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THE ZEROES OF NONNEGATIVE
CURVATURE OPERATORS

JOHN A. THORPE

The Riemannian sectional curvature of a Riemannian manifold is a real-
valued function σ on the Grassmann bundle of tangent 2-ρlanes of M. Although
there exists a large body of theorems relating the curvature of M to various
topological and geometric properties of M, relatively little is known of a general
nature about the behavior of the function σ itself. In particular, the critical
point behavior of σ has been analyzed only in very special cases [3], [4]. In
this paper we consider the pointwise behavior of σ; that is, we consider the
restriction of a to the Grassmann manifold of tangent 2-planes at a point
ra <Ξ M. We are then able to describe completely the structure of the sets of
points in this manifold where σ assumes its minimum and maximum. In par-
ticular, for spaces of nonnegative curvature we describe the set of points where
σ assumes the value zero.

To be more specific, let G denote the Grassmann manifold of oriented
tangent 2-planes at m. G is in a natural way a submanifold of the vector space
A2 of 2-vectors at ra. Since G is a 2-fold covering space of the manifold of
(unoriented) 2-planes at ra, we may regard σ as a function on G. We shall
show that the minimum and maximum sets of σ are intersections with G of
linear subspaces of A2. Moreover every such intersection can occur, for ex-
ample as the minimum set of some curvature function σ on G.

The case of nonnegative curvature σ > 0 will occupy most of our attention
here. One reason for this is that the general result on the minimum set of σ is
an elementary consequence of the result for σ > 0, and another is that this
case is the one most likely to yield applications. For example, it follows from
our description of the minimum set that if σ > 0 and relative to some coor-
dinate system the "diagonal" curvature components R i W are all zero at ra,
then in fact the curvature tensor R is zero at ra.

Given a space M of nonnegative curvature and given m e M, the linear
subspace of A2 whose intersection with G is the zero set of σ is obtained as
follows. The curvature tensor R of M at ra can be regarded as a self-adjoint
linear operator on A2. Letting β/t denote the vector space of all self-adjoint
linear operators ("curvature operators") on A2, the subset βS consisting of those
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which come from Riemannian structures (i.e., those satisfying the first Bianchi
identity) is a linear subspace of 0t. The orthogonal complement Sf of 31 in 0ί
is the set of all curvature operators whose associated Riemannian curvature
function is identically zero. Our theorem asserts that there exists an operator
S e Sf such that the zero set of σ (also called the zero set of R) is precisely
G Π Ker (R - S).

The idea of the proof is first to show that for each P in the zero set there
exists an S e £f such that P € Ker (R — S), second to observe that there is a
unique such S orthogonal to the subspace of Sf annihilating P, and finally to
piece these unique operators together to build one which works simultaneously
for all P in the zero set.

The author wishes to thank J. Simons for several stimulating discussions of
the ideas presented here.

1. ¥ and the Grassmann quadratic 2-relations

We begin by analyzing the space Sf complementary in 3/ί to the subspace
{R €&\R satisfies the Bianchi identity}. We shall exhibit a natural isomor-
phism between £f and Λ* and shall establish the relationship between S? and
the Grassmann quadratic 2-relations which are necessary and sufficient con-
ditions for decomposability of elements in A2.

Let V be an n-dimensional real vector space with inner product <( , ) (e.g.,
V = the tangent space at a point of a Riemannian manifold). For k an integer
> 0, let Λk = Λk(V) denote the space of /:-vectors of V, equipped with inner
product given by

<«iΛ Λ uk9 v1 Λ Λv f c> = det [<ui9 Vj}] , ui9 vt e V .

