}\right)^{2}=\sum\left(b_{i}\right)^{2}=1$ and $\sum a_{i} b_{i}=0$ (i.e., (a, b) is a 2-frame with respect to the flat metric). Let $t_{0} \in I$, and $\gamma: I \rightarrow W$ be a g_{F}-nondegenerate curve such that $\gamma\left(t_{0}\right)=x, t_{F}(\gamma)\left(t_{0}\right)=a, n_{F}(\gamma)\left(t_{0}\right)=b$, and $k_{F}(\gamma)\left(t_{0}\right)=l$. We then see $t(\gamma)\left(t_{0}\right)=a /\left(\sum g_{i j}(x) a_{i} a_{j}\right)^{1 / 2}$, and $\left(k_{g}(\gamma)\left(t_{0}\right)\right)^{2}=\left(\sum g_{i j}(x) a_{i} a_{j}\right)^{-3}\left(\left[\sum g_{i j}(x) a_{i} a_{j}\right]\right.$ $\left.\left[\sum g_{i j}(x) c_{i} c_{j}\right]-\left[\sum g_{i j}(x) a_{i} c_{j}\right]^{2}\right), \quad$ where $c_{i}=b_{i} l+\sum_{j, k} \Gamma_{j k}^{i}(x) a_{j} a_{k}$. Hence
$t(\gamma)\left(t_{0}\right)$ and $k_{g}(\gamma)\left(t_{0}\right)$ depend upon x, a, b and l alone and not on our choice of r. We can use these formulas to define the functions $t(x, a)=t(\gamma)\left(t_{0}\right)$ and $k_{g}(x, a, b, l)=k_{g}(\gamma)\left(t_{0}\right)$. Now $k_{g}(0, a, b, l)^{2}=l^{2}$, and $\partial\left(k_{g}(0, a, b, l)^{2}\right) / \partial l=2 l$. Hence because of the compactness of V_{2} we can find a neighborhood W_{1} of $0, W_{1} \subseteq W$ such that $k_{g}(x, a, b, l)^{2}>(2 k / 3)^{2}$, if $k<l$ and $x \in W_{1}$. In that $k_{g}(\gamma)\left(t_{0}\right)=k_{g}(x, a, b, l)>0$ if $x \in W_{1}$, we can define the principal normal $n(\gamma)\left(t_{0}\right)=k_{g}(x, a, b, l)^{-1}\left(\sum g_{i j}(x) a_{i} a_{j}\right)^{-2}[d] \quad$ where $d=c\left(\sum g_{i j}(x) a_{i} a_{j}\right)-$ $a\left(\sum g_{i j}(x) a_{i} c_{j}\right), c_{j}=b_{j} l+\sum_{i, k} \Gamma_{i k}^{j}(x) a_{i} a_{k}$ and $c=\left(c_{1}, \cdots, c_{n}\right)$. We see that $n(\gamma)\left(t_{0}\right)$ does not depend on γ but only on $x, v=(a, b)$ and l, and we can then set $n(x, a, b, l)=n(\gamma)\left(t_{0}\right)$. Hence we have defined a smooth 1-1 map α : $W_{1} \times V_{2} \times(k, \infty) \rightarrow W_{1} \times V_{2} \times(2 k / 3, \infty)$ by the formula $\alpha(x,(a, b), l)=$ $\left(x, t(x, a), n(x, a, b, l), k_{g}(x, a, b, l)\right)$.

Let us pick $(x, v, l) \in W \times V_{2} \times(k, \infty)$ where we assume $v=(a, b) \in R^{n} \times R^{n}$, $\sum g_{i j}(x) a_{i} a_{j}=\sum g_{i j}(x) b_{i} b_{j}=1$, and $\sum g_{i j}(x) a_{i} b_{j}=0$ (i.e., (a, b) is an orthonormal 2 -frame in the metric $g(x)$). Let $t_{0} \in I$, and let us choose a g-nondegenerate curve $\gamma: I \rightarrow W$ such that $\gamma\left(t_{0}\right)=x, t(\gamma)\left(t_{0}\right)=a, n(\gamma)\left(t_{0}\right)=b$ and $k_{g}(\gamma)\left(t_{0}\right)$. We then see that $t_{F}(\gamma)\left(t_{0}\right)=a /\left(\sum\left(a_{i}\right)^{2}\right)^{1 / 2}=t_{F}(x, a)$. We also see that $k_{F}(\gamma)\left(t_{0}\right)^{2}=\left(\sum\left(a_{i}\right)^{2}\right)^{-3}\left[\left(\sum\left(c_{k}\right)^{2}\right)\left(\sum\left(a_{k}\right)^{2}\right)-\left(\sum a_{k} c_{k}\right)^{2}\right]=k_{F}(x, a, b, l)^{2}$ where $c_{k}=b_{k} l-\sum_{i, j} \Gamma_{i j}^{k}(x) a_{i} a_{j}$. Hence $k_{F}(\gamma)\left(t_{0}\right)^{2}$ depends only on (x, a, b, l). Furthermore $k_{F}(0, a, b, l)^{2}=l^{2}$, and $\partial\left(k_{F}(0, a, b, l)^{2}\right) / \partial l=2 l$. By the compactness of V_{2}, we can find a neighborhood W_{2} of $0, W_{2} \subseteq W$ such that $k_{F}(x, a, b, l)^{2}>(2 k / 3)^{2}$ for $l>k$ and $x \in W_{2}$. Since $k_{F}(\gamma)\left(t_{0}\right)=k_{F}(x, a, b, l)>0$ for $x \in W_{2}(l>k)$, we can define the principal normal $n_{F}(\gamma)\left(t_{0}\right)=n_{F}(x, a, b, l)=k_{F}(x, a, b, l)^{-1}$ $\left(\sum\left(a_{k}\right)^{2}\right)^{-2}\left[\sum\left(a_{k}\right)^{2} c-\left(\sum a_{k} c_{k}\right) a\right]$, where $c_{k}=b_{k} l-\sum_{i, j} \Gamma_{i j}^{k}(x) a_{i} a_{j}$. Thus $n_{F}(\gamma)\left(t_{0}\right)$ depends only upon (x, a, b, l). Then as before, we have defined a smooth 1-1 map $\beta: W_{2} \times V_{2} \times(k, \infty) \rightarrow W_{2} \times V_{2} \times(2 k / 3, \infty)$ by the formula $\beta(x,(a, b), l)=\left(x, t_{F}(x, a), n_{F}(x, a, b, l), k_{F}(x, a, b, l)\right.$). Finally we note that $\alpha \circ \beta=\mathrm{id}$ and $\beta \circ \alpha=\mathrm{id}$ whenever these compositions are well-defined. This discussion can be summerized by the following proposition.

Proposition 4.1. Let us pick $k>0$. Then we can find a neighborhood W_{0} of $0, W_{0} \subseteq W$, which depends only upon our choice of k, with the following properties:

1) If $\gamma: I \rightarrow W_{0}$ is g-nondegenerate, and $k_{g}(\gamma)(t)>k$, then γ is g_{F}-nondegenerate and $k_{F}(\gamma)(t)>2 k / 3$. Furthermore, if $\gamma: I \rightarrow W_{0}$ is g_{F}-nondegenerate and $k_{F}(\gamma)(t)>2 k / 3$, then γ is g-nondegenerate and $k_{g}(\gamma)(t)>k / 3$.
2) Let us pick $(x, v=(a, b), l) \in W_{0} \times V_{2} \times(k, \infty)\left[(x, v=(a, b), l) \in W_{0}\right.$ $\left.\times V_{2} \times(2 k / 3, \infty)\right]$. Pick $t_{0} \in I$, and let $\gamma: I \rightarrow W_{0}$ be a $g\left[g_{F}\right]$-nondegenerate curve such that $\gamma\left(t_{0}\right)=x, t(\gamma)\left(t_{0}\right)=a, n(\gamma)\left(t_{0}\right)=b$ and $k_{g}(\gamma)\left(t_{0}\right)=l\left[\gamma\left(t_{0}\right)=x\right.$, $t_{F}(\gamma)\left(t_{0}\right)=a, n_{F}(\gamma)\left(t_{0}=b\right.$ and $\left.k_{F}(\gamma)\left(t_{0}\right)=l\right]$. Then $t_{F}(\gamma)\left(t_{0}\right), n_{F}(\gamma)\left(t_{0}\right)$ and $k_{F}(\gamma)\left(t_{0}\right)\left[t(\gamma)\left(t_{0}\right), n(\gamma)\left(t_{0}\right)\right.$ ond $\left.k_{g}(\gamma)\left(t_{0}\right)\right]$ are all well-defined and depend only upon (x, a, b, l). We therefore set $t_{F}(\gamma)\left(t_{0}\right)=t_{F}(\gamma)(x, a, b, l), n_{F}(\gamma)\left(t_{0}\right)=n_{F}(x, a, b, l)$ and $k_{F}(\gamma)\left(t_{0}\right)=k_{F}(x, a, b, l)\left[t(\gamma)\left(t_{0}\right)=t(x, a, b, l), n(\gamma)\left(t_{0}\right)=n(x, a, b, l)\right.$ and
$\left.k_{g}(\gamma)\left(t_{0}\right)=k_{g}(x, a, b, l)\right]$. In this way we define smooth $1-1$ maps $\alpha: W_{0} \times V_{2}$ $\times(k, \infty) \rightarrow W_{0} \times V_{2} \times(2 k / 3, \infty)$ and $\beta: W_{0} \times V_{2} \times(2 k / 3, \infty) \rightarrow W_{0} \times V_{2}$ $\times(k / 3, \infty)$ defined by $\alpha(x, a, b, l)=\left(x, t_{F}(x, a, b, l), n_{F}(x, a, b, l), k_{F}(x, a, b, l)\right)$ and $\beta(x, a, b, l)=\left(x, t(x, a, b, l), n(x, a, b, l), k_{g}(x, a, b, l)\right.$. Finally $\alpha \circ \beta=i d$ and $\beta \circ \alpha=$ id whenever the composition is well-defined.

5. A generalization of Fenchel's lemma

Let R^{n} possess its usual Riemann (Euclidean) st ructure, $S^{n-1} \subseteq R^{n}$ be the unit sphere with its usual Riemann structure, and $\gamma: I \rightarrow R^{n}$ be an immersion. We recall that γ is nondegenerate if and only if $t(\gamma): I \rightarrow S^{n-1}$ is an immersion. If we are given an immersion $\lambda:[0,1] \rightarrow S^{n-1}$, we want to find a curve $\gamma:[0,1]$ $\rightarrow R^{n}$ such that $t(\gamma)=\lambda, \gamma(1)=$ a predetermined point x, and $k(\gamma)(t)>k>0$, k being some some predetermined number.

