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Introduction

Let M be a Banach manifold which is not assumed to be Hausdorff, and
let D denote the group of diffeomorphisms of M and V the Lie algebra of
vector fields on M. A Lie group ^ is called a Lie transformation group of
M if the underlying group G of ^ is a subgroup of D and the natural map
a- (g,P) >-> g(p) from ^ X M into M is a morphism (of manifolds). In this
case, a induces a homomorphism a+ from the Lie algebra L(^) of ^ into V
(cf. § 3). Conversely, we prove that the set of complete vector fields of a finite-
dimensional subalgebra of V is a subalgebra (Proposition 8), and if L is a com-
plete finite-dimensional subalgebra of V then there exists a unique connected
Lie transformation group ^ such that a+ is an isomorphism from L(^) onto
L (Theorem 9). In case M is finite-dimensional and Hausdorff, this result is
due to Palais [4]. For the numerous applications in differential geometry, the
reader is referred to [1]. Unfortunately, the proof of the just-mentioned special
case given in [1] seems to be incomplete. The proof to be presented here is
quite elementary; it relies heavily on the use of one-parameter families of
diffeomorphisms, instead of one-parameter groups. To be more precise, we
define a curve in D to be a morphism φ: Iψ X M —> M such that

(i) Iφ is an open interval in R containing 0

(ii) the map φt: p •-* φ(t, p) belongs to D, for all t e Iφ

(iii) φ0 = Id*.
With φ we associate a time-dependent vector field δφ by

δφ(t,p) = (δφ)t(p) = (d/ds)s^s(9;\p)) .

The map φ *-* δφ is injective (Proposition 4). The underlying group G of ^
turns out to be the set of diffeomorphisms φγ where φ is any curve in D such
that Iψ — R and (δφ)t € L for all t e R. Using canonical coordinates of the
second kind, G becomes a Lie group with the desired properties. We also
prove the following criterion for a subgroup G of D to be a Lie transforma-
tion group (Theorem 10): assume there is a set S of curves in D such that
{φt: φeS and ί € / J generates G and that {(δpX: φeS and ί € / J generates a
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finite-dimensional subalgebra L of V. Then L is complete and G is the under-
lying group of the connected Lie transformation group generated by L.

We work throughout in the category of real Banach manifolds of class Ck

where k = oo or k = ω, and a morphism is a map of class Ck. For the basic
facts on Banach manifolds we refer to Lang [3].

1. Curves of diffeomorphisms and time-dependent vector fields

Notational convention. If / is a map on a product space, then the partial
maps p ι-» f(t, p) and 1ι-» f(t, p) will be denoted by ft and fp, respectively. If

/ is a real variable, then fp(t) = ft(p) = —f(t, p) is the tangent vector of the
dt

curve fp at f(t, p). By / we denote an open interval in R containing 0.
Let D(I) be the set of all curves in D with Iψ — I. Then with the operations

(φψ)(t, p) = ψt o ψt(p) ψ-\t, p) = ψ-χ(p) ,

D(I) is a group. Indeed, the only non-obvious fact is that ψ~ι is a morphism,
and this follows from the implicit function theorem.

A time-dependent vector field is a morphism ξ: I x M —> T(M), the tangent
bundle of M, such that f ^ V for every t e /. Note that ξp is a curve in the
tangent space TV(M) for every p e M. Identifying as usual the tangent space of

TP(M) at ξp(t) with Tp(hf), we define a time-dependent vector field -^- by
OA . dt

-?!L(t,p) = ξp(t). The set V(/) of time-dependent vector fields becomes a Lie
dt

algebra with

[ξ,ηKt,p)= [ξt,ηt](p) .

Also V c V(/) by setting X(t, p) = X(p) for X e V, and then f e V if and

only if —— = 0, i.e., f is time-independent.
dt

Let / € D and X e V, and denote by 77 the induced map on the tangent
bundle of M. Then

Adf-X = TfoXof-1

is a vector field on M, and in this way D acts on V by automorphisms.
Similarly, D(l) acts on V(7) by

We define 5: £>(/) -> V(7) by
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Then we have

( 1 ) δ(φφ) = δφ + Adφ-δφ ,

( 2 ) δφ-1 = -Adφ-' δφ .