Let G denote the Grassmann manifold of oriented 2-dimensional subspaces
of V we identify G with the submanifold of Λ2 consisting of decomposable
2-vectors of length 1 by P <-> u Λ v where {u, v} is any oriented orthonormal
basis for P. Let 0t denote the space of self-adjoint linear operators on Λ2,
equipped with inner product given by ζR,S} — trace Ro S,R,S z&. Elements
of & will be called curvature operators on V. Given Reέ%, its sectional curva-
ture is the function σR\ G -> R denned by σR{P) = (RP,P},PeG. Each
R € gt can be naturally identified with a 2-form on V with values in the vector
space of skew-symmetric endomorphisms of V by

(R(u, v)(w), x} — R(u Λ v, w Λ x) , u, v, w, x e V .

We can then consider the subspace <% of St consisting of those RzSt which
satisfy the first Bianchi identity: R e 96 if and only if

R(u, v)w + R(v, w)u + R(w, u)v = 0
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for all w, v, w e V. Set S? = StL> the orthogonal complement of ® in St.
We construct, for each ξ e Λ\ an operator Sξ € S? as follows. Given ξ, define

Sξ:

(a),β> = <a Aβ,ξ} ,

Clearly Sζ e St. To see that Sζ e ¥ we need the following
Lemma 1.1. Let {e19 - > ,en} be an orthonormal basis for V. For 1 <

h h k,l<n, set Sijkι = Se.AejAekAeι. Then, for Rε@,

<R,Sijkly = 2[(R(ei A ej),ek A eι

s) + <Λ(^ Λ ek),et A ^>

+ (R(ek A et), ej A e^] .

Proof.

<R, Sijkly = tτRo SiJkl= Σ a<β <R ° Sίjkι(ea A eβ), ea A eβ}

= Σa<β <βijkl(ea A eβ),R(ea A eβ)}

= Σa<β <Sίjkι(ea A eβ), Σr<s<R(e« A eβ), er A eδ}er A eδ}

= Σ«<^ Σr<*<R(e* Λ e*)>er Λ e»>

X <̂ « Λ eβ A er A eδ, et A eό Λ ^fc Λ ety .

Collecting terms completes the proof.

Proposition 1.2. ξ *-> Sξ maps Λ4 isomorphically onto £f'. Moreover ξ ι->

(1/V 6 )Sξ is an isometry.
Proof. Clearly ξ ι-> Sξ is a linear map from Λ* into 0ί. Since {̂ ^ Λ ^ Λ

^ Λ e t I i < / < k < /} is an (orthonormal) basis for Λ\ and the images Sίjkl

of the basis vectors are all in Sf (<Λ, Sίifci> = 0 for all R e 08 by Lemma 1.1),
it follows that ξ H-> Sξ maps Λi into ,9 .̂ In fact, Lemma 1.1 implies that, given
Re&,Re& if and only if (R,Sijkιy — 0 for all i,/, k, I; i.e., the Sίjkl span
Sf and ξ *-* Sξ maps onto ^ . Injectivity and the fact that ξ ^ (l/^~6)Sξ is
an isometry follow from taking R = Saβγδ in Lemma 1.1 to conclude that
{Sίjki I i < j < k < 1} is an orthogonal set and that ||S i iJfcι||

2 = 6.
Remark. Using the natural isomorphism between A4 and its dual, the space

of alternating 4-forms on V, given by the inner product we can also identify £f
with this space of 4-forms. Explicitly, one identifies a 4-form ω on V with the
operator Sω^y given by

(Sm(vx A v2), v3 A v,} = ω(v19 v29 v3, v4) .

Proposition 1.3. Let aεΛ2. Then a is decomposable if and only if <Sa, a}
= 0 for all Sz¥.

Proof. The necessity of the condition is clear since each S e £f is of the
form Sξ for some ξ 6 Λ* and <S>, a} = <a A a, ξ> = 0 for a decomposable.
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Conversely, given an orthonormal basis {eu , en] for V, it is well-known
[2, p. 309 fϊ] (see also [1]) that the conditions (SiJkιa9 a} = 0 for all
/ < / < & < / are necessary and sufficient conditions for decomposability.

Remark. The conditions (Sijkιa, a} = 0 are known as the Grassmann
quadratic 2-relations.