Lemma 5.1. Let $D \subseteq R^{n}$ be a disc radius $R, 0<R \leq 1$, centered at 0 . Let $c(n)=18 n / \sqrt{n}$, and $B(n)=$ some number, $B(n)>1$, which depends only upon n and which we will determine in the next section. Let k be a real number such that $0<k<[c(n) B(n)]^{-1},\left(t_{0}, n_{0}\right)$ and $\left(t_{1}, n_{1}\right)$ be two given orthonormal 2 -frames, and $k_{i}, i=0,1$, be two positive numbers such that $k_{i}>k, i=0,1$. Pick $x \in D$ such that $|x|<R \sqrt{n} /(2 n)$. Let $\lambda:[0,1] \rightarrow S^{n-1}$ be an immersion such that

1) $\lambda(0)=t_{0}, \lambda(1)=t_{1}, t(\lambda)(0)=n_{0}$ and $t(\lambda)(1)=n_{1}$,
2) $\lambda \mid[0,1 / 2]$ is parametrized proportional to arc length and $\left|\lambda^{\prime}(s)\right| \leq B(n)$ for $s \in[0,1 / 2]$,
3) the set $\{\lambda(t) \mid 0<t<1 / 2\}$ contains the 2^{n} vertices of the inscribed cube. Then we can find a C^{∞} function $\rho(t), 0<\rho(t)<1 / k$, such that the curve $\gamma(t)=\int_{0}^{s} \lambda(\tau) \rho(\tau) d \tau$ has the following properties:
a) $\quad \gamma(1)=x, t(\gamma)(i)=t_{i}, n(\gamma)(i)=n_{i}, k(\gamma)(i)=k_{i}, i=0,1$.
b) $|\gamma(t)|<R$, and $k(\gamma)(t)>k$.

Proof. It is easy to see $k(\gamma)(t)=(\rho(t))^{-1}$. Hence if $0<\rho(t)<c(n) B(n)$, then $k(\gamma)(t)>k$. Furthermore $t(\gamma)(t)=\lambda(t)$ and $n(\gamma)(t)=t(\lambda)(t)$. Let $K=$ $\left\{y \mid y=\int_{0}^{1} \rho(\tau) \lambda(\tau) d \tau\right.$, where $\rho(\tau)$ is smooth, $0<\rho(\tau)<1 / k, \rho(i)=\left(k_{i}\right)^{-1}$ for $i=0,1$, and $\left.\int_{0}^{1} \rho(\tau) d \tau \leq .9 R\right\}$. We note that K is a convex set. Let $t_{j} \in(0,1 / 2), 1 \leq j \leq 2^{n}$, be the points such that $\lambda\left(t_{j}\right)$ are the vertices of the inscribed cube. If we can show that each vertex $.9 R \lambda\left(t_{j}\right)$ of the inscribed cube in the sphere of radius $.9 R$ is within $.9 R \sqrt{n} /(3 n)$ of K, then we see that $K \supseteq$ open ball about 0 of radius $R \sqrt{n} /(2 n)$, which implies that $x \in K$.

Pick one of the $t_{j}, 0<t_{j}<1 / 2$, such that $\lambda\left(t_{j}\right)$ is a vertex of the inscribe cube. Let us pick $\rho_{j}(t)$ as follows. Let $\rho_{j}(0)=\left(k_{0}\right)^{-1}, \rho_{j}(1)=\left(k_{1}\right)^{-1}$,

$$
\int_{0}^{1} \rho_{j}(t) d t=.9 R, \rho_{j}(t)>0, \text { and } \rho_{j}(t) \text { be smooth. }
$$

Pick an interval $[a, b]$ about t_{j} such that $[a, b] \subseteq(0,1 / 2)$ and $b-a=2(.9 R) /$ $(c(n) B(n))$. But $((b-a) / 2) c(n) B(n)=.9 R$, so we can choose $\rho_{j}(t)$ to also satisfy the relations $\int_{0}^{a} \rho_{j}(t)<1 / 2(.9 R \sqrt{n} /(9 n)), \int_{b}^{1} \rho_{j}(t) d t<1 / 2(.9 R \sqrt{n}(9 n))$ and $\rho_{j}(t)<1 / k$. Let $\lambda_{j}=\int_{0}^{1} \rho_{j}(t) \lambda(t) d t$. Then $\lambda_{j} \in K$, and $\left|\lambda_{j}-.9 R \lambda\left(t_{j}\right)\right|$ $=\left|\int_{0}^{1}\left(\lambda(t)-\lambda\left(t_{j}\right)\right) \rho_{j}(t) d t\right| \begin{aligned} & \text { because } \\ & 0\end{aligned} .9 R \lambda\left(t_{j}\right)=\int_{0}^{1} \rho_{j}(t) \lambda\left(t_{j}\right) d t$. Therefore $\left|\lambda_{j}-.9 R \lambda\left(t_{j}\right)\right| \leq\left|\int_{0}^{a}\right|+\left|\int_{a}^{b}\right|+\left|\int_{b}^{1}\right|<2 \cdot 2(1 / 2)(.9 R \sqrt{n} /(9 n))+\left|\int_{a}^{b}\right|$. But $\left|\lambda(t)-\lambda\left(t_{j}\right)\right| \leq|b-a| \sup \left|\lambda^{\prime}(t)\right| \leq|b-a| B(n)$ by Taylor's formula. Therefore $\left|\int_{a}^{b}\left(\lambda(t)-\lambda\left(t_{j}\right)\right) \rho_{j}(t) d t\right|<|b-a| B(n) \int_{a}^{b} \rho_{j}(t) d t<1.8 R c(n)^{-1}(.9 R)<$ $(1.8 R) c(n)^{-1}=(.9 R)(\sqrt{n} /(9 n))$. Hence $\left|\lambda_{j}-{ }^{a} .9 R \lambda\left(t_{j}\right)\right|<.9 R \sqrt{n} /(3 n)$, which is what we wanted to show.

6. Smashing and stretching

Let us fix some notation for this section. Let $D \subseteq R^{n}$ be an open disc of radius R centered at 0 . Give D its usual Riemann structure, and let $\left(e_{1}, e_{2}\right)$ be an orthonormal 2-frame. Let $E=\left\{\gamma:[-1,1] \rightarrow D \mid\right.$ a C^{2}-nondegenerate immersion $\gamma\}$, where we give E the C^{2} topology. Let k_{0} be some strictly positive real number, and set $E_{0}\left(k_{0}\right)=\left\{\gamma \in E \mid \gamma(0)=0, t(\gamma)(0)=e_{1}, n(\gamma)(0)=\right.$ $\left.e_{2}, k(\gamma)(t)>k_{0}, t \in[-1,1]\right\}$.

In this section we will prove two main lemmas (6.3, and 6.4) which easily imply the following theorem.

Theorem 6.1. Let X be a compact set, and $\varphi: X \rightarrow E_{0}\left(k_{0}\right)$ a continuous map. Then we can find a continuous deformation $\Phi: X \times[0,1] \rightarrow E_{0}\left(k_{0}\right)$ of φ (i.e., $\varphi(x)=\Phi(x, 0))$ with the following properties:

1) There exist numbers S and $T, 0<S<T<1$, such that $\Phi(x, u)(t)$ $=\varphi(x)(t)$ for all $|t| \geq T, x \in X, u \in[0,1]$, and $\Phi(x, 1)=\Phi(y, 1)(t)=f(t)$ for all $0 \leq|t| \leq S, x, y \in X$, and $C^{\infty} f(t)$.
2) The path $t(f(t)), 0<t<S$, passes through each of the 2^{n} vertices of the inscribed cube, and $\int_{0}^{S} k(f)(t) d t<B(n)=2^{n+5}\left(80+(n-1)^{1 / 2}\right)$.

If we are to employ Lemma 5.1 it is clear that a theorem of this type is needed.

Sublemma 6.2. Let X be a compact set, and $a: X \rightarrow C^{2}([-1,1] ; R)$ be a continuous map, and assume $a(x)(0)=a^{\prime}(x)(0)=a^{\prime \prime}(x)(0)=0$. Then there exist continuous functions $b_{i}: X \rightarrow \mathscr{C}^{0}([-1,1], R), i=0,1$, such that

1) $a(x)(s)=s^{2} b_{0}(x)(s), a^{\prime}(x)(s)=s b_{1}(x)(s)$ and
2) $b_{0}(x)(0)=b_{1}(x)(0)=0$.

Proof. This is a direct consequence of the fact $a(x)(s)=s \int_{0}^{1} D a(x)(s t) d t$ where D denotes differentiation with respect to the variable $v=s t$.

Lemma 6.3 (Smashing lemma). Let X be a compact set, and $\varphi: X \rightarrow E_{0}\left(k_{0}\right)$ a continuous map. Let $U=[-a, a], 0<a<1$, and assume $\varphi(x) \mid U$ is parametrized by arc length for all $x \in X$. Let us extend $\left(e_{1}, e_{2}\right)$ to an orthonormal basis $\left(e_{1}, \cdots, e_{n}\right)$ of R^{n}, and use these as coordinates. Then we can find two neighborhoods $V=[-c, c]$ and $W=[-b, b]$ such that $0<c<b<a$, and a continuous deformation $\Phi: X \times[0,2] \rightarrow E_{0}\left(k_{0}\right)($ i.e.,$\Phi(x, 0)=\varphi(x))$ of φ such that

1) $\Phi(x, u)(t)=\varphi(x)(t)$ if $b \leq|t| \leq 1, \Phi(x, 2)(t)=\Phi(y, 2)(t)=\left(t, t^{2} K / 2, \cdots, 0\right)$ for $|t| \leq c, x, y \in X, K>\max _{x \in X}(k(x))$ where $k(x)=k(\varphi(x))(0)$,
2) $\int_{-b}^{b} k(\Phi(x, u))(t) d t<1$.

Proof. Step I. Let us restrict ourselves to the interval $[-a, a]$. We see $\varphi(x)(s)=s e_{1}+\left(s^{2} k(x) / 2\right) e_{2}+a(x)(s), a(x)(s)=\sum_{i=1}^{n} a_{i}(x)(s) e_{i}, \quad$ and $a_{i}(x)(s)$ satisfy the hypotheses of Sublemma 6.2: $0 \leq|s| \leq a$. Let λ be a C^{∞} function so chosen that $\lambda(s) \equiv 1$ on $[-l / 2, l / 2], 0 \leq \lambda(s) \leq 1, \lambda(s) \equiv 0$ for $|s| \geq l, l<a$, and that there exists positive constants C_{1} and C_{2} which are independent of our choice of l, such that $\left|\lambda^{\prime}(s)\right| \leq C_{1} / l$ and $\left|\lambda^{\prime \prime}(\mathrm{s})\right| \leq C_{2} / l^{2}$. Set $p(x, s)=s e_{1}$ $+\left(s^{2} k(x) / 2\right) e_{2}$, and let $\Phi(x, u)(s)=p(x, s)+a(x)(s)[1-\lambda(s) u], 0 \leq u \leq 1$. $\Phi(x, u)(s)=\varphi(x)(s)$ if $|s| \geq l$. Note that we have not yet chosen l. There exists an $\varepsilon>0$ such that if $\|\varphi(x)-\Phi(x, u)\|_{2}<\varepsilon$ for all $x \in X, u \in[0,1]$ where $\left\|\|_{2}\right.$ is the C^{2}-norm, then $\Phi(x, u) \in E_{0}$. But $\Phi(x, u)(s)-\varphi(x)(s)=a(x)(s) u \lambda(s),|s| \leq l$, and $\Phi(x, u)(s)-\varphi(x)(s) \equiv 0,|s| \geq l$. Hence $|\Phi(x, u)(s)-\varphi(x)(s)| \leq \sup _{s \in[-l, l]}|a(x)(s)|$, $\left|\Phi^{\prime}(x, u)(s)-\varphi^{\prime}(x)(s)\right| \leq\left|\lambda^{\prime}(s)\right||a(x)(s)|+|\lambda(s)|\left|a^{\prime}(x)(s)\right|$, and $\mid \Phi^{\prime \prime}(x, u)(s)-$ $\varphi^{\prime \prime}(x)(s)\left|\leq\left|\lambda^{\prime \prime}(s)\right|\right| a(x)(s)|+2| \lambda^{\prime}(s)| | a^{\prime}(x)(s)|+|\lambda(s)|| a^{\prime \prime}(x)(s) \mid$. Hence by Sublemma 6.2, the compactness of X and the estimates on λ^{\prime} and $\lambda^{\prime \prime}$, we can find an l so small that $\|\Phi(x, u)-\varphi(x)\|_{2}<\varepsilon$ and $\int_{-l}^{l} k(\Phi(x, u))(t) d t<1 / 10$. Set $b=l(b=b$ in the statement of Lemma 6.3).

