LIE TRANSFORMATION GROUPS OF BANACH MANIFOLDS

OTTMAR LOOS

Introduction

Let M be a Banach manifold which is not assumed to be Hausdorff, and let D denote the group of diffeomorphisms of M and \mathbf{V} the Lie algebra of vector fields on M. A Lie group \mathscr{G} is called a Lie transformation group of M if the underlying group G of \mathscr{G} is a subgroup of D and the natural map $\alpha:(g, p) \mapsto g(p)$ from $\mathscr{G} \times M$ into M is a morphism (of manifolds). In this case, α induces a homomorphism α^{+}from the Lie algebra $L(\mathscr{G})$ of \mathscr{G} into \mathbf{V} (cf. §3). Conversely, we prove that the set of complete vector fields of a finitedimensional subalgebra of \mathbf{V} is a subalgebra (Proposition 8), and if \mathbf{L} is a complete finite-dimensional subalgebra of \mathbf{V} then there exists a unique connected Lie transformation group \mathscr{G} such that α^{+}is an isomorphism from $L(\mathscr{G})$ onto \mathbf{L} (Theorem 9). In case M is finite-dimensional and Hausdorff, this result is due to Palais [4]. For the numerous applications in differential geometry, the reader is referred to [1]. Unfortunately, the proof of the just-mentioned special case given in [1] seems to be incomplete. The proof to be presented here is quite elementary; it relies heavily on the use of one-parameter families of diffeomorphisms, instead of one-parameter groups. To be more precise, we define a curve in D to be a morphism $\varphi: I_{\varphi} \times M \rightarrow M$ such that
(i) I_{φ} is an open interval in \boldsymbol{R} containing 0 ;
(ii) the map $\varphi_{t}: p \mapsto \varphi(t, p)$ belongs to D, for all $t \in I_{\varphi}$;
(iii) $\varphi_{0}=\operatorname{Id}_{M}$.

With φ we associate a time-dependent vector field $\delta \varphi$ by

$$
\delta \varphi(t, p)=(\delta \varphi)_{t}(p)=(d / d s)_{s=t} \varphi_{s}\left(\varphi_{t}^{-1}(p)\right) .
$$

The map $\varphi \mapsto \delta \varphi$ is injective (Proposition 4). The underlying group G of \mathscr{G} turns out to be the set of diffeomorphisms φ_{1} where φ is any curve in D such that $I_{\varphi}=\boldsymbol{R}$ and $(\delta \varphi)_{t} \in \mathbf{L}$ for all $t \in \boldsymbol{R}$. Using canonical coordinates of the second kind, G becomes a Lie group with the desired properties. We also prove the following criterion for a subgroup G of D to be a Lie transformation group (Theorem 10): assume there is a set S of curves in D such that $\left\{\varphi_{t}: \varphi \in S\right.$ and $\left.t \in I_{\varphi}\right\}$ generates G and that $\left\{(\delta \varphi)_{t}: \varphi \in S\right.$ and $\left.t \in I_{\varphi}\right\}$ generates a

Communicated by R. S. Palais, March 28, 1970.
finite-dimensional subalgebra \mathbf{L} of \mathbf{V}. Then \mathbf{L} is complete and G is the underlying group of the connected Lie transformation group generated by \mathbf{L}.

We work throughout in the category of real Banach manifolds of class C^{k} where $k=\infty$ or $k=\omega$, and a morphism is a map of class C^{k}. For the basic facts on Banach manifolds we refer to Lang [3].

1. Curves of diffeomorphisms and time-dependent vector fields

Notational convention. If f is a map on a product space, then the partial maps $p \mapsto f(t, p)$ and $t \mapsto f(t, p)$ will be denoted by f_{t} and f^{p}, respectively. If t is a real variable, then $\dot{f}^{p}(t)=\dot{f}_{t}(p)=\frac{d}{d t} f(t, p)$ is the tangent vector of the curve f^{p} at $f(t, p)$. By I we denote an open interval in \boldsymbol{R} containing 0 .

Let $D(I)$ be the set of all curves in D with $I_{\varphi}=I$. Then with the operations

$$
(\varphi \psi)(t, p)=\varphi_{t} \circ \psi_{t}(p) ; \quad \varphi^{-1}(t, p)=\varphi_{t}^{-1}(p)
$$

$D(I)$ is a group. Indeed, the only non-obvious fact is that φ^{-1} is a morphism, and this follows from the implicit function theorem.

A time-dependent vector field is a morphism $\xi: I \times M \rightarrow T(M)$, the tangent bundle of M, such that $\xi_{t} \in \mathbf{V}$ for every $t \in I$. Note that ξ^{p} is a curve in the tangent space $T_{p}(M)$ for every $p \in M$. Identifying as usual the tangent space of $T_{p}(M)$ at $\xi^{p}(t)$ with $T_{p}(M)$, we define a time-dependent vector field $\frac{\partial \xi}{\partial t}$ by $\frac{\partial \xi}{\partial t}(t, p)=\dot{\xi}^{p}(t)$. The set $\mathbf{V}(I)$ of time-dependent vector fields becomes a Lie algebra with

$$
[\xi, \eta](t, p)=\left[\xi_{t}, \eta_{t}\right](p)
$$

Also $\mathbf{V} \subset \mathbf{V}(I)$ by setting $X(t, p)=X(p)$ for $X \in \mathbf{V}$, and then $\xi \in \mathbf{V}$ if and only if $\frac{\partial \xi}{\partial t}=0$, i.e., ξ is time-independent.