Remark. It is clear from Proposition 1.3 that each curvature tensor S e Sf
has sectional curvature σs identically zero. Conversely, it is easily checked
that this property characterizes £f.

2. The uniqueness theorem

In this section we establish the basic uniqueness result which is at the heart
of our building process. But first we need some additional notation.

For a subset Z of G, let

sί(Z) = {Se5?\S{P) = 0 for all PeZ} .

Thus s/(Z) is the subspace of £f consisting of all elements of £f which annihilate
Z. For a finite subset Z = {P19 . ., Pk} of G, we shall denote s/({P19 , Pk})
simply by s/(P19 , Pk). By srf(Z)L with Z c G w e shall mean the orthogonal
complement of J / ( Z ) in <?.

Theorem 2.1. Let Rz0i and Z c G, αnd suppose there exists S e Sf such
that Z C Ker(i? — 5). ΓΛerc ί/iβr^ βjcϋϋ α unique So € srf(Z)L such that
Z C Ker CR - So). Moreover, given any Seό?, Z C Ker (i? - S) if and only
if the orthogonal projection of S onto s/(Z)L is So.

Proof. Existence: Let S e ¥ be such that Z c Ker (R - S), and let So

denote the orthogonal projection of S onto sf(Z)L. Then S = So + S' for some
5 r € J / ( Z ) and

Z C Ker(fl - 5) Π K e r y c Ker(fl - 5 + SO = Ker(fl - 50).

Uniqueness: Suppose Z c Ker (R - So) Π Ker ( # - SJ) for So, SJ e
Then

Z C Ker [(Λ - 50) - (R - SJ)] = Ker (SJ - So) .

Thus S'o — Soe sί(Z). But SQ and So € ̂ {Z)L, so S£ — So must be zero.
Finally, it is immediate from the above existence and uniqueness arguments

that Z C Ker (R — S) implies So is the orthogonal projection of S onto st(Z)L.
Conversely, if S e Sf is such that its orthogonal projection onto s/(Z)L is So,
then 5 = 5Ό + 5' for some S7 e s/(Z) and

Z C Ker(i? - So) Π KerS' c KerCR - So - 50 = Ker(R - S) .

Remark. Note that if R € 9t, S e Sf and P e G Π Ker (R - S), then
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σR(P) = <#P, P> = <SP, P> = σs(P) = 0 .

In particular, setting

we see that if, for some S e <Sf, the subspace Ker (R — S) has non-null inter-
section with G then the set Z(R) of zeroes of σR is at least big enough to con-
tain this intersection.

Theorem 2.2. Let Reέ%, and suppose there exists S e S? such that Z(R)
= G Π K e r ( # — S). Then there exists a unique Soz st(Z(R))L such that
Z(R) = G Π K e r ( Λ - S o ) .

Proof. By Theorem 2.1, there exists a unique So e stiZiR))1- such that
Z(R) C G Π Ker (7? — So). But, by the remark above, G Π Ker(,R — So)
C Z(R). Hence we have the equality.

3. Critical zeroes

In studying the critical points of curvature functions, it suffices to consider
critical points with critical value zero. For if λ is a critical value of σR,R€&,
then the set of critical points of σR with critical value λ is the same as the set
of critical points of σR_λI with critical value zero, / being the identity oper-
ator on Λ2. In this section we show that if P is a critical zero of σR, then
P e Ker (R - S) for some S € Sf.

Lemma 3.1. Let P e G, αm/ /eί [e19 , en) be an orthonormal basis for
V. Then

{P} U{Sίjkι(P)\i<J<k<l}

spans the normal space to G C A2 at P. If the basis is chosen so that
P — ex Λ e2, then

{P} U {Sl2kι(P)\2 <k<l}

is an orthonormal basis for this normal space.
Proof. By Proposition 1.3,

G = {aeΛ2\(a,a}= 1 and < S w ( α ) , α> = 0 for all i < / < * < / } .

