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VARIATIONAL COMPLETENESS AND
K-TRANSVERSAL DOMAINS

LAWRENCE CONLON

Introduction

Let M be a complete Riemannian manifold, and K a compact connected Lie
group, and suppose that K acts diίϊerentiably and isometrically on M. Bott
and Samelson [5] and R. Hermann [8], [9] have given classes of examples (all
related to symmetric spaces) in which the following two properties are verified:

(A) There is a flat closed connected totally geodesic imbedded submanifold
T c M which meets every K-orbit and is orthogonal to the X-orbits at every
point of intersection. (Such a submanifold T will be called a K-transversal
domain.)

(B) The action of K on M is variationally complete in the sense of [5, p. 974].
These properties make possible some interesting applications of Morse theory

to the spaces Ω = Ω(M N, q) of piecewise C°° paths from a K-orbit N to a
point qeM (e.g., cf. [3], [4], [7], [5]). Here Ω is topologized as in [5]. In
particular, if K has a fixed point p e M one can study in this way the loopspaces
Ω(M) ~ Ω(M; p, q), while if M is contractible one obtains results o n i V ~
Ω(M;N, q). (Here, as elsewhere in the paper, ~ denotes homotopy equivalence.)

We do not know whether (A) and (B) are equivalent, but we will prove the
following result which does not seem to have been noticed before.

Theorem I. (A) implies (B).
As a consequence, a number of interesting properties (which were established

for the symmetric space cases by use of root systems — cf. [1], [5], [7]) can
be shown to follow from (A). In particular, we obtain characterizations of the
singular set, the Weyl group, and the Bott-Samelson ^-cycles as follows.

Theorem II. Let T C M be a K-transversal domain and assume π1(M) — 0.
Then there is a finite collection {P19 F2, , Pr} of closed connected flat sub-
manifolds of codimension one in T, together with positive integers ra(0, i =
1, * , r, such that for each xeT,

dim (Nx) = dim (M) - dim (Γ) - Σ m(0 >

where Nx is the K-orbίt of x and Ix = {/: xe Pi}.
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In what follows we continue to denote the K-oτbit of a point x € M by Nx.
Definition. Each Pt as above is called a singular variety of multiplicity m(ϊ),

and each connected component of the complement in T of the union of the
singular varieties a Weyl domain in T. The Weyl group W = W(K, T) is the
group of transformations of T produced by those a eK such that a T = T.

Theorem III. // T is a K-transversal domain and πλ{M) = 0, then the
orthogonal reflection of T in each singular variety Pt exists, W is a finite group
generated by all such reflections, and W permutes simply transitively the set
of Weyl domains in T. If xzT lies on no singular variety, then W permutes
simply transitively the set Nx Π T.

Definition. Kt — {a e K: a q = q, all q e PJ, / = 1, , r, and Kτ =
{aeK: a q = q, all qzT}.

Let P = (Ptl, , Pik) be a sequence of singular varieties, repetitions allowed,
and form the compact manifold

Γp = Kίt χKτKi2 Xχτ X Kτ(Kik/Kτ) .

If xeM and q e T, there are topological imbeddings (well-defined up to
homotopy)

fP: ΓP-+Ω(M;Nx,q)

defined via geodesic polygons on M exactly as in [3, p. 40]. These provide
mod 2 homology cycles in Ω of dimension = dim (ΓP) (called the Bott-Samelson
A^-cycles) which are integral cycles if each ΓP is orientable. Selecting q so as
to lie on no singular variety, one obtains by use of the Morse theory a canonical
homology basis consisting of certain of the A>cycles, one for each ^-transversal
geodesic in Ω (cf. [5, Theorem I] and the correction in [6]).

ΓP is an iterated fiber bundle with successive fibers Kij/Kτ and final base
space Kij/Kτ, and each of these fibrations admits a canonical cross section.
The following theorem, generalizing results of Araki [1] and the author [7],
completes the picture.