Indeed,

δ(φφ)(t,p) = -^(φt(φt(p)) = φt(φt(p)) + Tφt(ψt(p))
at

= δφ(t, φt o φt(p)) + Tφt(δφ(t, φt(p))

= (δφ + Ad φ-δφ)(t,p) ,

and (2) follows by setting φ = φ~x. Note that δ is a crossed homomorphism
from D(l) into V(/).

Lemma 1. For φ <= D(ϊ) and ξ e \(I) let η = Ad φ - ξ. Then

( 3 )
dt dt

Proof. This is a local result. Let U and V be coordinate neighborhoods of
p and φΐQKp), and choose F ' C ^ C / ' c ί / and ε > 0 such that φ((t0 — ε,to + ε)
X V) C E/ and p " 1 ^ — e, ί0 + e) X ^0 c V. By continuity, this is possible.

We may identify U and V with open sets in a Banach space is. Then T(U)
= U X E and Γ(F) = F χ £ . For y € K, let f (ί, y) = (y, g(t, y)) where
g: (t0 — ε, t0 + ε) X F -> J5. For Λ: e t/7 and |ί — ίo| < ε we have ^ ( ί , x) =
(x, f(t, x)) and η(t, x) = (x, λ(ί, Λ)) where /(ί, Λ) = φt(φr\x)) and A(ί, JC) =
DφM>t\χ))mg(t> φl\x))> Dφt denoting the derivative of φt; see [3, p. 6 ff.].

Let ^ O ) = y for short. Then from Dφt = D f̂ it follows

h(t,x) = Όφt(y) gt(y) + D2

Όft(x) ht(x) ~ T>ht(x).ft(x) + ΌΨt(y) gt(y)

= Όφt(y) o Όφ-\χ).ht(x) - Ό>φt(y)(Όφ;\x).φt(y),gt(y))

- Ώφp) o Όgt(y) o Όφϊ\x).φt(y) + Όφt(y) gt(y) .

From φL(φj\x)) — x for all xe ί/ 'we get

Φtiy) + Όφt(y).φ;\x) = 0 , (D^.ω)- 1 = ΌΨ;\x) ,

and the assertion of Lemma 1 follows.
(Note that our definition of the bracket of vector fields differs from the usual

one by sign this is the 'good' definition for transformation groups acting on
the left.)
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Corollary. Let Y e V. Then η = Ad φ Y is the unique solution of the par-
tial differential equation

(4) i2- = [fy,,]
at

for the time-dependent vector field η with initial condition η0 = Y.
Proof. From (3) it follows that Adψ Y is a solution of (4). To prove

unicity, let η be any solution of (4), and let ζ = Adφ~ι η. Then, from (2)
and (3),

= [~Aάφ-l'δφ,Adφ-1'η] + Adφ-ι-[δφ9η] = 0 .

Hence Ad^" 1 -^ = ζt = ζ0 = A d ^ 1 - ^ = Y and therefore ηt = AάφtΎ
for all tel. q.e.d.

A curve φ € D(J?) is called a one-parameter group if φso φt = <ps+t for all
s,teR.

Lemma 2. a) // φ is a one-parameter group, then δφ is time-independent.
b) Let φ € D(I) and δφ = X be time-independent. Then Ad ψt X = X for

all tely and φ can be extended uniquely to a one-parameter group.
Proof, a) This follows by differentiating the identity φs+t(φΓ\p)) = φs(p)

with respect to s at s = 0.
b) From (2) and (3) we get

—(Adφ-' X) = [δφ-\Adφ-ι X] = [-Adφ-' X,Adφ-' X] = 0 .
dt

Hence A d ^ Z = Ad^ 0 X = X for all tel. Now let sel, and set at =

ψs+t ° pΓ1 for ί € / = / Π / — J. Then

= 0 .