Let $f \in D$ and $X \in \mathbf{V}$, and denote by $T f$ the induced map on the tangent bundle of M. Then

$$
\operatorname{Ad} f \cdot X=T f \circ X \circ f^{-1}
$$

is a vector field on M, and in this way D acts on \mathbf{V} by automorphisms. Similarly, $D(I)$ acts on $\mathbf{V}(I)$ by

$$
(\operatorname{Ad} \varphi \cdot \xi)(t, p)=\left(\operatorname{Ad} \varphi_{t} \cdot \xi_{t}\right)(p)
$$

We define $\delta: D(I) \rightarrow \mathbf{V}(I)$ by

$$
\delta \varphi(t, p)=\dot{\varphi}_{t}\left(\varphi_{t}^{-1}(p)\right) .
$$

Then we have

$$
\begin{align*}
\delta(\varphi \psi) & =\delta \varphi+\operatorname{Ad} \varphi \cdot \delta \psi \tag{1}\\
\delta \varphi^{-1} & =-\operatorname{Ad} \varphi^{-1} \cdot \delta \varphi \tag{2}
\end{align*}
$$

Indeed,

$$
\begin{aligned}
\delta(\varphi \psi)(t, p) & =\frac{d}{d t}\left(\varphi_{t}\left(\psi_{t}(p)\right)=\dot{\varphi}_{t}\left(\psi_{t}(p)\right)+T \varphi_{t}\left(\dot{\psi}_{t}(p)\right)\right. \\
& =\delta \varphi\left(t, \varphi_{t} \circ \psi_{t}(p)\right)+T \varphi_{t}\left(\delta \psi\left(t, \psi_{t}(p)\right)\right. \\
& =(\delta \varphi+\operatorname{Ad} \varphi \cdot \delta \psi)(t, p)
\end{aligned}
$$

and (2) follows by setting $\psi=\varphi^{-1}$. Note that δ is a crossed homomorphism from $D(I)$ into $V(I)$.

Lemma 1. For $\varphi \in D(I)$ and $\xi \in \mathbf{V}(I)$ let $\eta=\operatorname{Ad} \varphi \cdot \xi$. Then

$$
\begin{equation*}
\frac{\partial \eta}{\partial t}=[\delta \varphi, \eta]+\operatorname{Ad} \varphi \cdot \frac{\partial \xi}{\partial t} \tag{3}
\end{equation*}
$$

Proof. This is a local result. Let U and V be coordinate neighborhoods of p and $\varphi_{t_{0}}^{-1}(p)$, and choose $V^{\prime} \subset V, U^{\prime} \subset U$ and $\varepsilon>0$ such that $\varphi\left(\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)\right.$ $\left.\times V^{\prime}\right) \subset U$ and $\varphi^{-1}\left(\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right) \times U^{\prime}\right) \subset V^{\prime}$. By continuity, this is possible. We may identify U and V with open sets in a Banach space E. Then $T(U)$ $=U \times E$ and $T(V)=V \times E$. For $y \in V$, let $\xi(t, y)=(y, g(t, y))$ where $g:\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right) \times V \rightarrow E$. For $x \in U^{\prime}$ and $\left|t-t_{0}\right|<\varepsilon$ we have $\delta \varphi(t, x)=$ $(x, f(t, x))$ and $\eta(t, x)=(x, h(t, x))$ where $f(t, x)=\dot{\varphi}_{t}\left(\varphi_{t}^{-1}(x)\right)$ and $h(t, x)=$ $D \varphi_{t}\left(\varphi_{t}^{-1}(x)\right) \cdot g\left(t, \varphi_{t}^{-1}(x)\right), D \varphi_{t}$ denoting the derivative of φ_{t}; see [3, p. 6 ff .]. Let $\varphi_{t}^{-1}(x)=y$ for short. Then from $\dot{\hat{D} \varphi_{t}}=D \dot{\varphi}_{t}$ it follows

$$
\begin{gathered}
\dot{h}(t, x)=\mathrm{D} \dot{\varphi}_{t}(y) \cdot g_{t}(y)+\mathrm{D}^{2} \varphi_{t}(y)\left(\dot{\varphi}_{t}^{-1}(x), g_{t}(y)\right) \\
\quad+\mathrm{D} \varphi_{t}(y) \cdot \dot{g}_{t}(y)+\mathrm{D} \varphi_{t}(y) \circ \mathrm{D} g_{t}(y) \cdot \dot{\varphi}_{t}^{-1}(x) \\
\mathrm{D} f_{t}(x) \cdot h_{t}(x)-\mathrm{D} h_{t}(x) \cdot f_{t}(x)+\mathrm{D} \varphi_{t}(y) \cdot \dot{g}_{t}(y) \\
=\mathrm{D} \dot{\varphi}_{t}(y) \circ \mathrm{D} \varphi_{t}^{-1}(x) \cdot h_{t}(x)-\mathrm{D}^{2} \varphi_{t}(y)\left(\mathrm{D} \varphi_{t}^{-1}(x) \cdot \dot{\varphi}_{t}(y), g_{t}(y)\right) \\
-\mathrm{D} \varphi_{t}(y) \circ \mathrm{D} g_{t}(y) \circ \mathrm{D} \varphi_{t}^{-1}(x) \cdot \dot{\varphi}_{t}(y)+\mathrm{D} \varphi_{t}(y) \cdot \dot{g}_{t}(y)
\end{gathered}
$$

From $\varphi_{l}\left(\varphi_{t}^{-1}(x)\right)=x$ for all $x \in U^{\prime}$ we get

$$
\dot{\varphi}_{t}(y)+\mathrm{D} \varphi_{t}(y) \cdot \dot{\varphi}_{t}^{-1}(x)=0, \quad\left(\mathrm{D} \varphi_{t}(y)\right)^{-1}=\mathrm{D} \varphi_{t}^{-1}(x),
$$

and the assertion of Lemma 1 follows.
(Note that our definition of the bracket of vector fields differs from the usual one by sign; this is the 'good' definition for transformation groups acting on the left.)