Theorem IV. Let π^M) = 0. // there is a K-transversal domain T C M,
and Pi C T is a singular variety with multiplicity m(ΐ), then Kt\Kτ = Sm(i).

These theorems may lead to the discovery of interesting new examples of (B).
Indeed, they may enable us to classify all cases of (A), at least for simply con-
nected M. Classification attempts should probably begin with the "infinitesimal"
case M = Rn where the action of K is an orthogonal representation satisfying
(A). Not only do these form the simplest interesting class of examples, but the
general case gives rise to these infinitesimal examples at each xeM, as will be
described in Theorem (3.7).

The standard cases of orthogonal representations satisfying (A) are the iso-
tropy representations coming from Riemannian symmetric spaces. In addition,
any orthogonal representation of K transitive on the unit sphere of Rn trivially
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satisfies (A). The only other examples presently known to the author are a
representation of Spin (8) on Rw and one of Spin (7) on R15, both having K-
transversal domains of dimension two. In each case the singular varieties are
a pair of mutually orthogonal lines, the multiplicities are m(l) = ra(2) = 7 in
the first case and ra(l) = 6 and ra(2) = 7 in the second case, and the respec-
tive principal orbit types are

K/Kτ = Spin (8)/G2 = S7 x S7 ,

K/Kτ = Spin (7)/Sl/(3) = S6 X S7 .

Notational conventions. Throughout this paper T C M will be a K-trans-
versal domain. If jt, y e M, the Riemannian distance between these points will
be denoted by d(x, y). For xeM,Kx C K denotes the isotropy subgroup of JC,
hence Nx — K/Kx. Vx will denote the orthogonal complement of the tangent
space TX(NX) in TX{M).

If the orbit Nx is fixed throughout a certain discussion, we will denote
Ω(M; NX9 q) by Ωq. If q is also fixed, we will simply write Ω. If a > 0, the
symbols Ωa(M; Nx,q), Ω%, Ωa will denote respectively the subspaces of the
above spaces consisting of paths of length < a. If u: [a, b] —> M is a smooth
path, w(ί) denotes the tangent field along u,a < t < b.

The Lie algebras of groups K,Kτ,Ki,Kx, etc. will be denoted by corre-
sponding k, kτ, hi, kx, etc. The identity components of Lie groups K, Kτ, etc.
will be denoted by K°, K%, etc. Whenever homology theory is employed, the
singular theory will be understood. In addition, notations already established
in the introduction will be used without further explanation.

1. The proof of Theorem I

We assume (A) and seek to establish (B). This will require a number of
propositions and lemmas, some of which are interesting in their own right.

(1.1) Proposition. Let N C M be a K-orbit or maximal dimension. Then
dim (ΛO = dim (M) - dim (Γ).

Proof, dim (N) < dim (M) — dim (Γ) is immediate from (A). We will prove
the reverse inequality.

We may assume that N is a principal K-orbit. The union of all principal K-
orbits is an open set U C M, [2], and U Π T is a nonempty open subset of
T. Let W C U Π T be a convex open set of T. If JC, y g W, let s: [0,1]-+W
be a geodesic with s(0) = x, s(l) = y. Then Kx — Ksit) = Ky, 0 < t < 1
this is by the slice property [2] together with the fact that the X-orbit of each
s(t) is principal. Since W is open in T and T is totally geodesic, Kx = Kτ for
all t e JF and hence for all x <= U Π Γ. In particular, N =

Define

^: T X (K/KT)->M
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by

φ(x,yKτ) = y x .

Clearly φ is smooth and well defined, and Im (φ) = M. Since T x (K/Kτ) is
second countable and φ is C°°, we have (cf. [10, Theoreme 3])

dim (T x N) > dim (M) ,

hence

dim (ΛO > dim (M) - dim (T) .

(1.2) Corollary. Any two K-transversal domains in M are conjugate under
the action of K.