Since / is connected and Oe/, it follows φs+t o ̂ j-1 = α4 = α0 = φS9 i.e.,
<ps o φt = φs+t. Now it is a standard fact that φ can be extended uniquely to
a one-parameter group. q.e.d.

The following change of parameter will be useful.

Lemma 3. There exists a Cω-diffeomorphism f: R -+I such that /(0) = 0.

The map /*: D(I) -> D(R) defined by (f*φ)(t,p) = <p(f(t),p) is a group iso-

morphism, and δ(f*φ)(t,p) = ^ δφ(f(t),p).
dt

The proof is left to the reader.
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Proposition 4. δ: D(J) -> V(/) is injective.
Proof. By Lemma 3, we may assume I=R. For φ e D(R), define

φt(s, P) = if + s, φt+s o φ;\p)) (t e R, (s, p) e R X M) .

An immediate verification shows that φ is a one-parameter group on R x M.
As usual, T(R) is identified with R x R and T(Λ X M) with T(#) X Γ(Ai).
Then by Lemma 2 the (time-independent) vector field X = δφ on R x M is
given by

-Xfo p) = — 0 + ^ ^ ί + s ° p^Cp)) = (0, 1), δφ(s, p)) .
at ί=o

Let 9,0 € £>(#). Clearly, δφ = 50 implies <5<p = δ$, and φ = φ implies φ — ψ.
Hence it suffices to prove the proposition for one-parameter groups. Finally, let
φ and ψ be one-parameter groups such that X = δφ = δψ. Then from Lemma
2 and (1) and (2) we have δ{φφ~ι) = δφ + Adφ-δφ'1 = X — Ad φ Ad ^ - Z
= Z — Z = 0. Setting a = φφ~\ this implies that άv(f) = 0 for all p € M,
ί € I?. Therefore the map α p : I? —> M is constant for all pεM, and it follows
at = IdM, i.e., φ = φ.

Note that φv: t H> ω(ί, p) is a solution of the differential equation -^- =
dt

δφ(t,x) with initial condition x(0) = p. In case M is Hausdorff, this solution
is unique which gives a simpler proof of Proposition 4. q.e.d.

A vector field X such that X = δφ for some (uniquely determined) φ e D(l?)
is called complete. It is well known that on a compact manifold every vector
field is complete. It can be shown that this is still true for time-dependent
vector fields, so that δ: D(I) —• V(I) is a bijection for compact M.

2. Lie algebras of vector fields

In this section, L will denote an arbitrary finite-dimensional subalgebra of
V. Let

( 5 ) L(Λ) = {ξ€V(Λ) £ t € L f o r a l l f e Λ } .

As a finite-dimensional vector space, L is a manifold in a natural way. Then
we have

Lemma 5. L(R) is naturally isomorphic to the set of morphisms from R
into L.

Proof. Let p e M. Since L is finite-dimensional, the subspace {X(p): Z e L }
of the Banach space TP(M) is closed and admits a closed complementary sub-
space. Hence, again by finite-dimensionality of L, there exist pt e M and con-
tinuous linear forms λt on TV.(M) {i = 1, , r) such that the map F: X H*
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, λr(X(pr))) is a linear isomorphism from L onto Rr. Let e1? , er

be a basis of Λr and set Xt — F~\e^). For any £ eL(JI), the map fp: R ->
TP(M) is a morphism. Hence fi = Xto ξ^ is a morphism from 1? into R, and
f ί = Σ fiiOXi shows that ί »-• f , is a morphism from R into L. If conversely
η: R »-> L is a morphism, then 27(0 = 2 gi(t)Xi with morphisms g*: R ^> R,
and this shows that the map (ί, p) ι-> η(i)(p) belongs to h(R). q.e.d.

In view of Lemma 5, we will identify L(j?) with the set of morphisms from

R into L. Then —— = ——, where — -̂ denotes the usual derivative of a curve
dt dt dt

in a vector space.
Now we define

( 6 ) G(R) = {φε D(R): δφ e L(Λ)} .