Corollary. Let $Y \in \mathbf{V}$. Then $\eta=\operatorname{Ad} \varphi \cdot Y$ is the unique solution of the partial differential equation

$$
\begin{equation*}
\frac{\partial \eta}{\partial t}=[\delta \varphi, \eta] \tag{4}
\end{equation*}
$$

for the time-dependent vector field η with initial condition $\eta_{0}=Y$.
Proof. From (3) it follows that $\operatorname{Ad} \psi \cdot Y$ is a solution of (4). To prove unicity, let η be any solution of (4), and let $\zeta=\operatorname{Ad} \varphi^{-1} \cdot \eta$. Then, from (2) and (3),

$$
\begin{aligned}
\frac{\partial \zeta}{\partial t} & =\left[\delta \varphi^{-1}, \zeta\right]+\operatorname{Ad} \varphi^{-1} \cdot \frac{\partial \eta}{\partial t} \\
& =\left[-\operatorname{Ad} \varphi^{-1} \cdot \delta \varphi, \operatorname{Ad} \varphi^{-1} \cdot \eta\right]+\operatorname{Ad} \varphi^{-1} \cdot[\delta \varphi, \eta]=0 .
\end{aligned}
$$

Hence $\operatorname{Ad} \varphi_{t}^{-1} \cdot \eta_{t}=\zeta_{t}=\zeta_{0}=\operatorname{Ad} \varphi_{0}^{-1} \cdot \eta_{0}=Y$ and therefore $\eta_{t}=\operatorname{Ad} \varphi_{t} \cdot Y$ for all $t \in I$. q.e.d.

A curve $\varphi \in D(\boldsymbol{R})$ is called a one-parameter group if $\varphi_{s} \circ \varphi_{t}=\varphi_{s+t}$ for all $s, t \in R$.

Lemma 2. a) If φ is a one-parameter group, then $\delta \varphi$ is time-independent.
b) Let $\varphi \in D(I)$ and $\delta \varphi=X$ be time-independent. Then $\operatorname{Ad} \varphi_{t} \cdot X=X$ for all $t \in I$, and φ can be extended uniquely to a one-parameter group.

Proof. a) This follows by differentiating the identity $\varphi_{s+t}\left(\varphi_{t}^{-1}(p)\right)=\varphi_{s}(p)$ with respect to s at $s=0$.
b) From (2) and (3) we get

$$
\frac{\partial}{\partial t}\left(\operatorname{Ad} \varphi^{-1} \cdot X\right)=\left[\delta \varphi^{-1}, \operatorname{Ad} \varphi^{-1} \cdot X\right]=\left[-\operatorname{Ad} \varphi^{-1} \cdot X, \operatorname{Ad} \varphi^{-1} \cdot X\right]=0
$$

Hence $\operatorname{Ad} \varphi_{t} \cdot X=\operatorname{Ad} \varphi_{0} \cdot X=X$ for all $t \in I$. Now let $s \in I$, and set $\alpha_{t}=$ $\varphi_{s+t} \circ \varphi_{t}^{-1}$ for $t \in J=I \cap I-s$. Then

$$
\begin{aligned}
\dot{\alpha}_{t}(p) & =\dot{\varphi}_{s+t}\left(\varphi_{t}^{-1}(p)\right)+T \varphi_{s+t}\left(\dot{\varphi}_{t}^{-1}(p)\right) \\
& =\left(X-\operatorname{Ad} \varphi_{s+t} \operatorname{Ad} \varphi_{t}^{-1} \cdot X\right)\left(\alpha_{t}(p)\right)=0 .
\end{aligned}
$$

Since J is connected and $0 \in J$, it follows $\varphi_{s+t} \circ \varphi_{t}^{-1}=\alpha_{t}=\alpha_{0}=\varphi_{s}$, i.e., $\varphi_{s} \circ \varphi_{t}=\varphi_{s+t}$. Now it is a standard fact that φ can be extended uniquely to a one-parameter group. q.e.d.

The following change of parameter will be useful.
Lemma 3. There exists a C^{ω}-diffeomorphism $f: \boldsymbol{R} \rightarrow I$ such that $f(0)=0$. The map $f^{*}: D(I) \rightarrow D(\boldsymbol{R})$ defined by $\left(f^{*} \varphi\right)(t, p)=\varphi(f(t), p)$ is a group isomorphism, and $\delta\left(f^{*} \varphi\right)(t, p)=\frac{d f}{d t} \cdot \delta \varphi(f(t), p)$.

The proof is left to the reader.

