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Introduction

Transitivity questions in differential geometry can often be reduced to
problems involving a certain type of “topologized” Lie algebra. In [6] we
developed a structure theory for such algebras analogous to the classical
Jordan-Ho6lder theory for groups and rings. (See paragraphs 4 and 5 in §2
below.) The building blocks of this theory are the primitive algebras. In this
paper we will study these algebras in detail. In particular we will sketch the
“Cartan classification theorem” for primitive algebras over an algebraically
closed field. In its broad outlines, our proof follows Weisfeiler [19].

Weisfeiler’s proof is based on a remarkable theorem of Kac about infinite
dimensional graded Lie algebras [11]. We will show how this theorem can be
deduced by a simple completion trick from the following theorem proved in
§ 3 below: An infinite dimensional linearly compact Lie algebra possesses at
most one primitive subalgebra. This theorem can be proved without assuming
that the base field is algebraically closed, and the proof requires relatively
little machinery (mainly some elementary results from commutative algebra).

This paper is organized as follows: The first section is a compendium of
standard results on primitivity (included mainly for motivation).

§2 is a review of the material in [6]. In §3 we prove our main theorems
on primitivity (modulo some results on characteristics which are proved in the
appendix). In §4 we discuss primitivity for graded algebras and prove two
important lemmas (Lemmas 4.2 and 4.3). In §§ 5, 6 we prove the theorem of
Kac alluded to above. The rest of the paper is a sketch of the Cartan classifi-
cation theorem, the main idea of which is the Weisfeiler trick of associating
with every primitive Lie algebra a graded Lie algebra with the property that
the term of degree zero acts irreducibly on the term of degree — 1.

The author would like to thank Martin Golubitsky for advice on the material
in § 8 and Shlomo Sternberg for many helpful suggestions throughout.

1. Primitivity

Let G be a group and let S be a set on which G acts. Let “~” be an
equivalence relation on S. We will say that “~” is invariant with respect to G
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if a ~ b implies ga ~ gb for all gin G. An example is the identity equivalence
relation (any two distinct points are inequivalent); and another is the trivial
equivalence relation (all points are equivalent). If these are the only invariant
equivalence relations on S we will say that the action of G on S is primitive.
We list below a few elementary facts about primitive group actions:

1. If G acts primitively on S there is a single orbit for the action since the
equivalence relation:

a ~ b & a and b on the same orbit, is an invariant equivalence relation.
Therefore if H is the isotropy group at some point, S can be identified with
the coset space G/H such that the action of G on § is identical with the usual
left coset action.

2. H is a maximal subgroup of G; for suppose G contains a proper
subgroup H’ sitting over H. Then there is a natural projection z: G/H —G|H’,
and the equivalence relation x ~ y & #(x) = z(y) is an invariant equivalence
relation on G/H.

3. Itis easy to see that the converse is true. If H is a maximal subgroup
of G, the action of G on G/H is primitive. Therefore, the problem of
determining primitive representations of G reduces to the problem of
determining maximal subgroups.

4. Suppose we require that the representation of G on § be faithful. This
amounts to requiring that the isotropy subgroup H contain no normal subgroup
of G.

It may happen for certain groups that no such subgroups exist. (An example
is the additive group of integers.)

5. Let G be aLie group and ¢ its Lie algebra. Let H be a closed connected
subgroup of G. Then for the representation of G on G/H to be primitive, the
subalgebra of ¢ corresponding to H must be maximal. If in addition we require
the representation to be faithful we must require that this maximal subalgebra
contain no ideals of ¢ except {0}. We will call such a subalgebra primitive.

6. Not all Lie algebras possess primitive subalgebras: A result of Morozov
[15] says that if & possesses a primitive subalgebra, then ¢ is either semisimple
or is an abelian extension of a semisimple algebra. Moreover, if ¢ is
semisimple, then it is either simple or is of the form ¢ = ¥, ® ¢, where ¢,
is simple. If ¢ is not simple, and possesses a primitive subalgebra, this
subalgebra is unique up to conjugacy by inner automorphisms. If ¢ is simple,
however, then every maximal subalgebra is primitive, and there exist maximal
subalgebras which are not conjugate. Those which are of the same rank as ¢
were classified by Borel-de Siebenthal in [2]. The non-maximal rank ones
were determined by Dynkin in [4]. (Dynkin’s result involves an extremely deep
theorem about the non-existence of inclusion relations among linear represen-
tations of the simple groups.) Some amplifications of the Borel-de Siebenthal
results were obtained recently by Kobayashi and Nagano [13], Ochiai [16],
and Golubitsky [5].
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7. The notion of primitivity makes sense for pseudogroups as well as for
groups. (An example of a primitive pseudogroup is the set of all diffeomor-
phisms of open sets of R*. For definitions concerning pseudogroups, see [18].)