The fact that we consider only curves of difϊeomorphisms defined on R is con-
venient but not essential in view of Lemma 3.

Lemma 6. Let φ e G(R) and δφ = ξ: R —• L. Then L is invariant under
Aάφt(tz R), and the map t •-> A d ^ | L w the unique solution of the matrix

dΛ
differential equation = adf(ί) o A with initial condition A(0) = Id L . In

dt
particular, it is a morphism from R into GL(L).

Proof. For Y e L let η: R—>L be the unique solution of the ordinary
linear differential equation = [ξ(t), X] in L with initial condition η(O) = Y.

dt
Then by the remark above, η considered as an element of L(i?) is a solution
of (4), and η(t) = Ad φt Y e L by the corollary of Lemma 1. Hence the lemma
follows from the standard facts on ordinary linear differential equations.

From (1) and (2) we get
Corollary. G(R) is a subgroup of D(R).
We define

( 7 ) G = {Ψι: φzG(R)} , Lo = {(δφ)0: φeG(R)} .

Lemma 7. a) G is a subgroup of D, and φs€G for all φ € G(R), sεR.
b) Lo is a subalgebra of L and (δφ)s e Lo for all φ e G(R), sεR. Also, Lo is

invariant under Adg for all g € G.
Proof. By the above corollary, G is a subgroup of D. Let seR,φε G(R),

and set ψt = φst. Then <ps = φx <=. G and also (δψ)0 = s (δφ\. Thus it follows
from (1) that Lo is a subspace of L. For ψ, ψ e G(l?) and a fixed ^ 6 i? set
at = φsoψto φ-1. Then (3α)ί = Ad φs (50)ί € L by Lemma 6. Hence α 6 G(Λ),
and it follows η(s) = (δa)0 = Ά d φs (δψ\ £ Lo. This shows that Lo is invariant
under Ad G. Furthermore, by differentiating with respect to s at s = 0 we get

(0) [(fy)o,(^)o] e L 0 . Thus Lo is a subalgebra of L. Finally, let ft =
ds
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ψs+t ° Ψ71- Then (δβ)t = (δφ)s+t shows β e G(R), and it follows (δφ)s — (δβ\ <= Lo.
Proposition 8. Lo is the set of complete vector fields in L.
Proof. By a) of Lemma 2, a complete vector field in L belongs to Lo. Con-

versely, choose φH) in G(R) such that (δφU))0 (i = 1, , ή) form a basis of
Lo, and define Φ: Rn -> G by

Clearly, (JC, p) •-• Φ(x)(p) is a morphism from Rn x M into M. Also define
F: Rn -^Hom(Rn,L0) by

( 8 ) FM = Σ ^ (Ad pj) o . . . o Ad p ^ ) f axj) ,
i = l

where f % — δ<pU): /? —• Lo. By Lemma 6, F is a morphism. Also, F o is a vector
space isomorphism, since FQ(v) = Σ ^<ft(0) a n d the ξ^(0) = (^ ( ί ))o fora* a
basis of Lo.

Let γ: I -> i?71 be a morphism such that r(0) = 0. Then ψt = Φ(γ(t)) de-
fines a curve in D, and a computation shows

( 9 ) (fy)t = Fm(f(t)) .

Since F o is an isomorphism, there exists r > 0 such that Fz is an isomorphism
for || z || < r. Let X e Lo be given, and consider the ordinary differential equation

^ (\\z\\<r).

Let γ: I -^ Rn be a solution with f(0) = 0, and define ψ as above. Then
{δψ)t — Fγ{t)F~^t){X) — X, and X is complete by Lemma 2.

For any X e Lo we denote the corresponding one-parameter group by Exp tX.
Then we have

(10) Ad Exp tX Y = e a d ί X Y for X e Lo, Y e L.

Indeed, by Lemma 6, Ad Exp tX\h is the solution of = adX o A with

initial condition A(0) = IdL which is given by eΆάtx.