Proposition 4. $\delta: D(I) \rightarrow \mathbf{V}(I)$ is injective.
Proof. By Lemma 3, we may assume $I=\boldsymbol{R}$. For $\varphi \in D(\boldsymbol{R})$, define

$$
\tilde{\varphi}_{t}(s, p)=\left(t+s, \varphi_{t+s} \circ \varphi_{s}^{-1}(p)\right) \quad(t \in \boldsymbol{R},(s, p) \in \boldsymbol{R} \times M) .
$$

An immediate verification shows that $\tilde{\varphi}$ is a one-parameter group on $\boldsymbol{R} \times M$. As usual, $\boldsymbol{T}(\boldsymbol{R})$ is identified with $\boldsymbol{R} \times \boldsymbol{R}$ and $T(\boldsymbol{R} \times M)$ with $T(\boldsymbol{R}) \times T(M)$. Then by Lemma 2 the (time-independent) vector field $X=\delta \tilde{\varphi}$ on $\boldsymbol{R} \times M$ is given by

$$
X(s, p)=\left.\frac{d}{d t}\right|_{t=0}\left(t+s, \varphi_{t+s} \circ \varphi_{s}^{-1}(p)\right)=((s, 1), \delta \varphi(s, p)) .
$$

Let $\varphi, \psi \in D(\boldsymbol{R})$. Clearly, $\delta \varphi=\delta \psi$ implies $\delta \tilde{\varphi}=\delta \tilde{\phi}$, and $\tilde{\varphi}=\tilde{\phi}$ implies $\varphi=\psi$. Hence it suffices to prove the proposition for one-parameter groups. Finally, let φ and ψ be one-parameter groups such that $X=\delta \varphi=\delta \psi$. Then from Lemma 2 and (1) and (2) we have $\delta\left(\varphi \psi^{-1}\right)=\delta \varphi+\operatorname{Ad} \varphi \cdot \delta \psi^{-1}=X-\operatorname{Ad} \varphi \operatorname{Ad} \psi^{-1} \cdot X$ $=X-X=0$. Setting $\alpha=\varphi \psi^{-1}$, this implies that $\dot{\alpha}^{p}(t)=0$ for all $p \in M$, $t \in \boldsymbol{R}$. Therefore the map $\alpha^{p}: \boldsymbol{R} \rightarrow M$ is constant for all $p \in M$, and it follows $\alpha_{t}=I d_{M}$, i.e., $\varphi=\psi$.

Note that $\varphi^{p}: t \mapsto \varphi(t, p)$ is a solution of the differential equation $\frac{d x}{d t}=$ $\delta \varphi(t, x)$ with initial condition $x(0)=p$. In case M is Hausdorff, this solution is unique which gives a simpler proof of Proposition $4 . \quad$ q.e.d.

A vector field X such that $X=\delta \varphi$ for some (uniquely determined) $\varphi \in D(\boldsymbol{R})$ is called complete. It is well known that on a compact manifold every vector field is complete. It can be shown that this is still true for time-dependent vector fields, so that $\delta: D(I) \rightarrow V(I)$ is a bijection for compact M.

2. Lie algebras of vector fields

In this section, \mathbf{L} will denote an arbitrary finite-dimensional subalgebra of V. Let

$$
\begin{equation*}
\mathbf{L}(\boldsymbol{R})=\left\{\xi \in \mathbf{V}(\boldsymbol{R}): \xi_{t} \in \mathbf{L} \text { for all } t \in \boldsymbol{R}\right\} . \tag{5}
\end{equation*}
$$

As a finite-dimensional vector space, \mathbf{L} is a manifold in a natural way. Then we have

Lemma 5. $\mathbf{L}(\boldsymbol{R})$ is naturally isomorphic to the set of morphisms from \boldsymbol{R} into \mathbf{L}.

Proof. Let $p \in M$. Since \mathbf{L} is finite-dimensional, the subspace $\{X(p): X \in \mathbf{L}\}$ of the Banach space $T_{p}(M)$ is closed and admits a closed complementary subspace. Hence, again by finite-dimensionality of \mathbf{L}, there exist $p_{i} \in M$ and continuous linear forms λ_{i} on $T_{p_{i}}(M)(i=1, \cdots, r)$ such that the map $F: X \mapsto$
$\left(\lambda_{1}\left(X\left(p_{1}\right)\right), \cdots, \lambda_{r}\left(X\left(p_{r}\right)\right)\right)$ is a linear isomorphism from \mathbf{L} onto \boldsymbol{R}^{r}. Let $e_{1}, \cdots, \boldsymbol{e}_{r}$ be a basis of \boldsymbol{R}^{r} and set $X_{i}=F^{-1}\left(e_{i}\right)$. For any $\xi \in \mathbf{L}(\boldsymbol{R})$, the map $\xi^{p}: \boldsymbol{R} \rightarrow$ $T_{p}(M)$ is a morphism. Hence $f_{i}=\lambda_{i} \circ \xi^{p_{i}}$ is a morphism from \boldsymbol{R} into \boldsymbol{R}, and $\xi_{t}=\sum f_{i}(t) X_{i}$ shows that $t \mapsto \xi_{t}$ is a morphism from \boldsymbol{R} into \mathbf{L}. If conversely $\eta: \boldsymbol{R} \mapsto \mathbf{L}$ is a morphism, then $\eta(t)=\sum g_{i}(t) X_{i}$ with morphisms $g_{i}: \boldsymbol{R} \rightarrow \boldsymbol{R}$, and this shows that the map $(t, p) \mapsto \eta(t)(p)$ belongs to $\mathbf{L}(\boldsymbol{R})$. q.e.d.

In view of Lemma 5, we will identify $\mathbf{L}(\boldsymbol{R})$ with the set of morphisms from \boldsymbol{R} into \mathbf{L}. Then $\frac{\partial \xi}{\partial t}=\frac{d \xi}{d t}$, where $\frac{d \xi}{d t}$ denotes the usual derivative of a curve in a vector space.