Since the real valued functions a H-> (a, ay and a •-• (Sίjlcla, a) are constant
on G, their gradients IP and 2SiJkl(P) at P € G must be normal to G at P. To
see that they span the normal space NP of G at P, consider first the case where
P = eλ A e2. Then, for i < j < k < /,

Λ βι ' f o r ^ ' ^ = ( 1 ' 2 ) '
, for (i,j)Φ ( 1 , 2 ) .

It follows that, in this case, {P} U {Sl2kι(P) \ 2 < k < 1} is an orthonormal set
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in NP. Now the number [(n — 2){n — 3)/2] + 1 of elements in this set is
equal to the codimension \n{n — l)/2] — 2(n — 2) of G in Λ2 which in turn
is equal to the dimension of NP. Hence {P} \j {Sί2kl(P)\2 < k < /} is an
orthonormal basis for NP.

Returning to the general case, let {e19 , en) be an arbitrary orthonormal
basis for V, and let {e[, , < } be one such that P = e[ A e'2. Let {Sim\
/ < / < & < / } and {S ^ | / < / ' < & < / } be the corresponding bases for £f.
Then, from above, {P} U {Sίa w(P)|2 < k < 1} spans NP. But each Sί2Jfci is a
linear combination of the Sijlcl and hence each Si2Jfci(P) is a linear combination
of the S W ( P ) . Thus {P} U {SίjU(P)\i < j < k < 1} spans N P .

Theorem 3.2. Lei i ? e ^ απd suppose PeG is a critical zero of σR. Then
there exists Sε^ such that P € Ker (R — S).

Proof. Let {e19 , en} be an orthonormal basis for F such that P = e1 A e2.
Since P is a critical point of σR, and σR is the restriction to G of the function
a ι-> <i?(^), α:), the gradient 2Λ(P) of this function at P must be normal to G
at P. By Lemma 3.1, this implies that

RP = λP + £ μklSuu(P)
2<k<l

for some λ, μkl e i?. But λ = (RP, P> = σR(P) = 0, so P 6 Ker (fl - 5) where

2<k<l

Corollary 3.3. Let Re& and suppose Pe G is a critical zero of σR. Then
there exists a unique S e ^(P)1- such that P <= Ker (R — S).

Proof. Immediate from Theorems 3.2 and 2.1.
Remark. The operator S constructed in the proof of Theorem 3.2 is in

fact the unique S € ^ ( P ) 1 such that P e Ker (R — S). Indeed, by Lemma 1.1
together with the fact that each S7 e Sf is an Sω for some alternating 4-form ω
on V, we have

<S',Slikl> = όζS'fa A e2),ek A eL} ,

and this is zero for all S' <= srf(P) thus Sl2kl e ^ ( P ) 1 for 2 < k < I.
Note also that, since {Suia\2 < k < /} is linearly independent, the numbers

μkl above are uniquely determined. In fact, they are curvature components of
R relative to the basis {ej:

μui = < Σ μ«βea Λ eβ9ek A et} = < Σ μaβSl2aβ{ex A e2),ek A et}
2<a<β 2<a<β

= <iRfe Λ e2),ek A et> .

4. The case n = 4

We consider now the case when V has dimension 4, and establish our main
theorem in this case. The validity of the result in dimension 4 will play a
crucial role in establishing the theorem in general.



CURVATURE OPERATORS 119

Theorem 4.1. Let dim V = 4, and suppose Rztfί is such that σR > 0 and
Z(R) φ 0. Then there exists a unique S e & such that Z(R) = G ΓΊ Ker(# — S).

Proof. Since dim F = 4, ̂  is 1-dimensional. Given {e15 , e4} an ortho-
normal basis for V, the operator 51234 is just the Hodge star operator * and so
{*} = {Sιm} is a basis for £f. Given P e Z(R), P is a minimum, hence a critical
point, of σ^ so by Theorem 3.2 there exists μel? such that PeKerCR — μ*)
i.e., such that

RP = μ*P .