3. Connected Lie transformation groups

We first recall some facts about group actions. Let ^ be a Lie group. A
morphism a: (g,p) •-> g-p from ^ x M into M is called an action of & on M
on the left if

(i) g.(h.p)

(ii) e p = p
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for g,hζ& and p<~M (e is the neutral element of G). The Lie algebra
of ^ is the tangent space Te(&) with the bracket [X^Y] = [X,Ϋ](e), where
X is the right-invariant vector field on ^ such that X(e) = X (this coincides
with the usual definition in terms of left-invariant vector fields since our bracket
of vector fields differs from the usual one by sign). Then a induces a homo-
morphism a+: L(&) —» V by

a+(X)(p) = TaKX) ,

(see [4, p. 35]). The proof is a straightforward computation in local charts by
using (i) and (ii) and is omitted here.

In case the underlying group G of & is a subgroup of D and a(g, p) — g(p)
is the natural map, we say ^ is a Lie transformation group of M.

Theorem 9. Let lube a finite-dimensional complete subalgebra of V. Then
there exists a unique connected Lie transformation group & of M such that a+

is an isomorphism from L(^) onto L, and for every φ e D(I) such that ψte^
for all t el the map t »-> φt is a morphism from I into &.

Proof. Let G be the subgroup of D defined by (7), choose a basis
Xλ, -,Xn of L, and define Φ: Rn -> G by

Φ(x) — Exp xxXλ o . o Exp xnXn .

We will show that in the canonical coordinates of the second kind given by Φ,
G becomes a Lie group with the desired properties.

First we prove

(11) Φ is infective in a neighborhood of 0.

S i n c e L i s finite-dimensional t h e r e e x i s t p ί 9 ,preM s u c h t h a t t h e m a p
X .-> (Xfa), , X(pr)) from L into E = TPl(M) X X TPr(M) is in-
jective. Define /: Rn -> Mr by f(x) = (Φ(x)(pd, , Φ(x)(Pr))- Then TJ(v) =
( Σ ViXtipJ, , Σ ViXi(Pr))> a n d TV is injective since Z 1 5 , Z w is a basis
of L. Thus the image of TJ in the Banach space E, being finite-dimensional, is
closed and admits a closed complementary subspace. Hence by the implicit
function theorem, / is injective in a neighborhood of 0 in Rn which proves (11).

Next we show

(12) there exists a neighborhood N of 0 in Rn and a real analytic map
μ: N X N -+ Rn such that μ(0, 0) = 0 and Φ(μ(x, y)) = Φ(x) o φ{y).

Defining F: Rn —> Hom(Rn,L) in analogy with (8), we obtain, from (10),
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Thus F is real analytic. As in the proof of Proposition 8, Fo is a vector space
isomorphism, and we choose r > 0 such that Fz is an isomorphism for z € Br

= {xεRn: \\x\\ < r}. Set

A(t,z; x,y) = F;\Ftx(x) + e*"** o . . . o e*ά**"*".Fty(y)) .

Then A: R X Br X Rn X Rn -+ Rn is real analytic, and ^(ί,z; 0,0) = 0.
Thus there exists an open neighborhood N of 0 in Rn such that

\\A(t,z;x,y)\\<2r/3 for \t\ < 3/2,zzBr, and x,ytN .

By standard theorems on differential equations, the equation

dz
dt

= Λ(ί,z; x,y)

has a unique solution γ(t x, j) such that f(0; *, y) = 0, defined for \t\ < 3/2
and depending real analytically on the parameters x,yeN. We define μ(x,y)
= γ(l; x, y), and show that Φ(μ(x, y)) = Φ(x)oφ(y). Indeed, let <pt = Φ(γ(t x, y))
and φt = Φ(ίΛ ) o φ(ty). Then, by (1), (6) and (7),

(δφ)t = Ftx(x) + AdΦ(tx).Fty(y) = Ftβ(jc) + eP'^o . .. o ?*'*»**.Fty(y)