Step II. Let us limit ourselves to $|s| \leq l / 2$. Hence $\Phi(x, 1)(s)=\left(s, s^{2} k(x) / 2\right.$, $0, \cdots, 0)$, and let $\Phi(x)(s)=\Phi(x, 1)(s)$. Let $\psi(s)$ be a C^{∞} function so chosen that $\psi(s) \equiv 0$ for $|s| \geq d, \psi(s) \equiv 1$ for $|s| \leq 5 d / 6$, and $0 \leq \psi(s) \leq 1$, and we can choose positive constants C_{1} and C_{2} independent of d such that $\left|\psi^{\prime}(s)\right| \leq C_{1} / d$ and $\left|\phi^{\prime \prime}(s)\right| \leq C_{2} / d^{2}$. Let us assume $2 d<l / 2$. Let $\Phi(x, u)(s)=\left(s, s^{2} / 2(K \phi(s) u\right.$ $+(1-u \psi(s)) k(x)), u \xi(s), 0, \cdots, 0)$, where $\xi(s)$ is an even $(\xi(s)=\xi(-s)) C^{\infty}$ real-valued function such that $\xi(s) \equiv 0$ for $|s| \leq d / 6$ and $|s| \geq 2 d$, and where $0 \leq$ $u \leq 1$. By this formula there exist A_{1} and B_{1} such that if $|\xi(s)| \leq A_{1}$ and $d \leq B_{1}$, then $\Phi(x, u)(s) \in D$ for all $(x, u, s) . \Phi^{\prime}(x, u)(s)=\left(1, \operatorname{sh}(x, u, s), u \xi^{\prime}(s), 0, \cdots, 0\right)$ where $\left.h(x, u, s)=s[K u \psi(s)+(1-u \psi(s)) k(x)]+\left(s^{2} / 2\right)[K-k(x)) u \psi^{\prime}(s)\right]$. Pick $\varepsilon<0$ so small that $k(x)^{2} /(1+\varepsilon)^{2}>k_{0}^{2}$. There exist A_{2} and B_{2} such that if $\left|\xi^{\prime}(s)\right|<A_{2}$ and $d \leq B_{2}$, then $\left|\Phi^{\prime}(x, u)(s)\right|^{3}<1+\varepsilon$ for all (x, u) and $|s| \leq 2 d$. $\Phi^{\prime \prime}(x, u)(s)=\left(0, m(x, u, s), u \xi^{\prime \prime}(s), 0, \cdots, 0\right)$, where $m(x, u, s)=k(x)+u(K$ $-k(x)) \mu(s)$ and $\mu(s)=\left[\psi(s)+2 s \psi^{\prime}(s)+\left(s^{2} / 2\right) \psi^{\prime \prime}(s)\right]$. There exists a positive constant C_{3} independent of our choice of d such that $|\mu(s)| \leq C_{3},|s| \leq l / 2$. If $|s| \leq 5 d / 6$ or $|s| \geq d$, then $m(x, u, s) \neq 0$ and hence $\Phi(x, u)(s)$ is nondegenerate. We assume $\xi^{\prime \prime}(s) \neq 0,5 d / 6 \leq|s| \leq d$. This implies $\Phi(x, u)(s)$ is everywhere nondegenerate.
$k(\Phi(x, u))(s)^{2}=k(x, u)(s)^{2}=\left[1+h^{2}+u^{2}\left(\xi^{\prime}\right)^{2}\right]^{-3}\left[\left(1+h^{2}+u^{2}\left(\xi^{\prime}\right)^{2}\right)\left(m^{2}+u^{2}\left(\xi^{\prime \prime}\right)^{2}\right)\right.$ $\left.-\left(m h+u^{2} \xi^{\prime} \xi^{\prime \prime}\right)^{2}\right]=\left[1+h^{2}+u^{2}\left(\xi^{\prime}\right)^{2}\right]^{-3}\left[m^{2}+u^{2}\left(\xi^{\prime \prime}\right)^{2}+\left(m u \xi^{\prime}-h u \xi^{\prime \prime}\right)^{2}\right]$. But $m(x, u, s)=k(x)+u[K-k(x)] \mu(s)$, and therefore there exists $u_{0}>0$ such that $m(x, u, s)^{2} /(1+\varepsilon)^{2}>k_{0}^{2}$ for $0 \leq u \leq u_{0} ;, u_{0}$ is clearly independent of the choice of d and ξ. Set $\xi^{\prime \prime}(s)^{2}=(1+\varepsilon)^{2}\left(k_{0}^{2}+1\right)\left(u_{0}\right)^{-2}=\alpha$ for $5 d / 6 \leq$ $|s| \leq d$, and let $\left|\xi^{\prime \prime}(s)\right|^{2} \leq \alpha$ for all other s. Then $u^{2} \xi^{\prime \prime}(s)^{2} /(1+\varepsilon)^{2}>k_{0}^{2}$ for $5 d / 6 \leq|s| \leq d, u_{0} \leq u \leq 1$. Hence $\left|\xi^{\prime}(s)\right| \leq 2 d \alpha$ and $|\xi(s)| \leq 4 d^{2} \alpha . k(x, u)(s)^{2}$ $<m(x, u, s)^{2}+u^{2} \xi^{\prime \prime}(s)^{2}<K^{2}\left(1+C_{3}\right)^{2}+\alpha^{2}$, and therefore $\int_{-2 d}^{2 d} k(\Phi(x, u))(s) d s$ $<4 d\left(K^{2}\left(1+C_{3}\right)^{2}+\alpha^{2}\right)^{1 / 2}$. Let $d<\min \left(B_{1}, B_{2}, A_{2} / 2 \alpha,\left(A_{1} / 4 \alpha\right)^{1 / 2},(.9)(1 / 4)\right.$ $\left.\left(K^{2}\left(1+C_{3}\right)^{2}+\alpha^{2}\right)^{-1 / 2}\right)$. Then $|\xi(s)|<A_{1},\left|\xi^{\prime}(s)\right|<A_{2}, k(\Phi(x, u))(s)>k_{0}$, and $\int_{-2 d}^{2 d} k(\Phi(x, u))(s) d s<9 / 10$. This proves our lemma if we let $c=d / 6$.

Lemma 6.4 (Stretching lemma). Let D be a disc centered at 0 , and with radius $R<1$ and the usual metric, etc. Let $0<A<1$, and let $\varphi:[-A, A] \rightarrow D$ be a nondegenerate immersion such that $\varphi(0)=0, k(\varphi)(t)>k_{0}>0, \int_{-A}^{A} k(\varphi)(t) d t$ <1 and $t(\varphi)(0)=v_{0} \in S^{n-1}$. Pick $\omega \in S^{n-1}$ such that the geodesic (great circular) distance $d_{S}\left(v_{0}, \omega\right)<\pi / 6$. Then we can find a deformation φ_{u} of $\varphi, 0 \leq u \leq 3$, such that

1) $\varphi_{u}(0)=0$ for all $u, t\left(\varphi_{3}\right)(0)=\omega, \varphi_{0}(t)=\varphi(t)$,
2) $\varphi_{u}(t)$ is nondegenerate for all u and t, and $k\left(\varphi_{u}\right)(t)>k_{0}$,
3) there exists a real numbdr $a, 0<a<A$, such that $\varphi_{u}(t)=\varphi(t), 0 \leq u \leq 3$, $|t| \geq a$,
4) φ_{u} defines a continuous curve in $C^{2}([-A, A], D)$,
5) $\int_{-A}^{4} k\left(\varphi_{3}\right)(t) d t<L(n)=2^{2}(80+\sqrt{n-1})$.

Proof. Step 1. Pick coordinates in R^{n} such that $v_{0}=e_{1}$ and $n(\varphi)(0)=e_{2}$, and a positive number K such that $K>\sup \left(1,2^{9} k_{0}, k(\varphi)(0)\right)$. Let us reparametrize φ so that near $0, \varphi$ is parametrized by arc length. By applying Lemma 6.3, we can find a deformation $\varphi_{u}(t)$ of $\varphi, 0 \leq u \leq 1$, and numbers B and C such that $0<C<B<A, \varphi_{1}(t)=\left(t, t^{2} K / 2,0, \cdots, 0\right)$ for $|t| \leq C$, and $\varphi_{u}(t)=\varphi(t)$ for $|t| \geq B$. Furthermore choose φ_{u} so that $k\left(\varphi_{u}\right)(t)>k_{0}, \int_{-B}^{B} k\left(\varphi_{1}\right)(t) d t<1$, and $\left|\varphi_{1}(t)\right|<R / 2$ for $0 \leq|t| \leq B .\left(\mid \varphi_{u}(t)<R\right.$, of course, for all u and $t \in[-A, A]$.)

Step 2. Let us pick a real number $D>0$ such that $D<\min \left(C,(2 K)^{-1}\right)$. Let λ be a smooth strictly increasing monotone function on [1,2] such that $\lambda(1)=0$ and $\lambda(2)=1$. Set $w=\left(1, w_{2}, \cdots, w_{n}\right) /\left(1+w_{2}^{2}+\cdots+w_{n}^{2}\right)^{1 / 2}$. But $d_{S}\left(v_{0}, w\right)<\pi / 6$ implies $w_{2}^{2}+\cdots+w_{n}^{2}<3 / 4$. Hence $\left|w_{2}\right|<\sqrt{3 / 2}$. Let $w_{2}(t)$ be a C^{∞} function such that $w_{2}(0)=0, w_{2}^{\prime}(t) \equiv w_{2}$ for $0 \leq|t| \leq B_{0}$. We can also assume $\left|w_{2}^{\prime}(t)\right| \leq \sqrt{3 / 2}, w_{2}(t) \equiv 0$ for $|t| \geq 4 B_{0},\left|w_{2}(t)\right|<\sqrt{3} B_{0}$ and $\left|w_{2}(t)\right|<$ $\left(B_{0}\right)^{-1}$. Pick B_{0} so small that $16 B_{0}<\min (R / 8, D)$. Finally, let us pick m such that $\left(2^{m+1} K\right)^{-1} \leq B_{0} \leq\left(2^{m} K\right)^{-1}$; note $m \geq 5$. Let us choose another C^{∞} funcion $\zeta(t)$ such that $\zeta(t) \equiv 0$ for $|t| \leq B_{0} / 2, \zeta(t) \equiv 0$ for $|t| \geq 9 B_{0}, \zeta(t)$ is even, $\zeta^{\prime \prime}(t)=K 2^{m-4}=\alpha$ for $B_{0} \leq|t| \leq 4 B_{0}$, and $\left|\zeta^{\prime \prime}\right| \leq K 2^{m-4}$ elsewhere. Furthermore, we can choose ζ such that $\left|\zeta^{\prime}\right| \leq\left(8 B_{0}\right)(K)\left(2^{m-4}\right)=B_{0} K 2^{m-1} \leq 1 / 2$.