Proof. Let T and T satisfy (A), and TV be a maximal J^-orbit. Choose
Λ e i V n Γ a n d y e i V n Γ ' . There is a e K such that a y = x. Then a T' and
Γ are totally geodesic closed submanifolds of M, each containing x, orthonormal
to N at x, and of complementary dimension to N. This implies T = a-T'.

q.e.d.
Let x e M. By Corollary (1.2) no generality is lost by assuming x <= T. Let £/

be the open ε-ball in Vx with center 0. For ε > 0 sufficiently small, S = exp(£/)
is a £-slice at x and is invariant under K°x. For b e S, let Qb denote the K°x-
orbit of b. Thus β δ C S. Note that T Π S is an open convex set in T.

(1.3) Lemma. T Γ\ S meets Qb for all beS, and these manifolds are
orthogonal at each point of intersection. If Qb has maximal dimension, then
dim (β f t) = dim (S) - dim (T).

Proof. Orthogonality is immediate from (A). First asssume b eS Γ\ T and
suppose dim (Qb) > dim (Qc) for all c e S Π T. Remark that

dim (Qb) = dim (KJ - dim (Kb)

= (dim (X) - dim (X6)) - (dim (K) - dim (XJ)

= dim (Nδ) - dim (ΛQ

= codim (Nx) — codim (Nb)

= dim (S) — codim (Nb) .

Since T f) S meets all X-orbits sufficiently near Nx and the maximal X-orbits
unite to form a dense subset of M [2], Nb must be a maximal K-oτbit. Thus,
by Proposition (1.1),

dim (Qb) = dim (5) - dim (T) .

Now let c e S. If σ: [0,1] —> S is a minimal path from β δ to (?c, we may
suppose σ(0) = b. Then ό (O) _L Tb(Qb). By the above formula and the fact



VARIATIONAL COMPLETENESS 139

that T Π S is totally geodesic in M and hence in S, we conclude that σ lies on
T Π 5. Thus σ(l) € β c Π 5 Π T ^ 0, and all assertions follow.

(1.4) C o r o l l a r y . // Γ and T are K-transversal domains and x ε T Π T'9
then there is aeK°x such that a T = T'.

(1.5) Corollary. Every v e Vx is tangent to some K-transversal domain.
These corollaries are easy consequences of Lemma (1.3).
Let i V c M b e any £-orbit, let q<εM, and choose s e Ω{M N, q) & critical

path for the energy functional (i.e., s is a K-transversal geodesic as in [5, p.
967]). For r > 0 sufficiently small, let

π: Σr-+N

be the normal sphere bundle of radius r for Σr C M, and t0 be the smallest
positive value such that s(t0) <= Σr (hence the length of s[[0,ίo] is r). Let s(t0) = x
and remark that Nx c Σr.

Definition. Jf is the set of Jacobi fields along s produced by the variations

V: [ - ε , e ] X [0,1] -> Af

such that, for each μ e [ —ε, ε], sμ defined by sμ(t) = V(μ, t) is a geodesic
satisfying

2) length of sμ = length of s ,

3) sμ(0)±TSμW(N) ,

-ε<μ<ε.
It is well known that Jf is a linear space of dimension = dim (M) — 1.

Indeed, the map

Jf -> Tx(Σr)

defined by

U -> U(t0)

is a linear isomorphism.
Definition. ΛS(N) = {UεJ?: 1/(1) = 0}.
Property (B) in the introduction means that for every choice of q, N, and s

as above each U e ΛS(N) is produced by a variation

where σ is a one-parameter subgroup of K°q.
If C/€// , write E/ = ϋ' + U", U' and l/"e Jf with C7U) e Γβ(NΛ) and

t/'^ίo) € Γ x(i; r) such that t/"(ί0) J_ ^ ( N J . Evidently this is a unique decom-
position.
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(1.6) Lemma. // U <= Jf, then V' as above is produced by a variation

where σ is a one parameter subgroup of K.
Proof. Given YeTx(Nx), a suitable choice of σ produces ZεJξ with

Z(t0) = Y. Any Z e Jf is uniquely determined by Z(ί0). Thus choose Y = £/'(*„)
and obtain Z — V.