If Px and P2 are two zeroes of σR, then # P * = μ^Pi for some μ€ € R(i = 1,2).
We shall show that μx — μ2. This is clear if {P19 P2} is linearly dependent in A2,
so we may assume linear independence. We have

μι<*Pl9P2> = <^P 1 ?P 2> = <P»RP2> = fk<Pi, *^2> = th<*Pi,P*>

Hence, if <*P1? P2> ^ 0 we must have μx — μ2. On the other hand, if <*P15 P2>
= 0, then <Pλ + P2, *(PX + P2)> = 0, so Pλ + P 2 is decomposable. Let
Q = (P1 + p2)// where / - HΛ + P 2 | | . Then Q e G and

so σ^ίβ) = <jRβ? δ> = 0. Thus β is also a zero of σ^; hence RQ = μ*Q
for some μ e R, and

= lμ*Q =

This implies that

(μx - μ)Pλ + (μ2 - μ)P2 = 0 ,

and hence μx — μ2 — μ since {P1? P2} is linearly independent in A2.
It follows that Z(R) C Ker (R — μ*) for some unique μ 6 R. By the Remark

in §2, G Π KerCR - μ*) C Z(,R). Hence, setting 5 = μ* we have Z(R)
= G Π KerCR - 5).

Corollary 4.2. Lei dim V = 4 and Rz£%, and let λ denote the minimum
(or maximum) value of σR. Then there exists a unique SzZf such that

{P eG\σR(P) = λ} = G Π Ker (R - λl - S) .

Proof. Follows immediately from Theorem 4.1 upon replacing R in that

theorem by R — λl (or, in the case where λ is the maximum value of σR, by

λl - R).
Remark. The hypotheses of Corollary 4.2 cannot by weakened to include

the case where λ is an arbitrary critical value of σR. Indeed, if we define
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R(e, A e2) = e3 A e4 , R(e3 A eA) = eλ A e2 ,

e, A e3) = 0 , i?(e2 Λe 4 ) = 0 ,

Λ έ?3) = — έ?x Λ. e 4 , # O i Λ έ?4) = —e2 A e

then each of the basis planes et A e3 is a critical zero of σR (critical because
(grad σ^)(^ Λ e3) = 2R(eί A e3) = ±2*et A e3 which is normal to G at
et A e3). Hence, if either GR\0) or the critical set of σR with critical value zero
were the intersection of G with a linear subspace of Λ2, it would have to be
all of G. But this is not the case: setting

Q = j Oi Λ e2 + e3 A e± + e2 A e3 — ex A eA)

we have Q e G and σR(Q) = 1.
Note that the R of this example satisfies the first Bianchi identity, and also

observe that this example illustrates the necessity of the assumption σR > 0
(or σR < 0) in Theorem 4.1.

Remark. Perhaps a word about the 3-dimensional case is in order at this
point, even though it is included in the general case to be considered in the
next section. For n = 3, every 2-vector is decomposable and hence G is the
entire unit sphere in Λ2. Hence the critical values of σR are just the eigen-
values of R, and the set of critical points of σR with critical value λ is just the
intersection with G of the /ί-eigenspace of R. Note that this description (in
dimension 3) is valid for each critical value λ, not just for the minimum and
maximum values.

5. The main theorem

We now proceed to our main result by way of a sequence of rather technical
lemmas.

Lemma 5.1. Let Re& be such that σR > 0, and suppose P,Qε Z(R).
Then there exists SeS? such that {P, Q) C Ker (R — S).

Proof. Choose an orthonormal basis {e19 , en} for V such that P — eγ A e2

and Q is contained in the span of [e19 , e4}, so that g = Σ Qijeί A e3 for
ί<j<i

some qi3£R. Since Q is a critical point (a minimum) of σR,RQ = J(gradσR)(Q)
is normal to G at Q so, by Lemma 3.1,

( l ) RQ= Σ
j

for some vijU € R (the component of RQ in the direction of Q is zero since
<RQ, Q) = σR(Q) = 0). Note that the vijkl are not uniquely determined since
the Sίjkι(Q) are not linearly independent.