Thus by Proposition 4, p t = 0 t for |ί | < 3/2, and for t = 1 the assertion follows.
In a similar fashion, we can prove, with details omitted:

(13) there exist a neighborhood N of 0 in Rn and a real analytic map
c: N -> Rn such that *(0) = 0 and Φ(c(x)) = e(x)'1;

(14) for every gεG there exist a neighborhood N of 0 in Rn and a real
analytic map θ: N-*Rn such that 0(0) = 0 and Φ(θ(x)) = go θ(x) g-\

by considering the differential equations

dz = _/7-l( radίxΛ o o e-*dtXίXl'Ftx{x)) ,
dt

dt

depending on the parameter x.
Now let V C W C Λ̂  be open neighborhoods of 0 in Rn such that (11), (12)

and (13) hold for N, and furthermore μ(V,c(V)) C W and μ(W, W) C iV.
For every α € G, let t/α = a Φ(V) and define /α: ί7α-^ V by /α(g) = Φ~\a-ιg).
Thus cα = (Ua9fa) is a chart at α. Assume Ua Π Ub Φ 0. Then crΉ =
Φ(x0) € Φ(^), and / J ^ W = fa(b Φ(x)) =
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Therefore any two such charts are Cω-compatible, and the atlas si = {ca: aεG}
defines on G the structure of an n-dimensional real analytic manifold. From
the definition of si it is obvious that all left-translations of G are real analytic,
and by (12), (13) and (14), multiplication, inversion and inner automorphisms
are real analytic at e = ldM. Hence it follows easily that ^ = (G, si) is a
Lie group.

Since the map (JC, p) *-> Φ(x)(p) is a morphism, it is clear that a is a morphism
at (e, p) for all p e M, and hence everywhere. Let X β L(G) be represented by
v € Rn in the chart ce. Then a+(X) = F0(v) shows that a+ is an isomorphism
of L(&) onto L.

To prove the second statement, let Yt = (a+)~ι((δφ)t). This is a curve in
L ( ^ ) , and the differential equation άt = Ytat with initial condition a0 = e in
^ has a unique solution defined for all tzl, [2, Lemma, p. 69]. Then
φ(t, p) = at(p) defines a curve in D such that δψ = δψ. By Proposition 4,
at — ψt, and the assertion follows; this also proves that ^ is connected.

To prove unicity, let J f b e a Lie group with the same properties as ^ , H
be the underlying group of $?, and β: j f χ M - > M b e the map (h, p) *-+ h(p).
Then we have exp tX = Exp ίβ+(X) where exp: L(j f) -* ^f is the usual ex-
ponential map. Indeed, <p(t, p) = ^(exp ί̂ f, p) defines a one-parameter group
on M, and since δp(O,p) = (d/dt)t=oβ(exptX,p) = T ^ ( Z ) = ^+(Z)(/?), the
assertion follows from Proposition 4. Since J f is connected, it is generated by
exp L(J^) and therefore H = G. Now the commutative diagram

expj lexp

shows that ldG is a Lie group isomorphism.
Theorem 10. Let G be a subgroup of D, and assume that there is a set S

of curves in D such that {ψt: φς.S and t€Ϊφ} and {(δφ)t: φζS and t€lψ}
generates G and a finite-dimensional subalgebra L of V respectively. Then L
is complete and G is the underlying group of the connected Lie transformation
group generated by L.

Proof. After a change of parameter (Lemma 3) we may assume that I9 = R
for all φ e S. From Lemma 7 and Proposition 8 it follows that L is complete.
Let <&' be the connected Lie transformation group generated by L, with under-
lying group Gr. By Theorem 9, G is a subgroup of G' such that every element
of G can be joined to e by a differentiate curve contained in G. Thus by
[2, Appendix 4], G is the underlying group of a connected Lie subgroup ^ of
<&' and t*-+φt is a morphism from R into G for all φ € S. It follows that the
vectors (α+)~1((50 ί) belong to L{G). Since these vectors generate L(^0> we
must have L ( ^ ) = L ( ^ 0 and hence G = G'.
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