(1.7) Lemma. i(f0) € TX(Γ) /or every K-transversal domain T C M con-
taining x.

Proof. s(tQ) _L TX(NX), hence is tangent to some T by (1.5). Let V be
another .ίC-transversal domain through x. By Corollary (1.4) there is aeK°x

such that a- T — T'. Then s' = (α s)| [ 0 ? ί o ] is a geodesic of length r meeting N
orthogonally and with s'(tQ) = x. Therefore s' = s\ί0M, so i(ί0) is also tangent
to T at x.

(1.8) Lemma. // U e A8(N), then V" = 0.
Proof. U"{Q _L TX(NX), hence is tangent to some T containing x by Co-

rollary (1.5). s(t0) is tangent to this same T by Lemma (1.7), so s lies on T.
In particular, ^(0) € T and 2V Π Γ is a sphere in T with center s(0) and of
radius r. Ό'\Q is tangent to this sphere.

Let u be a smooth curve in T Π 2V with w(0) = JC, W(0) = U"(Q. Consider
the geodesic variation V(μ,t) = sμ(t) where sμ is the unique geodesic with
^(0) = j(0), sμ(t0) = u(μ), and length of sμ\ί0M = r, -ε < μ < ε. Clearly Im(F)
C T and V produces Z e Jf. Z(ί0) = t/^CO, so Z = 17".

But Γ is flat and V" is also a Jacobi field along j in T, t/7/(0) = 0. It follows
that 17" is identically zero or t/"(ί) ^ 0 for all* Φ 0. In this latter case, 0 φ
17"(1) € Γ,(1)(Γ) _L Tsω(Nsω). Since t/ = ^ + J7" where £/' i s produced by
a one-parameter group of K, we see that £7(1) =̂ 0 unless TJ" is identically
zero. But U eAs(N) implies £/(l) = 0. q.e.d.

The proof of Theorem I is now easy. We have seen, under assumption (A),
that any U e ΛS(N) is produced by a variation

where σ is a one-parameter subgroup of K. Since £/(l) = 0, σ must be con-
tained in K°q this proves (B).

2. The singular set and the Weyl group

We assume (A), hence (B), and we further assume πλ(M) = 0. The latter
assumption assures us of the following crucial fact.

(2.1) Lemma. Let qeT such that Nq is an orbit of maximal dimension,
and let N C M be any K-orbit. Then there is one and only one K-transversal
geodesic of index zero joining N to q.
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Proof. Let Ω — Ω(M; N,q). N is path connected since K is. Since also
πx(M) = 0, the exact sequence

πx(M) - * πQ{Ω) -> πo(N)

implies that Ω is path connected, hence H0(Ω Z2) = Z2. Since (B) holds and
the orbit of q is maximal, Theorem I of [5] applies and gives the desired con-
clusion, q.e.d.

We will repeatedly reduce undesirable possibilities to contradictions of
Lemma (2.1). This approach is basically due to Bott and Samelson (e.g., cf.
[5, Proposition 2.14, pp. 1022-1023]).

(2.2) Proposition. Under the above assumptions, every K-orbit in M of
maximal dimension is principal.

Proof. Let y ζT and suppose that Ny has maximal dimension. A sufficiently
small ball neighborhood U of y in T is a X-slice at y. Thus, if x e U, then
Kx C Ky. By the density of the principal orbits there is x0 e U such that NXQ is
principal. We must prove KXo = Kv. It not, let azKy — KXQ, and let s be a
geodesic from x0 to y in U. Using (B) and the fact that all orbits crossed by s
have the same dimension (indeed, all X-orbits of points of U have maximal
dimension), we see that s has Morse index zero as a critical point in Ω —
Ω(M NXo, y). Then a s e Ω is also a X-transversal geodesic having index zero.
s Φ a s since a$KXQ, and this contradicts (2.1).

(2.3) Lemma. If yεT, then each component of Py = {xzT: Ky C Kx)
is a closed flat totally geodesic submanifold of T.