We now set $\varphi_{u}(t)=\left(t, t^{2} K / 2+\lambda(u) w_{2}(t), \lambda(u) \zeta(t), 0, \cdots, 0\right)$ for $|t| \leq D$, $1 \leq u \leq 2$. For $|t| \geq 9 B_{0}, \varphi_{u}(t)=\varphi_{1}(t) . \varphi_{u}^{\prime}(t)=\left(1, K t+\lambda w_{2}^{\prime}(t), \lambda(u) \zeta^{\prime}(t), 0, \cdots, 0\right)$ and $\varphi_{n}^{\prime \prime}(t)=\left(0, K+\lambda w_{2}^{\prime \prime}, \lambda \zeta^{\prime \prime}, 0, \cdots, 0\right)$. By our choice of w_{2} and ζ we see $\varphi_{u}(t)$ is nondegenerate. Note that $1 \leq\left|\varphi_{u}(t)\right|^{2}<1+(1 / 2+\sqrt{3 / 2})^{2}+1<4=2^{2}$. $k\left(\varphi_{u}\right)(t)^{2} \geq\left[\left(K+\lambda w_{2}^{\prime \prime}\right)^{2}+\left(\lambda \zeta^{\prime \prime}\right)^{2}\right] /\left|\varphi_{u}^{\prime}(t)\right|^{6}>2^{-6}\left[\left(K+\lambda w_{2}^{\prime \prime}\right)^{2}+\left(\lambda \zeta^{\prime \prime}\right)^{2}\right]$. Now $\left|w_{2}^{\prime \prime}(t)\right|<1 / B_{0}<2^{m+1} K$. Look at u_{0} such that $\lambda\left(u_{0}\right)=2^{-(m+2)}$. Hence for $1 \leq u \leq u_{0}, \lambda\left(u_{0}\right) \leq 2^{-(m+2)}$ and therefore $\left|\lambda(u) w_{2}^{\prime \prime}(t)\right|<K / 2$. So $k\left(\varphi_{u}\right)(t)^{2}$ $>K^{2} / 2^{10}=\left(K / 2^{5}\right)^{2}>k_{0}^{2}$. If $|t| \leq B_{0}$ or $|t| \geq 4 B_{0}$, then $w_{2}^{\prime \prime}(t)=0$ and $k\left(\varphi_{u}\right)(t)^{2}>K^{2} / 2^{6}>k_{0}^{2}$. Finally, let $B_{0} \leq|t| \leq 4 B_{0}$, and $\left.\lambda(u) \geq(2)^{-(m+2}\right)$. Then $\lambda(u) \zeta^{\prime \prime}(s) \geq(2)^{-(m+2)} K 2^{m-2}=K 2^{-6}$. Therefore $\cdot k\left(\varphi_{u}\right)(t)^{2}>\left(K / 2^{9}\right)^{2}>k_{0}^{2}$. Let
us estimate $J=\int_{-9 B_{0}}^{9 B_{0}} k\left(\varphi_{2}\right)(t) d t$.

$$
\begin{aligned}
J & \leq \int_{-9 B_{0}}^{9 B_{0}}\left(\left|\varphi_{2}^{\prime}(t)\right|^{2}\left|\varphi_{2}^{\prime \prime}(t)\right|^{2}\right)^{1 / 2} d t \leq 2 \int\left(K+w_{2}^{\prime \prime}(t)^{2}+\zeta^{\prime \prime}(t)^{2}\right)^{1 / 2} \\
& \leq 2 \int^{\left(\left[K+1 / B_{0}\right]^{2}+K^{2} 2^{2 m-8}\right)^{1 / 2} \leq 2 K \int\left(1+\left(2^{m+1}\right)^{2}+\left(2^{m-4}\right)^{2}\right)^{1 / 2}} \\
& <K 2^{m+4} 18 B_{0} \leq K 2^{m+4} 18\left(K 2^{m}\right)^{-1}=(9)\left(2^{5}\right) .
\end{aligned}
$$

Note $\varphi_{u}(t)=\varphi_{1}(t)+\lambda(u)\left(0, w_{2}(t), \zeta(t), 0, \cdots, 0\right)$ for $|t| \leq D .\left|\varphi_{u}(t)\right| \leq R / 2+$ $R / 4<R$, because $16 B_{0}<\min (R / 8, D),\left|w_{2}(t)\right| \leq \sqrt{3} B_{0}$ and $|\zeta(t)| \leq\left(8 B_{0}\right)(1 / 2)$.

Step 3. Let us restrict ourselves to $\varphi_{2}(t)=\left(t,\left(t^{2} / 2\right) K+t w_{2}, 0, \cdots, 0\right)$ for $|t| \leq B_{0} / 2$. Now $w_{2}^{2}+\cdots+w_{n}^{2}<3 / 4$. Let us pick $B_{1}=B_{0} / 8$ and let $w_{k}(t)$, $3 \leq k \leq n$, be C^{∞} functions such that $w_{k}^{\prime}(t) \equiv w_{k}$ for $|t| \leq B_{1}, w_{k}(t) \equiv 0$ for $|t| \geq 4 B_{1}, w_{k}(0)=0, \sum\left(w_{k}^{\prime}(t)\right)^{2}<3 / 4,\left|w_{k}^{\prime \prime}(t)\right|<\left(B_{1}\right)^{-1}$, and $\sum_{k=3}^{n} w_{k}(t)^{2}$
$\leq(3 / 4)\left(B_{0} / 2\right)<(R / 4)^{2}$. Let $\lambda(u)$ be a strictly increasing monotone C^{∞} function on $[2,3]$ such that $\lambda(2)=0$ and $\lambda(3)=1$. Let $\varphi_{u}(t)=\left(t, t^{2} K / 2+t w_{2}\right.$, $\left.\lambda(u) w_{3}(t), \cdots, w_{n}(t) \lambda(u)\right)$. Then $\varphi_{u}^{\prime}(t)=\left(1, t K+w_{2}, \lambda w_{3}^{\prime}(t), \cdots, \lambda w_{n}^{\prime}(t)\right)$ and $\varphi_{u}^{\prime \prime}(t)=\left(0, K, \lambda w_{3}^{\prime \prime}, \cdots, \lambda w_{n}^{\prime \prime}\right)$. Hence $\varphi_{u}(t)$ is nondegenerate, and $\left|\varphi_{u}(t)\right|<$ $3 R / 4+R / 4=R .1 \leq\left|\varphi_{u}^{\prime}(t)\right|^{2} \leq 1+\left(K t+w_{2}\right)^{2}+3 / 4<4=(2)^{2}$. Hence $k\left(\varphi_{u}\right)(t)^{2}>(K / 8)^{2}>\left(k_{0}\right)^{2}$. Look at

$$
\begin{aligned}
J & =\int_{-4 B_{1}}^{4 B_{1}} k\left(\varphi_{3}\right)(t) d t<2 \int\left(K^{2}+\Sigma w_{i}^{\prime \prime}(t)^{2}\right)^{1 / 2}<2 \int\left(K^{2}+\left(B_{1}\right)^{-2}(n-2)\right)^{1 / 2} \\
& \leq 2 \int\left(K^{2}+(n-2) K^{2}(2)^{2 m+2}\right)^{1 / 2} \leq 2 K 2^{m+1}(n-1)^{1 / 2} B_{0}<4 \sqrt{n-1} .
\end{aligned}
$$

Hence $\int_{-A}^{A} k\left(\varphi_{3}\right)(t) d t<1+1+32.9+4 \sqrt{n-1}$, which completes the proof of this lemma.

7. Odds and ends

Lemma 7.1. Let X be a compact set, $\psi: X \rightarrow R$ be a continuous function such that $\psi(x)>0$ for all $x \in X$, and K be a fixed positive number. Then there exists a continuous function $\lambda: X \rightarrow \mathscr{C}^{\infty}(I, I), I=[0,1]$, such that $\lambda(x)(0)=0$, $\lambda(x)(1)=1, \lambda^{\prime}(x)(t)>0, \lambda^{\prime}(x)(0)=\psi(x) / K$, and $\lambda(x)(t)=t$ if $\psi(x)=K$.

Proof. Let us set $\zeta(x)=\phi(x) / K$. Since X is compact, there exists s_{0}, $0<t_{0}<1$, such that $0<\zeta(x) s_{0}<1$. Set

$$
g(x)(s)=\left\{\begin{array}{lr}
s \zeta(x), & -1 \leq s \leq s_{0} \\
1+\left(s_{0} \zeta(x)-1\right)(s-1)\left(s_{0}-1\right)^{-1}, & s_{0} \leq s \leq 2
\end{array}\right.
$$

Then $g(x)(0)=0, g(x)(1)=1$, and $g(x)$ is continuous and is C^{∞} everywhere except at s_{0}; in fact, $g: X \rightarrow \mathscr{C}^{0}([-1,2], R)$ is continuous. Extend $g(x)$ to all
of R by making it 0 outside [-1,2]. Denote this extension also by $g(x)$, and note that $g(x) \in L^{p}(R), 1 \leq p \leq \infty$, and that $g: X \rightarrow L^{p}(R)$ is continuous. Let $0<\varepsilon<\min \left(s_{0} / 2,\left(1-s_{0}\right) / 2\right)$. Let $\varphi_{s}(t) \geq 0$ be the usual C^{∞} approximate identity, $\varphi_{c}(t)=\varphi_{c}(-t)$, support $\left(\varphi_{c}\right) \subseteq[-\varepsilon, \varepsilon]$ and $\int_{-\infty}^{\infty} \varphi_{c}(t) d t=1$.

Set $\lambda(x)(t)=\left(g(x)_{*} \varphi_{s}\right)(t)=\int_{-\infty}^{\infty} g(x)(s) \varphi_{s}(t-s) d s$. Then by our choice of g and the usual properties of the convolution, we can see that $\lambda(x)$ is C^{∞}, it has all the desired properties, and $\lambda: X \rightarrow \mathscr{C}^{k}(I, I)$ is continuous for each k (this last λ is $\left.g_{*} \varphi_{\varepsilon} \mid[0,1]\right)$.

Corollary 7.2. Let X be compact, $K>0$ a real number, and $\psi_{i}: X \rightarrow R$, $i=1,2$, continuous real valued functions such that $\psi_{1}(x)>0$. Then there exists a continuous function $\lambda: X \rightarrow \mathscr{C}^{\infty}(I, I)$ such that $\lambda(x)(0)=0, \lambda(x)(1)=1$, $\lambda^{\prime}(x)(0)=\psi_{1}(x) / K, \lambda^{\prime \prime}(x)(0)=\psi_{2}(x), \lambda^{\prime}(x)(t)>0$, and $\lambda(x)(t)=t$ provided $\psi_{1}(x)=K$ and $\psi_{2}(x)=0$.