Similarly (see the proof of Theorem 3.2),

(2) RP= Σ
2<k<l
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where now the μl2kl are uniquely determined since the Sί2kl(P) are orthonormal.
Moreover, by the Remark following Corollary 3.3, Sλ — Σμί2kιS12kι is the
unique operator in s/(P)L such that P e Ker (R — Sλ). Thus, by Theorem 2.1,
it suffices to construct an S2z6f such that Q € Ker (R — S2) and such that the
orthogonal projection of S2 onto ^{P)L is just Sλ. But {Sijkl \ i < j < k < 1} is
an orthogonal set in ^ , S12kl e stf{P)L for 2 < k < I, and Sijkl e stf(P) for
(/,/) φ (1, 2), and so the orthogonal projection into <stf(P)L of 2 VijuSiju

i<j<k<l

is just 2 VukiSuki Thus we must show that we can choose ϊ*ίjkl e I? such that
2<k<l
2

2<k<l

RQ= Σ ϊijkiSijuiQ) and vl2kl = μί2kl for 2 < k < I
i<j<k<l

Step I. Given any vim{i < / < k < /) such that (1) is satisfied, we shall
show that vX2U — μl2U. Let W — eί A e2 Λ ez Λ e4 e 7I4. Identifying FF with
the oriented 4-dimensional subspace of V spanned by {el9 , e4} we have
P C.W andQaW, i.e., P, β e # ( ^ ) c τl2(F). Letting TΓ^: ^ί2(F) ->
denote orthogonal projection, we have

1̂234 = Ol23A234(β),Sl

= <πw o R(Q)y # I Γ β > ,

where *w is the star operator of W. Similarly,

R(P),*wP} .

But the restriction of πw o R to Λ2(W0 is a curvature operator (with sectional
curvature > 0) on the 4-dimensional space W, and {P, Q} is contained in the
zero set of this curvature operator. Hence, by Theorem 4.1, there exists a
unique μ e R such that P,Qe Ker (πw o R — 50 where S' = μ*w. Thus

1̂234 = (πw o 7^(0, *WQ) = (μ*wQ, *wQ) = μ ,

and similarly μim = //, so y1234 = μim.
Step II. We shall take advantage of the non-uniqueness of the remaining

Vijjci in (1) to make essential alterations. In terms of the basis {et Λ eό \ i < j}
for Λ2, (1) becomes

= ^1234^1234(0 + Σ [(^123*^23 + 1̂24̂ 2̂4 + ^lUkQzd^l Λ f̂c
5fc

/ 3 \ + (̂ 123fc<?12 — 1̂34fe<?14 ~ ^234^^24)^3 Λ

+ GΊ2U012 + 1̂34fc<7l3 + ^234fe<?23)̂ 4 Λ βk\

+ Σ ίvuuQu + VukiQu + VukiQu
5<k<l

A eι .
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Case I. Assume qu Φ 0. Then, given vijia satisfying (1), we can choose,
for each k > 5, vmk and v2Uk e R so that

( 5 ) —ft

(Compare (4) and (5) with the coefficients of eγ Λ ek and e2 Λ £*; in (3).)
Having chosen vmk and £234fc to satisfy (4) and (5), note that

But

1̂2̂ 34 + 1̂4<?23 ~ 1̂3̂ 24 = \ (Q, *wQ} = 0 ,

so the above equation reduces to

(Compare (6) with the coefficient of ez Λ ek in (3).)
Similarly we can check that

(Compare (7) with the coefficient of e4 Λ ek in (3).)
Finally, since qu Φ 0 we can choose, for each / > k > 5, £3Uz such that

(Compare (8) with the coefficient of ek Λ ^£ in (3).)
Then, setting ΐ>ukl = μukl for 2 < k < I and ί/<ifcl = vίjkl for all i, /, /:, / for
which vijkl has not been previously denned, it follows from (l)-(8), together
with step I, that

RQ = ΣvίjklSijkl(Q) — ΣvijiciSijjdiQ) ,

and ΐ>12kι = μukι for 2 < k < I. This completes the proof in the case where

434 Φ 0.
Case II. Suppose qu = 0. Then

0 = qu - «2, e3 A e,} = <β, * 1 Fe 1 Λ ^2> - <β, *^P> - <P Λ β, ^ > .