Proof. Py is closed in Γ, hence so is each component. Since T is flat, it
will be enough to show that each component of Py is a submanifold of T
geodesically immersed at each point. Let x e Py, and Fx = {v e TX{T): a-v = v,
each a e Ky). Clearly Fx is a linear subspace of TX(T), exp (Fx) C Py, and for
a sufficiently small ball neighborhood U of x in T, U Π Py = U Π exp ( F J .
Thus all assertions follow. q.e.d.

By the proof of Proposition (1.1), the set of y e T such that Ny is principal
is exactly the set of y e Γ such that Ky = Kτ. The complement of this set is
called the singular set 5* C Γ. By Proposition (2.2), 5* is exactly the set
{y g Γ: dim (£„) > dim (XΓ)} and can also be identified as {y e T: Py φ T}.

Definition. P C T is called a singular variety if P is a component of Py

for some y €5*, but is not properly contained in a component of Pz for any

Remark that 5* is the union of the singular varieties. The proof of Theorem
II will show that this notion of singular variety agrees with the one already
formulated, which depends on Theorem II.

(2.4) Lemma. Let P c T be a singular variety. Then there are yeP and
an ^-neighborhood U of y in T such that P Π U = 5 * Π U and U is symmetric
about P Π U.
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Proof. The symmetry will be an obvious consequence of Lemma (2.3) and
the fact that the metric in T is locally Euclidean. Choose any zoeP and an ε0-
neighborhood Uo of z0 in T, which is a subset of a X-slice at z0. Thus zeU0

implies Kz c KZQ. If Kz = KZo for every z e P ί l t/0 choose y = z0, but if not
choose Zi € P D t/0 with K^ Φ KZo. Then let [^ be an s^neighborhood of z15

which is a subset of a £-slice at z^ Iterate this procedure until obtaining znεP
and an ε^-neighborhood Un of zn in T such that z 6 P Π t/n implies £ 2 = £ 2 r ι .
Let y = zn, e = en, U = Un. Note that P c P y . If x e S* Π £/, then 2^ C £ ,
and the shortest geodesic from x to y is contained in Px Π £/ C S* Π U. Thus
if Λ: $ P Π t/, P is properly contained in a component of P^, contradicting the
definition of P. Thus S* Π U C P Π U and the reverse inclusion is obvious.

(2.5) Proposition. If P a T is a singular variety, then P has codimension
one in T.

Proof. Let y <= P and U be as in Lemma (2.4). Let * e C/ — P and let JC7 e E/
be the reflection of x in P. Let s be the minimal geodesic in T (hence in [/)
from ^ r to x. s cannot be minimal from Nx, to x since it properly crosses P
and hence has Morse index greater than zero.

Assume without loss of generality that

d(x, JCO < radius ([/) - <Z(y, JC) .

If σ e β ( M ; Nx,,x) is a minimal geodesic (hence, since ;*;$£*, σ lies on Γ),
then the point x" — σ(0) e Nx, must lie in U. By the above remarks, x" Φ x'.

If codim (P) > 1, then there is z € U — P which can be joined to x' and to
x" by geodesies in U — P. This implies that there are two geodesies of index
zero in Ω(M; Nx,,z), contradicting Lemma (2.1). q.e.d.

In order to prove that there are only finitely many distinct singular varieties
(these will then constitute the set {P15 , P r} of Theorem II) we will investi-
gate certain properties of the Weyl group W.

(2.6) Lemma. Let N be a principal K-orbίt. Then W permutes the set
N Π T simply transitively.

Proof. Clearly W permutes N Π T. If x, y e N Π Γ, there is a e K with
a-x = y. Since T is totally geodesic, meets N orthogonally at x and y, and
dim(Γ) = dim(M) — dim(Λ0, we conclude that a-T = T. Thus a defines
w εW such that w(x) = y. Finally, if w(x) = x, the same argument which was
used in Proposition (2.2) shows the existence of a neighborhood U of x in T
such that w\u — identity. It follows that w is the identity of W.