Proof. Let $\bar{\lambda}(x)(t)$ be the functions constructed by Lemma 7.1. Set $\lambda(x)(t)$ $=\bar{\lambda}(x)(t)+\varphi(t) t^{2} / 2\left[\psi_{2}(x)-\bar{\lambda}(x)^{\prime \prime}(0)\right]$ where φ is a C^{∞} function, $0 \leq \varphi \leq 1$, $\varphi(0)=1, \varphi(t) \equiv 0$ for $t \geq \varepsilon, \varphi^{\prime}(0)=0,\left|\varphi^{\prime}(t)\right|<2 / \varepsilon$, and we will choose ε, $0<\varepsilon<1$, as follows:

$$
\lambda^{\prime}(x)(t)=\bar{\lambda}(x)^{\prime}(t)+\left[t \varphi(t)+\left(t^{2} / 2\right) \varphi^{\prime}(t)\right]\left(\psi_{2}(x)-\bar{\lambda}(x)^{\prime \prime}(0)\right) .
$$

Hence we can find a number $B>0$ such that if $0<\varepsilon<B$, then $\lambda^{\prime}(x)(t)>0$. Let us choose ε so small that $0<\varepsilon<B$. Then $\lambda(x)(t)$ is the desired family of curves.

Remark. Let g be a Riemann metric on R^{n}, X a compact set, $\gamma: X \rightarrow$ $C^{2}\left([0,1], R^{n}\right)$ a continuous map such that $\gamma(x)$ is g-nondegenerate for all $x \in X$, and $f(t),-1 \leq t \leq 0$, be another g-nondegenerate curve. Assume $f(0)=$ $\gamma(x)(0), t(f)(0)=t\left(\gamma(x)(0), n(\gamma(x))(0)=n(f)(0)\right.$ and $k_{g}(f)(0)=k_{g}(\gamma(x))(0)$ for all $x \in X$. By applying Corollary 7.2 we can find $r: X \rightarrow \mathscr{C}^{\infty}(I, I), r(x)(t)$, reparametrization of the $\gamma(x)(t)$ with the following properties:
a) $r(x)(t)=t$ if $f^{\prime}(0)=\gamma(x)^{\prime}(0)$ and $f^{\prime \prime}(0)=\gamma(x)^{\prime \prime}(0)$,
b) $f^{\prime}(0)=(d \gamma(x) / d \tau(x))(0)$ and $f^{\prime \prime}(0)=\left(d^{2} \gamma(x) /(d \tau(x))^{2}(0)\right.$, where $\tau(x)=$ $r(x)(t)$ is the new parameter.

Theorem 7.3. Let E_{0} be as in $\S 2$, and pick $e_{0} \in E_{0}$. Then $\pi_{k}\left(E_{0}, e_{0}\right)=0$, $0 \leq k<\infty$.

Theorem 7.4. Let X be a compact set, and $f: X \rightarrow E_{0}$ a continuous map. Then f is homotopic to a constant map.
We note that Theorem 7.4 implies Theorem 7.3 so we now prove Theorem 7.4.

Proof. Let W be a neighborhood of x_{0}, which is the center of geodesic normal coordinates $\left(x_{1}, \cdots, x_{n}\right)$ so chosen that $e_{1}=\partial / \partial x_{1}(0)=t_{0}$ and $e_{2}=$ $\partial / \partial x_{2}(0)=n_{0}$. Let us reparametrize the $f(x)(t)$ such that for $0 \leq t \leq S<1$, $f(x)(t) \in W$ and $f(x)(t)$ is parametrized by arc length for $0 \leq t \leq S(S>0)$. Therefore by Taylor's theorem, $f(x)(t)=t e_{1}+\left(t^{2} k_{0} / 2\right) e_{2}+a(x)(t)$, where $k_{0}=$ $k_{g}(f(x))(0), e_{1}=t_{0}=t(f(x))(0), e_{2}=n_{0}=n(f(x))(0)$, and $a(x)(t)=\sum_{i=1}^{n} a_{i}(x)(t) e_{i}$ where $a_{i}(x)(t)$ satisfy the hypothoses of Sublemma 6.2 if we set $a_{i}(x)(-t)=$ $a_{i}(x)(t)$ [because $\left.a_{i}(x)(0)=a_{i}^{\prime}(x)(0)=a_{i}^{\prime \prime}(x)(0)=0\right]$. Hence we can find $0<S_{0} \leq S$ such that $t e_{1}+t^{2} k_{0} / 2 e_{2}+u a(x)(t)$ is nondegenerate for all t, $0 \leq t \leq S_{0}$ and $u, 0 \leq u \leq 1$. Let $\lambda(u)$ be a C^{∞} function which is strictly monotone decreasing, $\lambda:[0,1 / 2] \rightarrow R$, such that $\lambda(0)=1, \lambda(1 / 2)=S_{0} / 2$. Set $f(x, u)(t)$ $f(x)(t \lambda(u))$. Hence $f(x, 1 / 2)(t)=f(x)\left(t S_{0} / 2\right)=\left(t S_{0} / 2\right) e_{1}+\left(\left(t S_{0} / 2\right)^{2} k_{0} / 2\right) e_{2}+$ $a(x)\left(t S_{0} / 2\right)$ because $2 S_{0} / 2=S_{0}$. Let $\lambda:[1 / 2,1] \rightarrow R$ be another smooth monotonically decreasing function such that $\lambda(1 / 2)=1$ and $\lambda(1)=0$. Set $f(x, u)(t)$ $=\left(t S_{0} / 2\right) e_{1}+\left(t S_{0} / 2\right)^{2}\left(k_{0} / 2\right) e_{2}+\lambda(u) a(x)\left(t S_{0} / 2\right), 1 / 2 \leq u \leq 1$. This defines the desired homotopy between f and the constant map $f(x, 2)(t)=\left(t S_{0} / 2\right) e_{1}+$ $\left(t S_{0} / 2\right)^{2}\left(k_{0} / 2\right) e_{2}, 0 \leq t \leq 2$.

8. Proof of the main theorem

Let $(x, v, k) \in V, v=(t, n) \in T(X)_{x} \times T(X)_{x}, g(x)(t, t)=g(x)(n, n)=1$ and $g(x)(t, n)=0$. Let k_{1} be a real number $0<k_{1}<\min \left(k, C(n)^{-1} B(n)^{-1}\right)$ where $B(n)=2^{n+5}(80+\sqrt{n-1})$ and $C(n)=18 n / \sqrt{n}, W$ be the domain of x centered geodesic coordinates $\left(x_{1}, \cdots, x_{n}\right), g_{F}=\sum \delta_{i j} d x^{i} d x^{j}$ be the flat metric on W, and t_{F}, n_{F}, and k_{F} be the unit tangent vector, the principal normal vector, and the geodesic curvature computed with g_{F}. We adopt the rest of the notation of $\S 4$. Let W_{0} be the disc $\sum\left(x_{i}\right)^{2}<(2 R)^{2} R<1$ such that if γ is a g-nondegenerate curve in W_{0} and $k_{g}(\gamma)(t)>k_{1}$, then γ is g_{F}-nondegenerate and $k_{F}(\gamma)(t)>2 k_{1} / 3$. Furthermore, if γ is g_{F} nondegenerate in W_{0} and $k_{F}(\gamma)(t)>$ $2 k_{1} / 3$, then γ is g-nondegenerate and $k_{g}(\gamma)(t)>k_{1} / 3$. Let $D=\left\{x \in W_{0} \mid \sum\left(x_{i}\right)^{2}\right.$ $\left.<(R / 2)^{2}(\sqrt{n} / 2 n)^{2}\right\}$ and $V_{0}=D \times V_{2} \times\left(k_{1}, \infty\right)$. V_{0} will be the desired neighborhood of (x, v, k). We will now show that $p: p^{-1}\left(V_{0}\right) \rightarrow V_{0}$ satisfies strong property P.

Let I^{q} be a q-cube, $F^{q-1} \subseteq I^{q}$ the zero faces, and $\varphi: I^{q} \rightarrow V_{0}$ and $\phi: F^{q-1} \rightarrow p^{-1}\left(V_{0}\right)$ continuous maps such that $p \circ \phi(c)=\varphi(c)$ for all $c \in F^{q-1}$. Let $\varphi(c)=(x(c), t(c), n(c), k(c))$.

If α is the map of Proposition 4.1, then set $\alpha \varphi(c)=\left(x(c), t_{F}(c), n_{F}(c), k_{F}(c)\right)$. Note that we do not have to "lift" (φ, ψ) but only a deformation of (φ, ψ); see Definition 3.6 and Proposition 3.7.

Step I. Look at $\psi(c)(t), 0 \leq t \leq 2$. We see, by the compactness of F^{q-1}, that there exists a number $t_{q}, 0<t_{q}<2$, such that $\psi(c)(t) \in D$ and $k_{g}(\psi(c))(t)>k_{1}$ for all $t \in\left[t_{q}, 2\right]$ and $c \in F^{q-1}$. By a deformation we can reparametrize $\psi(c)(t)$ so that $t_{q}=1 / 2$, so we can assume $t_{q}=1 / 2$. Since the group $E(n)$ of Euclidean motions is connected, we can find a map $M: I^{q} \rightarrow E(n)$ such that $M(c)((\psi(c)(1)$, $\left.t_{F}(\psi(c))(1), n_{F}(\psi(c))(1)\right)=\left(0, e_{1}, e_{2}\right)$ where $e_{1}=(1,0, \cdots, 0)$ and $e_{2}=(0,1,0$, $\cdots, 0)$. Let $m(c)(t)=M(c)(\phi(c)(t)), t \in[1 / 2,2]$. Then $|m(c)(t)|<R \sqrt{n} /(2 n)$, $m(c)(t)$ is g_{F}-nondegenerate, and $k_{F}(m(c))(t)>2 k_{1} / 3$. Applying Theorem 6.1 to the curves $m(c)(t)$ (with 1 replacing 0 , etc.), we can find a continuous deformation $m_{u}(c)(t), 0 \leq u \leq 1$, of $m(c)(t)\left[m_{0}(c)(t)=m(c)(t)\right]$ and two numbers S and $T, 0<S<T<1 / 2$, such that

1) $\quad\left|m_{u}(c)(t)\right|<R \sqrt{n} /(2 n), t_{F}\left(m_{u}(c)\right)(1)=e_{1}, n_{F}\left(m_{u}(c)\right)(1)=e_{2}, m_{u}(c)(1)=$ 0 , and $k_{F}\left(m_{u}(c)\right)(t)>2 k_{1} / 3$ for $0 \leq u \leq 1, t \in[1 / 2,2]$, and $c \in F^{q-1}$,
2) $\quad m_{u}(c)(t)=m(c)(t)$ for $|t-1| \geq T, 0 \leq u \leq 1, c \in F^{q-1}$,
3) $m_{1}(c)(t)=m_{1}\left(c^{\prime}\right)(t)=f(t)$ where $f(t)$ is C^{∞}, for $|t-1|<S$, and $c, c^{\prime} \in F^{q-1}$, and
4) the path $t_{F}(f(t)), 1<t<1+S$, passes through each of the 2^{n}-vertices of the inscribed cube, $k_{F}(f)(1)>B(n)^{-1} C(n)^{-1}$, and $\int_{1}^{S+1} k_{F}(f)(t) d t<B(n)$.

Let $\tau: F^{q-1} \rightarrow \mathscr{C}^{\infty}([1 / 2,2],[1 / 2,2])$ be a continuous map such that $\tau(c)(t)$ $=t, 1 / 2 \leq t<1-T, \tau(c)(1)=1, \tau(c)(S+1)=3 / 2, \tau(c)(2)=2, \tau(c)^{\prime}(t)>0$.