Now we define

$$
\begin{equation*}
G(\boldsymbol{R})=\{\varphi \in D(\boldsymbol{R}): \delta \varphi \in \mathbf{L}(\boldsymbol{R})\} \tag{6}
\end{equation*}
$$

The fact that we consider only curves of diffeomorphisms defined on \boldsymbol{R} is convenient but not essential in view of Lemma 3.

Lemma 6. Let $\varphi \in G(\boldsymbol{R})$ and $\delta \varphi=\xi: \boldsymbol{R} \rightarrow \mathbf{L}$. Then \mathbf{L} is invariant under $\operatorname{Ad} \varphi_{t}(t \in \boldsymbol{R})$, and the map $t \mapsto \operatorname{Ad} \varphi_{t} \mid \mathbf{L}$ is the unique solution of the matrix differential equation $\frac{d A}{d t}=\operatorname{ad} \xi(t) \circ A$ with initial condition $A(0)=\mathrm{Id}_{\mathrm{L}}$. In particular, it is a morphism from \boldsymbol{R} into $\mathbf{G L}(\mathbf{L})$.

Proof. For $Y \in \mathbf{L}$ let $\eta: \boldsymbol{R} \rightarrow \mathbf{L}$ be the unique solution of the ordinary linear differential equation $\frac{d X}{d t}=[\xi(t), X]$ in \mathbf{L} with initial condition $\eta(0)=Y$. Then by the remark above, η considered as an element of $\mathbf{L}(\boldsymbol{R})$ is a solution of (4), and $\eta(t)=\operatorname{Ad} \varphi_{t} \cdot Y \in \mathbf{L}$ by the corollary of Lemma 1. Hence the lemma follows from the standard facts on ordinary linear differential equations.

From (1) and (2) we get
Corollary. $\quad G(\boldsymbol{R})$ is a subgroup of $D(\boldsymbol{R})$.
We define

$$
\begin{equation*}
\boldsymbol{G}=\left\{\varphi_{1}: \varphi \in G(\boldsymbol{R})\right\}, \quad \mathbf{L}_{0}=\left\{(\delta \varphi)_{0}: \varphi \in G(\boldsymbol{R})\right\} \tag{7}
\end{equation*}
$$

Lemma 7. a) G is a subgroup of D, and $\varphi_{s} \in G$ for all $\varphi \in G(\boldsymbol{R}), s \in \boldsymbol{R}$.
b) \mathbf{L}_{0} is a subalgebra of \mathbf{L} and $(\delta \varphi)_{s} \in \mathbf{L}_{0}$ for all $\varphi \in G(\boldsymbol{R}), s \in \boldsymbol{R}$. Also, \mathbf{L}_{0} is invariant under Ad g for all $g \in G$.

Proof. By the above corollary, G is a subgroup of D. Let $s \in \boldsymbol{R}, \varphi \in G(\boldsymbol{R})$, and set $\psi_{t}=\varphi_{s t}$. Then $\varphi_{s}=\psi_{1} \in G$ and also $(\delta \psi)_{0}=s \cdot(\delta \varphi)_{0}$. Thus it follows from (1) that \mathbf{L}_{0} is a subspace of \mathbf{L}. For $\varphi, \psi \in G(\boldsymbol{R})$ and a fixed $s \in \boldsymbol{R}$ set $\alpha_{t}=\varphi_{s} \circ \psi_{t} \circ \varphi_{s}^{-1}$. Then $(\delta \alpha)_{t}=\operatorname{Ad} \varphi_{s} \cdot(\delta \psi)_{t} \in \mathbf{L}$ by Lemma 6. Hence $\alpha \in G(\boldsymbol{R})$, and it follows $\eta(s)=(\delta \alpha)_{0}=\operatorname{Ad} \varphi_{s} \cdot(\delta \psi)_{0} \in \mathbf{L}_{0}$. This shows that \mathbf{L}_{0} is invariant under Ad G. Furthermore, by differentiating with respect to s at $s=0$ we get $\frac{d \eta}{d s}(0)=\left[(\delta \varphi)_{0},(\delta \phi)_{0}\right] \in \mathbf{L}_{0}$. Thus \mathbf{L}_{0} is a subalgebra of \mathbf{L}. Finally, let $\beta_{t}=$
$\varphi_{s+t} \circ \varphi_{s}^{-1}$. Then $(\delta \beta)_{t}=(\delta \varphi)_{s+t}$ shows $\beta \in G(\boldsymbol{R})$, and it follows $(\delta \varphi)_{s}=(\delta \beta)_{0} \in \mathbf{L}_{0}$.
Proposition 8. \mathbf{L}_{0} is the set of complete vector fields in \mathbf{L}.
Proof. By a) of Lemma 2, a complete vector field in \mathbf{L} belongs to \mathbf{L}_{0}. Conversely, choose $\varphi^{(i)}$ in $\boldsymbol{G}(\boldsymbol{R})$ such that $\left(\delta \varphi^{(i)}\right)_{0}(i=1, \cdots, n)$ form a basis of \mathbf{L}_{0}, and define $\Phi: \boldsymbol{R}^{n} \rightarrow G$ by

$$
\Phi(x)=\varphi_{x_{1}}^{(1)} \circ \cdots \circ \varphi_{x_{n}}^{(n)}
$$

Clearly, $(x, p) \mapsto \Phi(x)(p)$ is a morphism from $\boldsymbol{R}^{n} \times M$ into M. Also define $F: \boldsymbol{R}^{n} \rightarrow \operatorname{Hom}\left(\boldsymbol{R}^{n}, \mathbf{L}_{0}\right)$ by