But P, β € Λ2(tf0 implies P Λ β is a multiple of W. Therefore P Λ β = 0.
It follows that the 2-planes P and Q have non-trivial intersection. Hence we
can choose our basis {eλ, , en} for V so that P = ^ Λ e2 and
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Q = eί Λ (que2 + Ii^) = Q^i Λ e2 + ql3ex A e3

for some ql2, qu e R. Since qu = q2Z — qu = qu — 0, (3) becomes

RQ = 1̂23̂ 1234(0 + Σ hmki —413*2 Λ ek + que3 A ek)
δ<k

(30
+ Σ

δ<k<l

Now v1234 = μ1234 since P and Q both lie in the 4-ρlane eλ A e2 /\ ez /\ e4

(Step I). Similarly, vmk = μmic f° r all A: > 4 since P and β both lie in the
4-ρlane eλ Λ e2 A e3 A ek. Moreover, #13 =̂  0 since Q ψ P, and hence we
can choose vmk{k > 5) and 513Jfcl(/ > & > 5) such that

(70 μiUkQu + 1̂34fe<9ri3 = VlUkQll + ^134^^13 5

(80

Then, setting ϊ>l2kl = μ12kl for 2 < k < I and vίjkl = v i m for all i,j,k,lior
which £)Ofcι has not been previously defined, it follows from (1), (30, (70 and
(80 that RQ = Σι>ίjklSίjkl(Q) and ΐ>12kl = ^1 2 f c i for 2 < k < I, as required.

Lemma 5.2. Let Z C G. T/ien ίΛere ejtjfcto α ̂ n t e subset {P19 , Pfc} o/
Z MC/Z ίΛαί if Rε& and PteKer(i?) /or all i < k, then Z C K e r R .

Proof. Suppose not. Then there exists an infinite sequence {Pk} in Z such
that, for each k, Pk+1 $ Ker (R) for some R e & with {P19 , Pk) c Ker (Λ).
But then

^ f c = {^e^ | {P 1 ? •• ,Pfe} c K e r ( Λ ) }

is a strictly decreasing infinite sequence of subspaces of 9t9 contradicting the
finite dimensionality of ^ .

Lemma 5.3. Let X be an inner product space, and X^l < i < k) sub-
k

spaces of X such that X — J]Xt. Let πt\ X —• Xt and πυ: X -»X t Π Xό

i = \

(1 < h)' < &) denote orthogonal projections, and xt € ^ ( 1 < i < k) be such
that πijXi = πijXj for all i Φ ]. Then there exists a unique xeX such that
πtx = Xi for all i.

Proof. An easy induction on k.
Theorem 5.4. Let Re& be such that σR > 0. Then there exists Se^

such that Z{R) = G Π K e r ( f l - S ) .
Proof. We shall construct the unique (see Theorem 2.2) S e s/(Z(R))L

which will do the job. By Lemma 5.2, there exists a finite subset {P19 , Pk}
in Z(R) such that every curvature operator which annihilates {P15 , Pk) an-
nihilates Z(R). In particular,
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, pk) = n
l<ί<Jc