If $m_{1}(c)(\tau)$ denotes $m_{1}(c)$ parametrized by $\tau(c)(t)$, then $t_{F}\left(m_{1}(c)\right)(\tau)$ is parametrized by the reduced arc length for $1 \leq \tau \leq 3 / 2$. Let $m_{1+u}(c)(t)=$ $m_{1}(c)(u \tau(c)(t)+(1-u) t), 0 \leq u \leq 1$, and let $m_{2}(c)(t)$ be $m_{1}(c)$ parametrized by $\tau(c)$. Hence $m_{2}(c)(t)$ is defined for $1 / 2 \leq t \leq 2$, and the curve $t_{F}\left(m_{2}(c)\right) \mid[1,3 / 2]$ is parametrized by the reduced arc length. Let

$$
\psi_{u}(t)=\left\{\begin{array}{l}
\psi(c)(t), \quad 0 \leq t \leq 1 / 2 \\
M(c)^{-1}\left(m_{u}(c)(t)\right), \quad 1 / 2 \leq t \leq 2,0 \leq u \leq 2 .
\end{array}\right.
$$

$\psi_{u}(t)$ defines a continuous deformation of (φ, ψ), and it is $\psi_{2}(c)(t)$ which we will try to lift.

Step II. Let $T_{0}\left(S^{n-1}\right)$ be the unit tangent bundle over the unit sphere $S^{n-1} \subseteq R^{n}$. Recall $T_{0}\left(S^{n-1}\right)$ is diffeomorphic to the Stiefel manifold V_{2} by reviewing the point $x \in S^{n-1}$ as the first vector of a 2 -frame and $v \in T_{0}\left(S^{n-1}\right)_{x}$ as the second vector. Let $\tilde{E}_{0}=\left[\lambda:[3 / 2,2] \rightarrow S^{n-1} \mid \lambda\right.$ is an immersion, $\lambda(3 / 2)=$ $\left.t_{F}(f)(3 / 2), t(\lambda)(3 / 2)=n_{F}(f)(3 / 2)\right]$ where $f(t)=m_{2}(c)(t), 1 \leq t \leq 3 / 2$. Define $\pi_{0}: \tilde{E}_{0} \rightarrow T_{0}\left(S^{n-1}\right)$ by $\pi_{0}(\lambda)=(\lambda(2), t(\lambda)(2))$. Let $\psi_{S}: F^{q-1} \rightarrow \tilde{E}_{0}$ be a continuous map defined by $\psi_{S}(c)(t)=t_{F}\left(m_{2}(c)\right)(t), 3 / 2 \leq t \leq 2$, and $\varphi_{S}: I^{q} \rightarrow V_{2}$ be the
continuous map defined by $\varphi_{S}(c)=\left(M(c) t_{F}(c), M(c) n_{F}(c)\right)$. We see that $\pi_{0} \circ \psi_{S}(c)=\varphi_{S}(c)$ for $c \in F^{q-1}$. By Smale's theorem [11], we can find Ψ_{S} extending ψ_{S} to all I^{q} such that $\pi_{0} \circ \Psi_{S}=\varphi_{S}$. We now apply Lemma 7.1, and reparametrize $\Psi_{S}(c)(t), 3 / 2 \leq t \leq 2$, so that we can assume $\left(d t_{F}(f)(t) / d t\right)(3 / 2)=$ $\left(d \Psi_{S}(c)(t) / d t\right)(3 / 2)$, and we can do this in such a way that we need not reparametrize $\psi(c)(t)$ at all if $c \in F^{q-1}$. Let us define $\lambda(c)(t)=t_{F}(f)(t)$ for $1 \leq t \leq 3 / 2$, and $\lambda(c)(t)=$ the reparametrized $\psi(c)(t)$ for $3 / 2 \leq t \leq 2$. Then $\lambda(c)(t)=$ $t_{F}\left(m_{2}(c)\right)(t), c \in F^{q-1}, 1 \leq t \leq 2, \lambda(c)(t)$ is an immersion $c \in I^{q}, 1 \leq t \leq 2$, $\lambda: I^{q} \rightarrow \mathscr{C}^{1}\left([1,2] ; S^{n-1}\right)$ is continuous, $\lambda(c)(1)=e_{1}, t(\lambda(c))(1)=e_{2}, \lambda(c)(2)$ $=M(c) t_{F}(c)$, and $t(\lambda(c))(2)=M(c) n_{F}(c)$. We want to set $\gamma(c)(t+1)=$ $\int_{0}^{t} \rho(c)(\tau) \lambda(c)(\tau+1) d \tau$ where $\rho(c)(\tau)$ is $C^{1}, 0<\rho(c)(\tau)<3 /\left(2 k_{1}\right)$ for $0 \leq \tau \leq 1$, $\rho(c)(1)=k_{F}(c)^{-1}, \rho(c)(0)=k_{F}(f)(1)^{-1}, \int_{0}^{1} \rho(c)(t) d t \leq R$, and $\gamma(c)(2)=M(c) x(c)$. If we can find such function $\rho(c)(\tau)$ and they depend continuously on $c \in I^{q}$, and $\rho(c)(t)=\left|\frac{d}{d t}\left(m_{2}(c)\right)(t+1)\right|, 0 \leq t \leq 1$, for $c \in F^{q-1}$ we would have our problem solved, by reparametrizing the γ 's so the end points match up and then translating back by $M(c)^{-1}$.

Step III. Let $\mathscr{C}^{1}\left(S^{1}, R\right)$ be the C^{1}-periodic functions from R to R with period 2π. Then $\mathscr{C}=\mathscr{C}^{1}\left(S^{1}, R\right)$ is a Banach space in the norm $\|\varphi\|_{1}=\sup _{0 \leq t \leq 2 \pi}|\varphi(t)|+$ $\sup _{0 \leq t \leq 2 \pi}\left|\varphi^{\prime}(t)\right|$. Let $H^{2}\left(S^{1}, R\right)$ be the Sobolev space of square integrable periodic functions of period 2π, which possess square integrable weak derivatives f^{\prime} and $f^{\prime \prime}$. Then $H^{2}\left(S^{1}, R\right)=H$ is a Hilbert space with inner product

$$
(f, g)=\int_{0}^{2 \pi} f(t) g(t) d t+\int_{0}^{2 \pi} f^{\prime}(t) g^{\prime}(t) d t+\int_{0}^{2 \pi} f^{\prime \prime}(t) g^{\prime \prime}(t) d t
$$

By Sobolov's lemma (in this case an easy proposition about the absolute convergence of the Fourier series of $\left.f^{\prime}\right)[1, \mathrm{pp} .165-168]$ we have a continuous linear injection $i: H \rightarrow \mathscr{C}$. Furthermore $i(H)$ is dense in \mathscr{C}. Let $i^{*}: \mathscr{C}^{*} \rightarrow H^{*}$ be the formal adjoint, pick $c \in I^{q}$, and define the following linear functionals on $\mathscr{C}: \alpha(c)=\rho(0), \omega(c)=\rho(1), \mu_{i}(c)=i$-th coordinate of $\int_{0}^{1} \rho(t) \lambda(c)(t+1) d t$. It is easy to see that $\alpha(c), \omega(c), \mu_{i}(c), 1 \leq i \leq n \in C^{*}: I^{q} \rightarrow C^{*}$ are all continuous, that $\alpha(c), \omega(c)$ and $\mu_{i}(c), 1 \leq i \leq n$, are linearly independent for each fixed $c \in I^{q}$, and that $i^{*} \alpha(c), i^{*} \omega(c)$ and $i^{*} \mu_{j}(c), 1 \leq j \leq n$, are also linearly independent for each $c \in I^{q}$. Define $n+2$ continuous real valued functions on I^{q} by: $y_{j}(c)=j$-th coordinate of $M(c) x(c) ; 1 \leq j \leq n, A(c)=k_{F}(f)(1)^{-1}$, and $\Omega(c)=k_{F}(c)^{-1}$. Let $P=\left\{\rho \in H \mid 0<\rho(t)<3 /\left(2 k_{1}\right)\right.$ for $\left.0 \leq t \leq 1, \int_{0}^{1} \rho(t) d t<R\right\}$.

Then P is an open convex set. We now apply Lemma 5.1 and find for each $c \in I^{q}$ an element $\rho_{c} \in P$ such that $y_{i}(c)=\mu_{i}(c)(\rho), 1 \leq i \leq n, \alpha(c)=A(c)(\rho)$ and $\omega(c)=\Omega(c)(\rho)$. Therefore the curve $\gamma(c)(t+1)=\int_{0}^{t} \rho_{c}(\tau) \lambda(c)(\tau+1) d \tau$ has the following properties: $\gamma(c)(2)=M(c) x(c), \quad t_{F}(\gamma(c))(2)=M(c) t_{F}(c)$, $n_{F}(\gamma(c))(2)=M(c) n_{F}(c), k_{F}(\gamma(c))(t)>(2 / 3) k_{1}, 1 \leq t \leq 2, k_{F}(\gamma(c))(2)=k_{F}(c)$, $t_{F}(\gamma(c))(1)=t_{F}(f)(1), n_{F}(\gamma(c))(1)=n_{F}(f)(1), \gamma(c)(1)=f(1)=0, k_{F}(\gamma(c))(1)=$ $k_{F}(f)(1)$. Let $P_{c}=\left\{\rho \in C\left|0<\rho(t)<(2 / 3) k_{1}, t \in[0,1] ;\left|\int_{0}^{\tau} \rho(t) \lambda(c)(t+1) d t\right|\right.\right.$ $\leq R, \tau \in[0,1]\} . P_{c}$ is convex, and $P \subseteq P_{c}$. For each $c \in F^{q-1}$ let $p(c)(t)=$ $\left|m_{2}(c)^{\prime}(t+1)\right|, 0 \leq t \leq 1$. Then $p: F^{q-1} \rightarrow \mathscr{C}^{1}([0,1], R)$ is continuous, and $m_{2}(c)(t+1)=\int_{0}^{t} p(c)(\tau) \lambda(c)(\tau+1) d \tau$. We want to extend each $p(c)(t)$ to S^{1} (i.e., to $[0,2 \pi]$ so that it is C^{1}-periodic). It is clear that this can easily be done. Hence assume we have defined a continuous map $p: F^{q-1} \rightarrow \mathscr{C}^{1}\left(S^{1}, R\right)=\mathscr{C}$ such that $p(c)(t)=\left|m_{2}(c)^{\prime}(t+1)\right|, 0 \leq t \leq 1$.

We will now quote two facts; the first, Lemma 8.1 is a restatement of the Gram-Schmidt process, and its proof follows word for word the usual proof, the second, Theorem 8.2 is our main abstract analytic lemma, which we prove in § 9 .

Lemma 8.1. Let H and C be respectively a Hilbert space and a Banach space, $i: H \rightarrow C$ be a continuous linear injection, $i^{*}: C^{*} \rightarrow H^{*}$ be its formal adjoint, X be a topological space, $\varphi_{i}: X \rightarrow C^{*}, 1 \leq i \leq k$, be k continuous maps such that $\varphi_{i}(x), \cdots, \varphi_{k}(x)$ and $i^{*} \varphi_{i}(x), \cdots, i^{*} \varphi_{k}(x)$ are linearly independent for each $x \in X, P: H^{*} \rightarrow H$ be the duality isomorphism, and $y_{i}: X \rightarrow R$ be k continuous real valued functions. Then we can find $\Phi_{i}: X \rightarrow C^{*}, Y_{i}: X \rightarrow R$, $1 \leq i \leq k$, continuous functions with the following properties:
a) $\Phi_{1}(x), \cdots, \Phi_{l}(x)$ for each $x \in X$ span the same subspace of C^{*} as $\varphi_{1}(x), \cdots, \varphi_{l}(x)$ for each $l, 0<l \leq k$.
b) If $F_{i}(x)=P\left(i^{*}\left(\Phi_{i}(x)\right)\right.$, then $\left\langle F_{j}(x), F_{k}(x)\right\rangle=\delta_{j k}$ for all x.
c) $\varphi_{i}(x)(\rho)=y_{i}(x), 1 \leq i \leq k$, if and only if $\Phi_{i}(x) \rho=Y_{i}(x), 1 \leq i \leq k$.