$$
F_{x}(v)=\sum_{i=1}^{n} v_{i} \cdot\left(\operatorname{Ad} \varphi_{x_{1}}^{(1)} \circ \cdots \circ \operatorname{Ad} \varphi_{x_{i-1}}^{(i-1)} \cdot \xi_{i}\left(x_{i}\right)\right)
$$

where $\xi_{i}=\delta \varphi^{(i)}: \boldsymbol{R} \rightarrow \mathbf{L}_{0}$. By Lemma 6, \boldsymbol{F} is a morphism. Also, \boldsymbol{F}_{0} is a vector space isomorphism, since $F_{0}(v)=\sum v_{i} \xi_{i}(0)$ and the $\xi_{i}(0)=\left(\delta \varphi^{(i)}\right)_{0}$ form a basis of \mathbf{L}_{0}.

Let $\gamma: I \rightarrow \boldsymbol{R}^{n}$ be a morphism such that $\gamma(0)=0$. Then $\varphi_{t}=\Phi(\gamma(t))$ defines a curve in D, and a computation shows

$$
\begin{equation*}
(\delta \varphi)_{t}=F_{\gamma(t)}(\dot{\gamma}(t)) . \tag{9}
\end{equation*}
$$

Since F_{0} is an isomorphism, there exists $r>0$ such that F_{z} is an isomorphism for $\|z\| \leq r$. Let $X \in \mathbf{L}_{0}$ be given, and consider the ordinary differential equation

$$
\frac{d z}{d t}=F_{z}^{-1}(X) \quad(\|z\| \leq r)
$$

Let $\gamma: I \rightarrow \boldsymbol{R}^{n}$ be a solution with $\gamma(0)=0$, and define φ as above. Then $(\delta \varphi)_{t}=F_{\gamma(t)} F_{\gamma(t)}^{-1}(X)=X$, and X is complete by Lemma 2.

For any $X \in \mathbf{L}_{0}$ we denote the corresponding one-parameter group by $\operatorname{Exp} t X$. Then we have

$$
\begin{equation*}
\operatorname{Ad} \operatorname{Exp} t X \cdot Y=e^{\mathrm{ad} t x} \cdot Y \quad \text { for } X \in \mathbf{L}_{0}, Y \in \mathbf{L} \tag{10}
\end{equation*}
$$

Indeed, by Lemma 6, Ad $\operatorname{Exp} t X \mid \mathbf{L}$ is the solution of $\frac{d A}{d t}=\operatorname{ad} X \circ A$ with initial condition $A(0)=\mathrm{Id}_{\mathrm{L}}$ which is given by $e^{\mathrm{ad} t x}$.

3. Connected Lie transformation groups

We first recall some facts about group actions. Let \mathscr{G} be a Lie group. A morphism $\alpha:(g, p) \mapsto g \cdot p$ from $\mathscr{G} \times M$ into M is called an action of \mathscr{G} on M on the left if
(i) $g \cdot(h \cdot p)=(g h) \cdot p$,
(ii) $e \cdot p=p$,
for $g, h \in \mathscr{G}$ and $p \in M$ (e is the neutral element of G). The Lie algebra $L(\mathscr{G})$ of \mathscr{G} is the tangent space $T_{e}(\mathscr{G})$ with the bracket $[X, Y]=[\bar{X}, \bar{Y}](e)$, where \bar{X} is the right-invariant vector field on \mathscr{G} such that $\bar{X}(e)=X$ (this coincides with the usual definition in terms of left-invariant vector fields since our bracket of vector fields differs from the usual one by sign). Then α induces a homomorphism $\alpha^{+}: L(\mathscr{G}) \rightarrow \mathbf{V}$ by

$$
\alpha^{+}(X)(p)=T \alpha^{p}(X)
$$

(see [4, p. 35]). The proof is a straightforward computation in local charts by using (i) and (ii) and is omitted here.

In case the underlying group G of \mathscr{G} is a subgroup of D and $\alpha(g, p)=g(p)$ is the natural map, we say \mathscr{G} is a Lie transformation group of M.

Theorem 9. Let \mathbf{L} be a finite-dimensional complete subalgebra of \mathbf{V}. Then there exists a unique connected Lie transformation group \mathscr{G} of M such that α^{+} is an isomorphism from $L(\mathscr{G})$ onto \mathbf{L}, and for every $\varphi \in D(I)$ such that $\varphi_{t} \in \mathscr{G}$ for all $t \in I$ the map $t \mapsto \varphi_{t}$ is a morphism from I into \mathscr{G}.

Proof. Let G be the subgroup of D defined by (7), choose a basis X_{1}, \cdots, X_{n} of \mathbf{L}, and define $\Phi: \boldsymbol{R}^{n} \rightarrow G$ by

$$
\Phi(x)=\operatorname{Exp} x_{1} X_{1} \circ \cdots \circ \operatorname{Exp} x_{n} X_{n}
$$

We will show that in the canonical coordinates of the second kind given by Φ, G becomes a Lie group with the desired properties.