(2.7) Corollary. W is a finite group.
Proof. By Lemma (2.6), the order \W\ is the cardinality of N Π T. Since

N is compact and orthogonal to T at each point of N Π Γ, one concludes that
N Π T is finite.

(2.8) Proposition. If P d T is a singular variety, the orthogonal reflection
of T in P is well defined and is an element of W.
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Proof. Let U, y, x, x' all be as in the proof of Proposition (2.5), the radius
of U being denoted by r. Arguing as in Proposition (2.5), we produce x" e Nx,
Π U on the same side of P Π U as x.

By Lemma (2.6) let wQeW such that wo(x') = x". Let / = wQ(y) and
remark that

d(y,y) < d(y,x") + d(x",y>) = d(y,x") + d(x',y) < 2r .

Since W is finite and r > 0 was arbitrarily small, we can assume d(y, / ) less
than the minimal positive value of d(y, w(y)) as w ranges over W, that is,
wo(y) = y; hence wo(U) = U and wQ(P) = P. Also, wQ interchanges the two
sides of P Π U in U.

Suppose w<? Φ identity. Then there is z e U — P such that wo

2(z) Φ z. But
wQ

2(z) is on the same side of P Π U in U as is z, leading to our usual contra-
diction. Thus WQ = identity.

Suppose wo|p Φ identity. Then there is z e P Π U with wo(z) Φ z. But then
there are K-transversal geodesies of Morse index zero in Ω(M Nz, x), one from
z to x in U and one from wo(z) to x in U. As usual, this contradicts Lemma
(2.1), hence proves wQ\P = identity.

Since w0 is an isometry of Γ, it follows from the above that w0 must be the
orthogonal reflection of T in P.

(2.9) Corollary. There are only finitely many distinct singular varieties.
Proof. Given a singular variety P, let wQzW be the orthogonal reflection

of T in P. Suppose w0 is also the orthogonal reflection of T in a singular variety
Pf Φ P. Clearly P' Π P = 0. If p: Rn -> T is the universal covering, p~\P)
U p~\P') is a family of parallel hyperplanes. If s is a geodesic on T, s(0) € Pr

and i(0) _]_ T8{0)(P'), then s lifts to a straight line on Rn perpendicular to the
family of hyperplanes. Thus s meets P. If a is a minimal segment of s from Pr

to P, then <x + w0(o ) is clearly a closed geodesic on T and hence describes a
geodesic circle S1 C T. The above reasoning then shows that Sι meets any
singular veriety P" such that w0 is the orthogonal reflection in P". Clearly S1

is invariant under w0, wQ is nontrivial on S1, and w0 has at least two fixed points
on S1. Since wQ is an isometric involution of S1, it follows that these are the only
fixed points of w0 on S1, and hence that P and P' are the only singular varieties
relative to which wQ is the orthogonal reflection. Since W is finite, our assertion
follows. q.e.d.

We now let {P1? P2, , P r} denote the set of distinct singular varieties, and
wt € W be the orthogonal reflection of T in Pu i — 1, , r.

(2.10) Corollary. The reflections wt,i = 1, , r, generate W, which is a
simply transitive group on the set of Weyl domains in T.

Proof. Since W leaves the singular set 5* invariant, it is clear that W
permutes the set of Weyl domains. If w e W, D c T is a Weyl domain, and
w(D) = D, then our standard argument using Lemma (2.1) shows that w\D is
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the identity, and hence that w is the identity. Given Weyl domains Dλ and D2,
let s be a geodesic on T with s(0) e Dλ and s{\) e D2. By slightly moving s we
can insure that it crosses the singular varieties Pt singly. Let Pil9 Pί2, , Pίq

be the singular varieties crossed by s in order. Then wtlwi2- wiq = weW
satisfies w(D2) — D19 and all assertions follow. q.e.d.

We have verified every assertion of Theorem III and identified the singular
varieties of Theorem II. The proof of Theorem II will be completed in the
following section.