Theorem 8.2. Let H be a Hilbert space, C a Banach space, $i: H \rightarrow C$ a continuous linear inclusion, $i^{*}: C^{*} \rightarrow H^{*}$ its formal adjoint, $D: H^{*} \rightarrow H$ the duality map, $P \subseteq H$ an open convex set, I^{n} the n-cube, and F^{n-1} the union of zero faces.
a) Let $v_{j}^{*}: I^{n} \rightarrow C^{*}$ be continuous maps $1 \leq j \leq k$, set $v_{j}=D\left(i^{*}\left(v_{j}^{*}\right)\right)$, and assume $\left\langle v_{i}(x), v_{j}(x)\right\rangle=\delta_{i j}, x \in I^{n}$.
b) Let $h_{j}: I^{n} \rightarrow R, 1 \leq j \leq k$, be continuous real valued functions.
c) For each $x \in I^{n}$ a convex set $P_{x} \subseteq C$ is given such that $P \subseteq P_{x}$. Assume there exists $p_{x} \in P$ such that $\left\langle p_{x}, v_{j}(x)\right\rangle=h_{j}(x), 1 \leq j \leq k$.
d) Let $p: F^{n-1} \rightarrow C$ be a continuous map such that $p(x) \in P_{x}$ and $v_{j}^{*}(x)(p(x))=h_{j}(x)$ for each $x \in F^{n-1}$ and $1 \leq j \leq k$.
Then we can find a strong admissible deformation φ_{t} of I^{n} and a continuous map $\rho: I^{n} \rightarrow C$ extending $p^{n}: F^{n-1} \rightarrow C$ with the following properties:
i) $\rho(x) \in P \varphi_{1}(x)$ for all $x \in I^{n}$.
ii) $\quad v_{j}^{*}\left(\varphi_{1}(x)\right)(\rho(x))=h_{j}\left(\varphi_{1}(x)\right), x \in I^{n}, 1 \leq j \leq k$.

We apply this to the case where $H=H^{2}\left(S^{1}, R\right), C=C^{1}\left(S^{1}, R\right), i=$ the Sobolev inclusion, and $P, P_{x}\left(P_{c}\right)$ and $p: F^{q-1} \rightarrow C$ are defined as in the discussion preceeding Lemma 8.1. We take $\alpha, \beta, \mu_{j}, 1 \leq j \leq n$, as our families of linear functionals, and $A, \Omega, y_{j}, 1 \leq j \leq n$, as our families of continuous functions. Hence we find a strong admissible deformation ν_{t} of I^{q} and an extension ρ of $p: F^{q-1} \rightarrow C$ with the following properties: Set

$$
\gamma_{0}(c)(t+1)=\int_{0}^{t} \rho(c)(\tau) \lambda\left(\nu_{1}(c)\right)(\tau+1) d \tau
$$

Then $t_{F}\left(\gamma_{0}(c)\right)(1)=t_{F}(f)(1), n_{F}\left(\gamma_{0}(c)\right)(1)=n_{F}(f)(1), k_{F}\left(\gamma_{0}(c)\right)(1)=k_{F}(f)(1)$, $t_{F}\left(\gamma_{0}(c)\right)(2)=M\left(\nu_{1}(c)\right), t_{F}\left(\nu_{1}(c)\right), n_{F}\left(\gamma_{0}(c)\right)(2)=M\left(\nu_{1}(c)\right), n_{F}\left(\nu_{1}(c)\right), k_{F}\left(\gamma_{0}(c)\right)(2)$ $=k_{F}\left(\nu_{1}(c)\right), \gamma_{0}(2)=M\left(\nu_{1}(c)\right) x\left(\nu_{1}(c)\right), k_{F}\left(\gamma_{0}(c)\right)(t)>2 k_{1} / 3, t \in[1,2]$, and $\left|\gamma_{0}(c)(t)\right|$ $<R$. We now apply Corollary 7.2 in order to reparametrize $\gamma_{0}(c)(t)$ so that $\gamma_{1}(c)^{\prime}(1)=f^{\prime}(1)$ and $\gamma_{1}(c)^{\prime \prime}(1)=f^{\prime \prime}(1)$, where $\gamma_{1}(c)(t), t \in[1,2]$, are the reparametrized $\gamma_{0}(c)$, and we do not reparametrize $\gamma_{0}(c)(t)$ at all if $\gamma_{0}(c)^{\prime}(1)=f^{\prime}(1)$ and $\gamma_{0}(c)^{\prime \prime}(1)=f^{\prime \prime}(1)$. Let $\gamma_{1}(c)(t)$ denote the suitably reparametrized $\gamma_{0}(c)(t)$. Pick a retract $\Omega: I^{q} \rightarrow F^{q-1}$, and define

$$
\gamma_{2}(c)(t)=\left\{\begin{array}{lr}
m_{2}(\Omega(c))(t), & 1 / 2 \leq t \leq 1 \\
\gamma_{1}(c)(t), & 1 \leq t \leq 2
\end{array}\right.
$$

Then set $\gamma_{3}(c)(t)=M\left(\nu_{1}(c)\right)^{-1} \gamma_{2}(c)(t)$. Finally set

$$
\Psi(c)(t)=\left\{\begin{array}{lr}
\psi(\Omega(c))(t), & 0 \leq t \leq 1 / 2 \\
\gamma_{3}(c)(t), & 1 / 2 \leq t \leq 2
\end{array}\right.
$$

Note that $\left|\gamma_{3}(c)(t)\right|<2 R, k_{F}\left(\gamma_{3}(c)\right)(t)>2 k_{1} / 3, t_{F}\left(\gamma_{3}(c)\right)(2)=t_{F}\left(\nu_{1}(c)\right), n_{F}\left(\gamma_{3}(c)\right)(2)$ $=n_{F}\left(\nu_{1}(c)\right), k_{F}\left(\gamma_{3}(c)\right)(2)=k_{F}\left(\nu_{1}(c)\right)$, and $\gamma_{3}(c)(2)=x\left(\nu_{1}(c)\right)$. Hence $\gamma_{3}(c)$ is $g-$ nondegenerate and has the correct terminal data. $\Psi: I^{q} \rightarrow E_{0}$ is continuous, $\Psi \mid F^{q-1}=\psi_{2}$ (see end of Step I), and $p \circ \Psi=\varphi \circ \nu_{1}$.

9. Proof of Theorem 8.2

Step I. For each $x \in I^{n}$, pick $p_{x} \in P$ such that $\left\langle p_{x}, v_{j}(x)\right\rangle=h_{j}(x), 1 \leq j \leq k$. Look at the expression

$$
p_{x^{\prime}}(x)=p_{x^{\prime}}-\sum_{i=1}^{k}\left(\left\langle p_{x^{\prime}}, v_{i}(x)\right\rangle-h_{i}(x)\right) v_{i}(x) .
$$

$p_{x^{\prime}}(x)$ is continuous in x, and there exists $\varepsilon_{x^{\prime}}>0$ such that if $\left|x-x^{\prime}\right|<\varepsilon_{x^{\prime}}$, then $p_{x^{\prime}}(x) \in P$, because P is open. Then $\left\langle p_{x^{\prime}}(x), v_{j}(x)\right\rangle=h_{j}(x), 1 \leq j \leq k$, and therefore $p_{x^{\prime}}(x)$ has all the desired properties in a neighborhood of x^{\prime}. Since these $\varepsilon_{x^{\prime}}$ neighborhoods about x^{\prime} form an open covering of the cube I^{n}, by the Lebesgue covering lemma we can find an integer $N>1$ such that any cube with side of length $=1 / N$ must lie in one of the $\varepsilon_{x^{\prime}}$ balls. Let $B_{i_{1}, \ldots, i_{n}}$ $=\left\{\left(x_{1}, \cdots, x_{n} \mid i_{k} / N \leq x_{k} \leq i_{k}+1 / N\right\}, 0 \leq i_{k} \leq N-1\right.$. On each of the $B_{i_{1}, \cdots, i_{n}}$ we have one of the $p_{x^{\prime}}(x)$ defined, call it $p_{i_{1}, \ldots, i_{n}}(x)$. Hence we have N^{n} boxes, and N^{n} "good" functions.

Step II. Let us construct the $\varphi_{t}: I^{n} \rightarrow I^{n}$ as follows. Let $\varphi_{t}\left(x_{1}, \cdots, x_{n}\right)_{k}$ denote the k-th coordinate of $\varphi_{t}(x)$.
a) If $t / 3 \leq x_{k} \leq 1-t / 3$ for all $k, 1 \leq k \leq n$, then we set

$$
\varphi_{t}\left(x_{1}, \cdots, x_{n}\right)_{k}=i_{k} / N
$$

for

$$
t / 3+i_{k}(1-2 t / 3) / N-t /(9 N) \leq x_{k} \leq t / 3+i_{k}(1-2 t / 3) / N+t /(9 N)
$$

and
$\varphi_{t}\left(x_{1}, \cdots, x_{n}\right)_{k}=i_{k} / N+\left\{x_{k}-\left[t / 3+i_{k}(1-2 t / 3) / N+t /(9 N)\right]\right\}[9 /(9-8 t)]$ for
$t / 3+i_{k}(1-2 t / 3) / N+t /(9 N) \leq x_{k} \leq t / 3+\left(i_{k}+1\right)(1-2 t / 3) / N-t /(9 N)$.
A direct calculation shows $\varphi_{0}=\mathrm{id}$, and φ_{t} is continuous and well-defined on the inside cube $C_{t}=\left\{\left(x_{1}, \cdots, x_{n} \mid t / 3 \leq x_{k} \leq 1-t / 3\right\}\right.$.
b) Let us fix t. Let $T_{k, 0, t}=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid x_{k}=t s / 3,0 \leq s \leq 1\right.$, and $t s / 3 \leq x_{l} \leq 1-t s / 3,0 \leq s \leq 1$, for $\left.l \neq k\right\}$, and $T_{k, 1, t}=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid x_{k}\right.$ $=1-t s / 3,0 \leq s \leq 1$, and $t s / 3 \leq x_{l} \leq 1-t s / 3$ for $\left.l \neq k, 0 \leq s \leq 1\right\}$. The cube I^{n} is broken up into the inner cube C_{t} and the $2 n$ "trapazoids" $T_{k, i, t}$, $i=0,1$. We now define φ_{t} on $T_{k, 0, t}$. If $x \in T_{k, 0, t}$, set $\varphi_{t}\left(x_{1}, \cdots, x_{n}\right)_{k}=0$. Let $x_{k}=S t / 3$. Then $\varphi_{t}\left(x_{1}, \cdots, x_{n}\right)_{j}=i_{j} / N$ if