First we prove

$$
\begin{equation*}
\Phi \text { is injective in a neighborhood of } 0 . \tag{11}
\end{equation*}
$$

Since \mathbf{L} is finite-dimensional there exist $p_{1}, \cdots, p_{r} \in M$ such that the map $X \mapsto\left(X\left(p_{1}\right), \cdots, X\left(p_{r}\right)\right)$ from \mathbf{L} into $E=T_{p_{1}}(M) \times \cdots \times T_{p_{r}}(M)$ is injective. Define $f: \boldsymbol{R}^{n} \rightarrow M^{r}$ by $f(x)=\left(\Phi(x)\left(p_{1}\right), \cdots, \Phi(x)\left(p_{r}\right)\right)$. Then $T_{0} f(v)=$ ($\left.\sum v_{i} X_{i}\left(p_{1}\right), \cdots, \sum v_{i} X_{i}\left(p_{r}\right)\right)$, and $T_{0} f$ is injective since X_{1}, \cdots, X_{n} is a basis of \mathbf{L}. Thus the image of $T_{0} f$ in the Banach space E, being finite-dimensional, is closed and admits a closed complementary subspace. Hence by the implicit function theorem, f is injective in a neighborhood of 0 in \boldsymbol{R}^{n} which proves (11).

Next we show
(12) there exists a neighborhood N of 0 in \boldsymbol{R}^{n} and a real analytic map $\mu: N \times N \rightarrow \boldsymbol{R}^{n}$ such that $\mu(0,0)=0$ and $\Phi(\mu(x, y))=\Phi(x) \circ \Phi(y)$.

Defining $F: \boldsymbol{R}^{n} \rightarrow \operatorname{Hom}\left(\boldsymbol{R}^{n}, \mathbf{L}\right)$ in analogy with (8), we obtain, from (10),

$$
F_{x}(v)=\sum_{i=1}^{n} v_{i} \cdot\left(e^{\mathrm{ad} x_{1} X_{1}} \circ \ldots \circ e^{\mathrm{ad} x_{i-1} X_{i-1}} \cdot X_{i}\right) .
$$

Thus F is real analytic. As in the proof of Proposition $8, F_{0}$ is a vector space isomorphism, and we choose $r>0$ such that F_{z} is an isomorphism for $z \in B_{r}$ $=\left\{x \in \boldsymbol{R}^{n}:\|x\| \leq r\right\}$. Set

$$
A(t, z ; x, y)=F_{z}^{-1}\left(F_{t x}(x)+e^{\mathrm{ad} t x_{1} X_{1}} \circ \cdots \circ e^{\mathrm{ad} t x_{n} X_{n}} \cdot F_{t y}(y)\right) .
$$

Then $A: \boldsymbol{R} \times B_{r} \times \boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ is real analytic, and $A(t, z ; 0,0)=0$. Thus there exists an open neighborhood N of 0 in \boldsymbol{R}^{n} such that

$$
\|A(t, z ; x, y)\| \leq 2 r / 3 \quad \text { for }|t| \leq 3 / 2, z \in B_{r}, \text { and } x, y \in N
$$

By standard theorems on differential equations, the equation

$$
\frac{d z}{d t}=A(t, z ; x, y)
$$

has a unique solution $\gamma(t ; x, y)$ such that $\gamma(0 ; x, y)=0$, defined for $|t| \leq 3 / 2$ and depending real analytically on the parameters $x, y \in N$. We define $\mu(x, y)$ $=\gamma(1 ; x, y)$, and show that $\Phi(\mu(x, y))=\Phi(x) \circ \Phi(y)$. Indeed, let $\varphi_{t}=\Phi(\gamma(t ; x, y))$ and $\psi_{t}=\Phi(t x) \circ \Phi(t y)$. Then, by (1), (6) and (7),

$$
\begin{aligned}
(\delta \varphi)_{t} & =F_{t x}(x)+\operatorname{Ad} \Phi(t x) \cdot F_{t y}(y)=F_{t x}(x)+e^{\operatorname{ad} t x_{1} X_{1}} \circ \cdots \circ e^{\operatorname{ad} t x_{n} X_{n}} \cdot F_{t y}(y) \\
& =F_{\gamma(t ; x, y)}(\dot{\gamma}(t ; x, y))=(\delta \varphi)_{t}
\end{aligned}
$$

Thus by Proposition 4, $\varphi_{t}=\psi_{t}$ for $|t|<3 / 2$, and for $t=1$ the assertion follows.
In a similar fashion, we can prove, with details omitted:
(13) there exist a neighborhood N of 0 in \boldsymbol{R}^{n} and a real analytic map $\iota: N \rightarrow \boldsymbol{R}^{n}$ such that $\iota(0)=0$ and $\Phi(\iota(x))=\iota(x)^{-1}$;
(14) for every $g \in G$ there exist a neighborhood N of 0 in \boldsymbol{R}^{n} and a real analytic map $\theta: N \rightarrow \boldsymbol{R}^{n}$ such that $\theta(0)=0$ and $\Phi(\theta(x))=g \circ \theta(x) \cdot g^{-1}$,
by considering the differential equations

$$
\begin{aligned}
& \frac{d z}{d t}=-F_{z}^{-1}\left(e^{-\mathrm{ad} t x_{n} X_{n}} \circ \cdots \circ e^{-\mathrm{ad} t x_{1} X_{1}} \cdot F_{t x}(x)\right) \\
& \frac{d z}{d t}=F_{z}^{-1}\left(\operatorname{Ad} g \cdot F_{t x}(x)\right)
\end{aligned}
$$