3. Definition and properties of m{ϊ)

Let hi and kτ denote the respective Lie algebras of Kt and Kτ, and write

ki = kτ ® nti ,

where rrii is the orthogonal complement of kτ in k^

Definition. m(ί) = dim (nti) is called the multiplicity of P^.

(3.1) Lemma. The set At — {y eP^: Ky = K^ is an open dense subset
of P^

Proof. Let x e Pt. Given a sufficiently small neighborhood U of x in P ί ?

standard application of the slice property (cf. proof of Lemma (2.4)) shows
that there are y e U and an open neighborhood V of y in U such that every
zeV satisfies Kz c Kt. The reverse inclusion is evident and the lemma follows.

(3.2) Lemma. If xeT lies on one and only one Pu then K°x = K\. Con-
sequently, dim (Nx) = dim (M) — dim (T) — m(ι).

Proof. By Corollary (2.9) we can find an ε-neighborhood U of x in T such
that Pt Π U = 5* Π U. Suppose K°x Φ K\ so that dim (Kx) > dim (Kt). Choose
z € U Π Ai and let z! e Pt Π U be the reflection of z in x. The minimal geodesic
s from z! to z does not have index zero in Ω(M; Nz>, z) since it properly crosses
x and dim(Kx) > dimCK^). Thus if z was chosen sufficiently near x (possible
by Lemma (3.1)), there is z!f e Nz, (Ί U Π Pi such that the minimal geodesic
from z" to z does have Morse index zero. Thus z\ z!f are distinct and both lie
in Pt Π U Π Ng>. Let qeϋ — Pt. Then the minimal geodesies from z! to q
and from z" to q both have index zero in Ω(M; Ng,, q), contradicting Lemma
(2.1). q.e.d.

Let x e T and let lx c {1,2, , r} be as in Theorem II. If Ix = 0, then
Proposition (1.1) gives the final assertion of Theorem II, while if Ix is a single-
ton then Lemma (3.2) gives the result. Without loss of generality assume Ix =
{1,2, ••.,/!}, n<r.

For a sufficiently small ε-neighborhood U of x in Γ we have U Π P^ = 0 for
/ > ft, and C/ Π Pi is a disk of codimension one in U dividing U — Pt into two
components, 1 < i < n. Let z e ί / - 51*, and choose α > 0 such that d(x, z)
<a<ε.
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(3.3) Lemma. Ωa(M\ Nz,x) ~ Kx/Kτ.

Proof. Let s e Ωa be a J£-transversal geodesic. By Corollary (1.4) and
Corollary (1.5), there is b e Kx such that b-s lies on T and hence on T Π U.
Each of wϊ9 , wn leaves x and hence U invariant, and so each component
of U — Px U P2 U U Pn contains one (and only one) element of Nz Π U.
These points are equidistant from x, and b s is the minimal geodesic from some
p o i n t o i N z n U to x. Using w19 , wn, we see that

Kx/Kτ = Kχ.sd Ωa

is the subset of all X-transversal geodesies in Ωa. Since these geodesies are of
index zero, [4, Theorem III] implies Ωa ^ Kx/Kτ. q.e.d.

Choose xf e U — 5* such that c = d(x, x') satisfies a + 3c < ε. Keeping the
endmanifold Nz fixed, we consider Ω% and β£,.

(3.4) Lemma. Ω% ~ β j , .
Proo/. Ω% C β^+ c C β^+ 2 c are deformation retracts since the three spaces

contain exactly the same K-transversal geodesies. The same holds when x is
replaced by x'. Let σ be the minimal geodesic from x to x\ and define

by

φσ{u) = u + σ .

Similarly use a~ι to define a map

Using the above deformation retractions we may interpret these maps as

which are readily verified to be mutual homotopy inverses.