$$
\begin{aligned}
S t / N+ & \left(i_{j} / N\right)(1-2 S t / 3)-S t /(9 N) \\
& \leq x_{j} \leq S t / 3+\left(i_{j} / N\right)(1-2 S t / 3)+S t / N
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi_{t}\left(x_{1}, \cdots, x_{n}\right)_{j}=i_{j} / N+\left[x_{j}\right. & -S t / 3+i_{j}(1-2 S t / 3) / N \\
& +S t /(9 N)][9 /(9-8 S t)]
\end{aligned}
$$

if

$$
\begin{aligned}
S t / 3+ & \left(i_{j} / N\right)(1-2 S t / 3)+S t(9 N) \\
& \leq x_{j} \leq S t / 3+\left(i_{j}+1\right)(1-2 S t / 3) / N-S t /(9 N)
\end{aligned}
$$

for $j \neq k$. It is easy to see that $\varphi_{0}=\mathrm{id}$, and φ_{t} is well-defined and continuous on $C_{t} \cup T_{1,0, t} \cup \cdots \cup T_{n, 0, t}$.
c) We will now extend φ_{t} to $T_{l, 1, t}, 1 \leq l \leq n$. Let $x \in T_{k, 1, t}$. Then $x_{k}=$ $1-S t / 3$ for some $S, 0 \leq S \leq 1$, and $S t / 3 \leq x_{j} \leq 1-S t / 3$ for $j \neq k$. Let

$$
\begin{aligned}
& \varphi_{t}\left(x_{1}, \cdots, x_{n}\right) \\
&=\varphi_{t}\left(\left[\left(x_{1}, \cdots, x_{n}\right)-\left(\frac{1}{2}, \cdots, \frac{1}{2}\right)\right]\left[\frac{3-2 t}{3-2 S t}\right]+\left(\frac{1}{2}, \cdots, \frac{1}{2}\right)\right)
\end{aligned}
$$

where the φ_{t} on the right is the φ_{t} defined on C_{t}. Again a direct calculation shows that this formula makes sense. A further check shows that $\left(\varphi_{t}\right), 0 \leq t \leq 1$, define a strong admissible deformation of I^{n}.

Step III. Note that $\varphi_{1}\left(T_{k, 0,1}\right)=I_{k, 0}^{n-1}$. We define ρ on $\bigcup_{k=1}^{n} T_{k, 0,1}$ by $\rho(x)=$ $p\left(\varphi_{1}(x)\right)$. We immediately see $\rho \mid F^{n-1}=p$. Let us look at the cubes

$$
\begin{aligned}
C_{i_{1}, \cdots, i_{n}}=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid\right. & 1 / 3+i_{k} /(3 N)+1 /(9 N) \\
& \left.\leq x_{k} \leq 1 / 3+\left(i_{k}+1\right) /(3 N)-1 /(9 N)\right\}
\end{aligned}
$$

Since φ_{1} maps $C_{i_{1}, \ldots, i n}$ homeomorphically onto $B_{i_{1}, \ldots, i n}$, we can define ρ on $C_{i_{1}, \ldots, i_{n}}$ by the formula $\rho(x)=p_{i_{1}, \ldots, i_{n}}\left(\varphi_{1}(x)\right)$ for $x \in C_{i_{1}, \ldots, i_{n}}$. We will now extend ρ to all C_{1} by the following induction hypothesis.

Hypothesis $l-1$. We assume ρ is defined for all $\left(x_{1}, \cdots, x_{n}\right) \in C_{1}$ such that $1 / 3 \leq x_{k} \leq 2 / 3$ for $k=1, \cdots, l-1$, and $1 / 3+i_{k} /(3 N)+1 /(9 N) \leq x_{k}$ $\leq 1 / 3+\left(i_{k}+1\right) /(3 N)-1 /(9 N)$ for $k=l, \cdots, n$. Assume ρ satisfies i) and ii) of the statement of Theorem 8.2 wherever ρ is defined. To show $(l-1) \Rightarrow(l)$, pick $x=\left(x_{1}, \cdots, x_{n}\right)$ such that $1 / 3 \leq x_{k} \leq 2 / 3$ for $k=1, \cdots, l$, and $1 / 3+$ $i_{k} /(3 N)+1 /(9 N) \leq x_{k} \leq 1 / 3+i_{k}+1 /(3 N)-1 /(9 N)$ for $k=l+1, \cdots, n$. If $1 / 3+i_{l} /(3 N)+1 /(9 N) \leq x_{l} \leq 1 / 3+i_{l}+1 /(3 N)-1 /(9 N)$, then ρ is already defined on x. If $1 / 3 \leq x_{l} \leq 1 / 3+1 /(9 N)$, we see that φ_{1} is constant along the line $\left(x_{1}, \cdots, x_{l-1}, 1 / 3+t /(9 N), x_{l+1}, \cdots, x_{n}\right), 0 \leq t \leq 1$. Hence we can define ρ along this line by the formula

$$
\begin{aligned}
& \rho\left(x_{1}, \cdots, x_{l-1}, 1 / 3+t /(9 N), x_{l+1}, \cdots, x_{n}\right) \\
&=(1-t) \rho\left(x_{1}, \cdots, x_{l-1}, 1 / 3, x_{l+1}, \cdots, x_{n}\right) \\
&+t \rho\left(x_{1}, \cdots, x_{l-1}, 1 / 3+1 /(9 N), x_{l+1}, \cdots, x_{n}\right) .
\end{aligned}
$$

ρ is continuous in x and t, and has all the desired properties due to the convexity of the P_{x}. Set

$$
\begin{aligned}
C_{i_{l}, i_{l+1}, \cdots, i_{n}}= & \left\{\left(x_{1}, \cdots, x_{n}\right) \mid 1 / 3 \leq x_{i} \leq 2 / 3,1 \leq i \leq l-1,1 / 3+i_{k} /(3 N)\right. \\
& +1 /(9 N) \leq x_{k} \leq 1 / 3+\left(i_{k}+1\right) /(3 N)-1 /(9 N) \\
& \text { for } k=l, l+1, \cdots, n\}
\end{aligned}
$$

If $1 / 3+i_{l} /(3 N)-1 /(9 N) \leq x_{l} \leq 1 / 3+i_{l} /(3 N)+1 /(9 N), 1 \leq i_{l} \leq N-1$, we look at the line $\left(x_{1}, \cdots, x_{l-1}, 1 / 3+\left(i_{l}-1\right) /(3 N)+2 /(9 N)+2 t /(9 N)\right.$,
$\left.x_{l_{+1}}, \cdots, x_{n}\right), 0 \leq t \leq 1$, which joins $\left(x_{1}, \cdots, x_{l-1}, 1 / 3+i_{l} /(3 N)-1 /(9 N)\right.$, $\left.x_{l+1}, \cdots, x_{n}\right) \in C_{i_{l-1}, i_{l+1}, \cdots, i_{n}}$ to $\left(x_{1}, \cdots, x_{l-1}, 1 / 3+i_{l} /(3 N)+1 /(9 N), x_{l+1}\right.$, $\left.\cdots, x_{n}\right) \in C_{i_{l}, i_{l+1}, \cdots, i_{n}} . \varphi_{1}$ is a constant along this line, and hence we can set

$$
\begin{aligned}
\rho\left(x_{1}, \cdots,\right. & \left.x_{l-1}, 1 / 3+\left(i_{l}-1\right) /(3 N)+2 /(9 N)+2 t /(9 N), x_{l+1}, \cdots, x_{n}\right) \\
= & (1-t) \rho\left(x_{1}, \cdots, x_{l-1}, 1 / 3+\left(i_{l}-1\right) /(3 N)+2 /(9 N), x_{l+1}, \cdots, x_{n}\right) \\
& +t \rho\left(x_{1}, \cdots, x_{l-1}, 1 / 3+i_{l} /(3 N)+1 /(9 N), x_{l+1}, \cdots, x_{n}\right) .
\end{aligned}
$$

If $2 / 3-1 /(9 N) \leq x_{l} \leq 2 / 3$, we again note that φ_{1} is constant along the line $\left(x_{1}, \cdots, x_{l-1}, 2 / 3-1 /(9 N)+t /(9 N), x_{l+1}, \cdots, x_{n}\right), 0 \leq t \leq 1$. Set

$$
\begin{aligned}
\rho\left(x_{1},\right. & \left.\cdots, x_{l-1}, 2 / 3-1 /(9 N)+t /(9 N), x_{l+1}, \cdots, x_{n}\right) \\
& =\rho\left(x_{1}, \cdots, x_{l-1}, 2 / 3-1 /(9 N), x_{l+1}, \cdots, x_{n}\right) .
\end{aligned}
$$

It is easy to see that we have now constructed by induction ρ with the desired properties on $C_{1} \cup T_{1,0,1} \cup \cdots \cup T_{n, 0,1} . T_{k, 1,1}=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid x_{k}=1-S / 3\right.$, $\left.0 \leq S \leq 1, S / 3 \leq x_{j} \leq 1-S / 3, j \neq k\right\}$. For $x \in T_{k, 1,1}$ we see $x_{k}=1-S / 3$ for some k. Set $\lambda_{k}(x)=\left[\left(x_{1}, \cdots, x_{n}\right)-(1 / 2, \cdots, 1 / 2)\right][1 / 3-2 S]+(1 / 2$, $\cdots, 1 / 2)$. Then λ_{k} defines a retraction of $T_{k, 1,1}$ onto $T_{k, 1,1} \cap C_{1}$. The λ_{k} 's agree on the overlaps, so they define a retraction $\lambda: \bigcup_{k=1}^{n} T_{k, 1,1} \rightarrow\left(\bigcup_{k=1}^{n} T_{k, 1,1}\right) \cap C_{1}$. We see immediately that $\varphi_{1}(x)=\varphi_{1}(\lambda(x))$ for $x \in \cup T_{k, 1,1}$. Hence we can extend ρ to $T_{k, 1,1}, 1 \leq k \leq n$, by setting $\rho(x)=\rho(\lambda(x))$.

Bibliography

[1] L. Bers, F. John \& M. Schecter, Partial differential equations, Lectures in Applied Mathematics, Vol. III, Interscience, New York, 1964.
[2] E. A. Feldman, Geometry of immersions. I, Trans. Amer. Math. Soc. 87 (1965) 492-512.
[3] - Deformations of closed space curves, J. Differential Geometry 2 (1968) 67-75.
[4] W. Fenchel, Über Krümmung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929) 238-252.
[5] -—, Geschlossene Raumkurven mit vorgeschriebenem Tangentenbild, Jber. Deutschen Math. Verein 39 (1930) 183-185
[6] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
[7] S. T. Hu, Homotopy theory, Academic Press, New York, 1959.
[8] J. R. Munkres, Elementary differential topology, Annals of Math. Studies No. 54, Princeton University Press, Princeton, 1963.
[9] R. S. Palais, The homotopy type of infinite dimensional manifolds, Topology 5 (1966) 1-16.
[10] -, Foundations of global analysis, Benjamin, New York, 1968.
[11] S. Smale, Regular curves on Riemmannian manifolds, Trans. Amer. Math. Soc. 87 (1958) 492-512.
[12] N. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, 1951.
[13] D. J. Struik, Lectures on classical differential geometry, Addison-Wesley, Reading, Mass., 1950.
[14] H. Whitney, On regular closed curves in the plane, Compositia Math. 4 (1937) 276-284.

Graduate Division
City University of New York

[^0]: Communicated by J. Eells, Jr., March 31, 1970. This research was partially supported by NSF contract \#8191.