s/(Z(R))L = Σ

and

For 1,7 < k, let ^ : ^ -> ^(P,)-1- and τrit7 : ^ -> ^ ( P / ) Π ^ ( P / ) denote
orthogonal projections. By Corollary 3.3, for each / < k there exists Si e stfiP^1-
such that Pt e Ker (7? — S^. Moreover, for iψ /, πiό{S^ — n^iS^. Indeed, by
Lemma 5.1, there exists S^eS? such that {P^Pj} C Ker (R — 5^) and, by
Theorem 2.1, 5, = ^ ( 5 O ) and Sj = TΓ/S^ ) so *„($,) = ^ ( S o ) - T Γ , / ^ ) .
Hence, by Lemma 5.3, there exists S <= Istf{P^L = ^(Z( JR)) J- such that π^(5)
= Si for all / < k. By Theorem 2.1 again, this implies that Pt e Ker (R — S)
for all i < k, and hence Z(R) c Ker (R — 5) by the defining property of the
set {P19 , Pk}. Finally, G Π Ker (R - S) c Z(Λ) by the remark in § 2 and
so we have the equality.

Corollary 5.5. Le/ JR e 01 and let λ denote the minimum {or maximum)
value of σR. Then there exists S^^ such that

{PεG\σR(P) = 2} = G Π Ker(K - λl - S) .

Proof. Immediate from Theorem 5.4 upon replacing R in that theorem by
R — λl (or, in the maximum case, by λl — R).

Remarks, (i) It is interesting to note that the only use of the assumption
that λ be the minimum or maximum of σR or, in Theorem 5.4, the assumption
that σR > 0, occurs in the proof of the 4-dimensional case (Theorem 4.1).
Thus, if it were true for 4-dimensional spaces that the set of critical points of
σR with critical value λ were of the form G Π Ker (R — S) f or some S e &*,
then it would be true in general. Of course, it is not. The counterexample in
§ 4 easily extends to all dimensions > 4.

(ii) Corollary 5.5 implies that there are linear subspaces Lx and L2 of Λ2

such that G (Ί Lλ is the minimum set of σR and G (Ί L2 is the maximum set
of σR. These subspaces can have non-trivial intersection. For example, let
dim V = 4 and let R e St be defined by

R{ex A e2) = R(e3 A e4) = eλ A e2 + e3 A e4 ,

R(eλ A e3) = R(e2 A O = 0 ,

R(e, A eA) = R(e2 A e3) = —e1 A e, - e2 A e3 .

Then Lx = Ker(R + I + *), L2 = Ker (R - 1 - *), and dim (L, Π L2) = 3.
(Hi) Given any linear subspace L of Λ2, there exists Rε& such that σR > 0

and ZCR) = G Π L Indeed, given L, the curvature operator R which is zero
on L and identity on L x will have these properties. Moreover, the curvature



CURVATURE OPERATORS 125

operator obtained by projecting the one just described orthogonally onto
& = £fL will have these properties and will in addition satisfy the first Bianchi
identity.

(iv) It is a consequence of Corollary 5.5 that if M is an almost Kaehler
manifold with almost complex structure / and meM, then both the set of
holomorphic 2-ρlanes at m (planes invariant under J) and the set of anti-
holomorphic 2-ρlanes at m (planes P such that v e P implies Jv J_ P) are in-
tersections with G of linear subspaces of Λ2(V) where V = Mm is the tangent
space of M at ra. Indeed, the automorphism / of V induces a curvature oper-
ator, also denoted by /, on V by J(u Λ v) = Ju A Jv (u, v <εV) and one easily
checks that σj assumes its maximum value 1 on holomorphic 2-ρlanes and its
minimum value 0 on anti-holomorphic 2-ρlanes. A further computation verifies
that in fact P e G is holomorphic if and only if P e Ker (/ — /), and P e G is
anti-homomorphic if and only if P <= Ker (/ — S) where S e S? is the operator
corresponding under the isomorphisms of § 1 to the 4-form φ Λ φ, φ being
the fundamental 2-form given by φ(u, v) = (Ju, Vs).

Added in proof. Theorem 5.4 has recently been generalized by A. Stehney
to curvature operators on Λv for arbitrary p. Using her techniques, it is pos-
sible to eliminate the intricate computations in the proof of Lemma 5.1.
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