(3.5) Corollary. dim(Kx/Kτ) =

By (3.3) and (3.4),

Without loss of generality, we can assume that each geodesic in U from NZΠU
to xr crosses the singular varieties singly. These are the only ^-transversal
geodesies in Ω%,9 and correspond one-one to a basis in H*(Ωa

x,\ Z2) by [5,
Theorem I], the dimension of the homology class being the index of the
geodesic. By Lemma (3.2) and [5, Proposition 9.2] each such geodesic has in-
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dex given by the sum of the multiplicities m(i) of the singular varieties Pt which
it crosses. Thus the highest dimensional homology class in H*(KX/KT; Z2) is
of dimension equal to the sum of the m(i), i = 1, ,n. Since Kx/Kτ is a
compact manifold, the desired conclusion is clear. q.e.d.

Theorem II follows immediately.
n

(3.6) Corollary. kx = kτ® Σ mn a direct sum.

Proof. Suppose 1 < i < / < n. Clearly ^ C ^ Π K ό . The reverse inclusion
also holds. Indeed, if aeKt Π K^a leaves Tx(Pi) and Tx(Pό) pointwise fixed,
hence a leaves TX(T) pointwise fixed, so aeKτ. Thus Kτ = Kt Π Kj and

TO

mt f] ntj = 0. This shows that Λ Γ Θ Σ » i j is contained as a direct sum in kx.

By Corollary (3.5) these vector spaces have the same dimension, so equality
holds. q.e.d.

For xeM, the isotropy representation of Kx on TX(M) restricts to

κ°x xvx-*vx.

(3.7) Theorem. K°xχVx-» Vx satisfies (A).
Proof. Without loss of generality suppose x e T. Let T = T^ίΓ) C Vx and

p^ = Γ /Pί) c Vx, for all ί e 7̂ .. Again we assume Ix — {1, , n) hence

κx — Kj \ty £_i "*ί

The representation of K°x on Vx induces a representation of kx on Vx. If
Z e VX9 then the tangent space at X to the jK ̂ -orbit of X is identified with
{A{X)\ A€kx}. Furthermore, the representation of kx is skew symmetric, so
A(X) _L Z. Suppose Z € J. If ^ e A:Γ, then ^(Z) = 0. If A <= m̂  for some i =
1, , π, then Λ(Z) _L P4 and A(X) _L Z. If also Z € Pi? then ^[(Z) = 0.
Thus in all cases A(X) ±_ T, so the X^-orbit of any Z € T meets T orthogonally
a tZ .

Since the map

exp: Vx —• M

n

commutes with the action of K°x, for Z € T — U Pi sufficiently near 0 the Kx-
orbit of Z is of maximal dimension among all the K^-orbits in Vx. By Lemma
(1.3) this dimension is exactly the codimension of T'mVx. By standard theory,
any two ̂ -orbits in Vx can be joined by a straight line orthogonal to each
orbit at the respective endpoints. Hence T must meet every K^-orbit, and we
have proven that T C Vx is a ^-transversal domain. q.e.d.

Thus, as remarked in the introduction, the linear orthogonal representations
satisfying (A) play a special role in the general case of (A).
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4. The ΛΓ-cycIes

We prove Theorem IV. Given the singular variety PidT, one chooses x e Pi
such that Kx = Kt (by Lemma (3.1)). Write

TX(M) = TX{NX) Θ Tx(Pd® Lx ,

where Lx is the orthogonal complement of the first two summands. Kx leaves
Lx invariant. Let Z € Lx Π TΛ(T), | |Z| | = 1. If a <= Kx = Kt satisfies aZ = Z,
then aeKτ. Conversely, azKτ implies a>Z=Z. Therefore Ki/Kτ is identified
with the A^-orbit of Z in Lx and hence is a closed submanifold of the unit sphere
in Lx.

Remark that

dim (Lx) = dim (M) - dim (Nx) - dim (P,)

= dim (T) + m(ϊ) - dim (T) + 1

= m(f) + 1 .

Therefore, since dim (K^K^ = m(ΐ), Kt/KT must be diffeomorphic to the
unit sphere Sm(ί) in Lx\ this is the assertion of Theorem IV.
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