J. DIFFERENTIAL GEOMETRY 5 (1971) 59-60

MANIFOLDS ADMITTING NO METRIC OF CONSTANT NEGATIVE CURVATURE

PATRICK EBERLEIN

Let *M* be a compact *n*-dimensional Riemannian manifold of strictly negative sectional curvature, $K(\pi) < 0$ for all 2-planes π . If *M* admits a Riemannian metric of constant negative curvature, its Pontryagin classes are zero and consequently, if *M* is orientable and of dimension 4k, its index in the sense of Hirzebruch is zero. For every positive integer *k*, there exist compact complex analytic manifolds of real dimension 4k, arbitrarily large index and sectional curvature $-4 \le K(\pi) \le -1$. Such manifolds can admit no Riemannian metric of constant negative curvature.

This paper answers affirmatively a fundamental question: is the class of manifolds admitting Riemannian metrics of strictly negative sectional curvature larger than the class of manifolds admitting Riemannian metrics of constant negative sectional curvature ([7, p. 801])? In [6] Calabi asked a related question: Let M be a compact *n*-dimensional Riemannian manifold of strictly negative sectional curvature $K(\pi) < 0$. Can we find $\delta > 0$ sufficiently small so that if $-1 - \delta \le K(\pi) \le -1$ then M admits a Riemannian metric of constant negative sectional curvature? This paper does not resolve the question of Calabi but shows that $\delta < 3$ is necessary if the conjecture is true. For the rest of this paper see [2].

Definition 1. Let M be a connected, simply connected Riemannian manifold. A Clifford-Klein form of M is a Riemannian manifold M' whose simply connected Riemannian covering space is M.

The bounded symmetric domains M in C^n endowed with the Bergman metric are Riemannian symmetric spaces, and the group of complex analytic homeomorphisms of M contains the identity component of the isometries of M.

Definition 2. For a bounded symmetric domain M in C^n , a Clifford-Klein form M' of M is said to be complex analytic if it is a complex analytic manifold and if the natural map of M to M' is analytic. In [2] A. Borel proved the following:

Theorem 1. A bounded symmetric domain always has a compact complex analytic Clifford-Klein form, and any such form has a regular finite Galois covering.

Communicated by E. Calabi, October 25, 1969. The preparation of this paper was sponsored in part by NSF Grant GP-11476.

PATRICK EBERLEIN

In [5] Hirzebruch defined the index of a compact oriented 4k-manifold. The index of a manifold may be represented as a linear combination of Pontryagin numbers and consequently is zero if all Pontryagin classes of the manifold are zero. In [3] Chern proved that if M is a Riemannian manifold (not necessarily compact) of constant negative sectional curvature, then its Pontryagin classes are zero, and hence if M is compact and orientable, then its index is zero.

There is a one to one correspondence between irreducible bounded symmetric domains M of C^n and compact hermitian symmetric spaces N, [2], [4]. In [4] Hirzebruch proved:

Theorem 2. Let M' be a compact, complex analytic Clifford-Klein form of an irreducible bounded symmetric domain M in \mathbb{C}^n with compact counterpart N. Then M' is an algebraic manifold and index $(M') = index (N) \times algebraic$ genus of <math>M', where the genus is positive if n is even, and negative if n is odd.

Let $B^{2r} \subseteq C^{2r}$ be the open unit ball. With the Bergman metric (normalized), B^{2r} has sectional curvature $-4 \leq K(\pi) \leq -1$, [1]. In fact, B^{2r} has constant holomorphic curvature -4. The compact counterpart N = U(2r + 1)/U(2r) $\times U(1)$ and index (N) = 1. If M' is any compact complex analytic Clifford-Klein form of B^{2r} , then index (M') = algebraic genus of $M' \geq 1$ by Theorem 2. If M'' is an *r*-sheeted covering space of M', then index $(M'') = r \times$ index (M'). Combining these facts with Theorems 1 and 2 we obtain:

Theorem 3. Let r, s be any two positive integers. Then there exists a compact complex analytic manifold M' of real dimension 4r such that index (M') > s and $-4 \le K(\pi) \le -1$ for all 2-planes π ; such a manifold admits no metric of constant negative sectional curvature.

Bibliography

- [1] M. Berger, correspondence.
- [2] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963) 111–122.
- [3] S. S. Chern, On curvature and characteristic classes of a Riemannian manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955) 117-126.
- [4] F. Hirzebruch, Automorphe formen und der Satz von Riemann-Roch, Sympos. Internac. Topología Algebraica, Mexico, 1958, 129-144.
- [5] —, Topological methods in algebraic geometry, Springer, New York, 1966, 84–86.
- [6] S. Kobayashi & J. Eells, Jr., Problems in differential geometry, Proc. U.S.-Japan Sem. in Differential Geometry, Kyoto, Japan, 1965, p. 169.
- [7] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967) 747-817.

UNIVERSITY OF CALIFORNIA, LOS ANGELES