depending on the parameter x.
Now let $V \subset W \subset N$ be open neighborhoods of 0 in \boldsymbol{R}^{n} such that (11), (12) and (13) hold for N, and furthermore $\mu(V, \ell(V)) \subset W$ and $\mu(W, W) \subset N$. For every $a \in G$, let $U_{a}=a \cdot \Phi(V)$ and define $f_{a}: U_{a} \rightarrow V$ by $f_{a}(g)=\Phi^{-1}\left(a^{-1} g\right)$. Thus $c_{a}=\left(U_{a}, f_{a}\right)$ is a chart at a. Assume $U_{a} \cap U_{b} \neq \emptyset$. Then $a^{-1} b=$ $\Phi\left(x_{0}\right) \in \Phi(W)$, and $f_{a} f_{b}^{-1}(x)=f_{a}(b \cdot \Phi(x))=\Phi^{-1}\left(a^{-1} b \cdot \Phi(x)\right)=\Phi^{-1}\left(\Phi\left(x_{0}\right) \Phi(x)\right)$ $=\Phi^{-1}\left(\Phi\left(\mu\left(x_{0}, x\right)\right)\right)=\mu\left(x_{0}, x\right)$.

Therefore any two such charts are C^{ω}-compatible, and the atlas $\mathscr{A}=\left\{c_{a}: a \in G\right\}$ defines on G the structure of an n-dimensional real analytic manifold. From the definition of \mathscr{A} it is obvious that all left-translations of G are real analytic, and by (12), (13) and (14), multiplication, inversion and inner automorphisms are real analytic at $e=\operatorname{Id}_{M}$. Hence it follows easily that $\mathscr{G}=(G, \mathscr{A})$ is a Lie group.

Since the map $(x, p) \mapsto \Phi(x)(p)$ is a morphism, it is clear that α is a morphism at (e, p) for all $p \in M$, and hence everywhere. Let $X \in L(G)$ be represented by $v \in \boldsymbol{R}^{n}$ in the chart c_{e}. Then $\alpha^{+}(X)=F_{0}(v)$ shows that α^{+}is an isomorphism of $L(\mathscr{G})$ onto \mathbf{L}.

To prove the second statement, let $Y_{t}=\left(\alpha^{+}\right)^{-1}\left((\delta \varphi)_{t}\right)$. This is a curve in $L(\mathscr{G})$, and the differential equation $\dot{a}_{t}=Y_{t} a_{t}$ with initial condition $a_{0}=e$ in \mathscr{G} has a unique solution defined for all $t \in I$, [2, Lemma, p. 69]. Then $\psi(t, p)=a_{t}(p)$ defines a curve in D such that $\delta \psi=\delta \varphi$. By Proposition 4, $a_{t}=\varphi_{t}$, and the assertion follows; this also proves that \mathscr{G} is connected.

To prove unicity, let \mathscr{H} be a Lie group with the same properties as \mathscr{G}, H be the underlying group of \mathscr{H}, and $\beta: \mathscr{H} \times M \rightarrow M$ be the map $(h, p) \mapsto h(p)$. Then we have $\exp t X=\operatorname{Exp} t \beta^{+}(X)$ where $\exp : L(\mathscr{H}) \rightarrow \mathscr{H}$ is the usual exponential map. Indeed, $\varphi(t, p)=\beta(\exp t X, p)$ defines a one-parameter group on M, and since $\delta \varphi(0, p)=(d / d t)_{t=0} \beta(\exp t X, p)=T \beta^{p}(X)=\beta^{+}(X)(p)$, the assertion follows from Proposition 4. Since \mathscr{H} is connected, it is generated by $\exp L(\mathscr{H})$ and therefore $H=G$. Now the commutative diagram

shows that Id_{G} is a Lie group isomorphism.
Theorem 10. Let G be a subgroup of D, and assume that there is a set S of curves in D such that $\left\{\varphi_{t}: \varphi \in S\right.$ and $\left.t \in I_{\varphi}\right\}$ and $\left\{(\delta \varphi)_{t}: \varphi \in S\right.$ and $\left.t \in I_{\varphi}\right\}$ generates G and a finite-dimensional subalgebra \mathbf{L} of V respectively. Then \mathbf{L} is complete and G is the underlying group of the connected Lie transformation group generated by \mathbf{L}.

Proof. After a change of parameter (Lemma 3) we may assume that $I_{\varphi}=\boldsymbol{R}$ for all $\varphi \in S$. From Lemma 7 and Proposition 8 it follows that \mathbf{L} is complete. Let \mathscr{G}^{\prime} be the connected Lie transformation group generated by \mathbf{L}, with underlying group G^{\prime}. By Theorem $9, G$ is a subgroup of G^{\prime} such that every element of G can be joined to e by a differentiable curve contained in G. Thus by [2, Appendix 4], G is the underlying group of a connected Lie subgroup \mathscr{G} of \mathscr{G}^{\prime} and $t \mapsto \varphi_{t}$ is a morphism from \mathbf{R} into G for all $\varphi \in S$. It follows that the vectors $\left(\alpha^{+}\right)^{-1}\left((\delta \varphi)_{t}\right)$ belong to $L(G)$. Since these vectors generate $L\left(\mathscr{G}^{\prime}\right)$, we must have $L(\mathscr{G})=L\left(\mathscr{G}^{\prime}\right)$ and hence $G=G^{\prime}$.

Bibliography

[1] H. Chu \& S. Kobayashi, The automorphism group of a geometric structure, Trans. Amer. Math. Soc. 113 (1964) 141-150.
[2] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
[3] S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962.
[4] R. S. Palais, A global formulation of the Lie theory of transformation groups, Memoirs Amer. Math. Soc. No. 22, 1957.

University of Munich