Elie Cartan showed that there are very few primitive pseudogroups which
are not associated with primitive actions of Lie groups. He gave a complete
list of these in [20]. Besides the pseudogroup described above they include the
pseudogroup of volume preserving transformations on R”, the pseudogroup of
symplectic transformations on R*", the pseudogroup of contact transformations
on R**!, and complex versions of these pseudogroups.

8. The problem of determining the primitive pseudogroups can be reduced
to a purely algebraic problem: in a certain class of infinite dimensional Lie
algebras determine those which prossess primitive subalgebras. A precise
formulation of this problem will be given below (§3). In [7] Quillen,
Sternberg, and the author solved this problem over the field of complex
numbers, and verified the results of Cartan described above. However, our
proof was in a certain respect unsatisfactory: It required imbedding the given
Lie algebra into a Lie algebra of holomorphic vector fields; and to do this we
needed a rather complicated result from analysis, the Cartan-Kaehler theorem.

Recently B. Yu. Weisfeiler gave a purely algebraic proof of our result,
using some remarkable theorems on infinite dimensional graded Lie algebras
due to Kac [11]. In §§ 7-9 we will sketch a version of this argument, and we
will prove Kac’s results in § 6.

2. The linearly compact topology

We will review some basic definitions from our earlier paper [6]:

Let 4 be a field of characteristic zero. We will give 4 the discrete topology
so that we can think of it as a topological field. Let W be a topological vector
space over 4. The following three properties turn out to be equivalent:

a) W is the projective limit of finite dimensional discrete spaces.

b) W is the topological dual of a discrete space.

c) W is the product of finite dimensional discrete spaces with the standard
product topology.

If W has one of the above properties we will say that W is linearly compact.
The basic facts about such spaces have been summarized in [6]. One useful
fact is the following:

If W is linearly compact then a subspace of W is open if and only if it is
closed and of finite codimension. The open subspaces form a system of
neighborhoods for the origin.

Another useful fact is Chevalley’s principle:

Let W, D W, D - - . be a sequence of closed subspaces of a linearly compact
topological space and suppose NW, = {0}. If U is a neighborhood of the
origin then for some i), W, C U.
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By a topological Lie algebra over 4 we will mean a topological vector space
W over 4 together with a bracket operation “[ 1”: W X W — W which is
bilinear, continuous, antisymmetric, and satisfies Jacobi’s identity. A topolo-
gical Lie algebra will be called linearly compact if as a topological vector space
it is linearly compact.

Example 1. Let L be any finite dimensional Lie algebra over 4 with the
discrete topology. Then L is linearly compact.

Example 2. Let F, be the ring of formal power series in » indeterminants
over 4, and L, be the Lie algebra of A-linear derivations of F,. Every such

derivation can be written as a ‘“‘vector field” of the form fl_a_ + e+ fn_@_,
0x, 0x,
where each f; is a formal power series in x,, - - -, x,. Therefore as a vector

space L, is isomorphic to n copies of F,. If we give F, its usual Krull topology,
which is linearly compact, then £, acquires a linearly compact topology, and
it is not hard to see that the bracket operation is continuous.

Example 3. Any closed subalgebra of the algebra above. This provides
many examples of linearly compact algebras which are not finite dimensional.
(See below.)

It turns out that the category of linearly compact Lie algebras is small enough
for some interesting theorems to be true, and large enough to include most of
the interesting examples which come up in differential geometry. For details we
refer to our article “A formal model of transitive differential geometry” [9].
We list below some relevant facts about linearly compact Lie algebras, most
of which are proved in [6].

1. If L is linearly compact the following two properties are equivalent.
2.1) a) There is a neighborhood of zero containing no ideals except {0}.
b) L satisfies the descending chain condition of closed ideals.

2. Let F, be the ring of formal power series in n indeterminants over 4,
and I, be the Lie algebra of 4-linear derivations of F,. (See Example 2 above.)
A subalgebra L of I, is called transitive if no ideals of F are invariant under
L except {0} and F, itself. It is not hard to see that a transitive subalgebra of
L, satisfies condition a) of (2.1). Conversely any algebra which satisfies either
of the conditions (2.1) is isomorphic to a transitive subalgebra of L, for some
n. (An elegant proof of this result can be found in Blattner [1].)

3. Suppose that L satisfies condition a) of (2.1), i.e., suppose there is a
neighborhood @ of zero in L containing no ideals except {0}. We can assume
that @ is a closed subspace of L of finite codimension. (See the remarks at the
beginning of the section.)

Let L' = {x e O|[x,yl e 0,vy e L}. It is not hard to show that L° is also
closed and of finite codimension; and it is also easy to see that it is a
subalgebra. Since @ contains no non-zero ideals, the same is true of L.

Definition 2.1. A closed subalgebra L° of L, which is of fininite codimension
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in L and contains no ideals except {0}, is called a fundamental subalgebra of L.
From the previous remarks we see that L has a fundamental subalgebra if
and only if it satisfies the conditions (2.1).
4. Suppose L satisfies the conditions (2.1). Then there exists a sequence of
closed ideals

*) L=I1,2I,> .- DI, = {0}

such that for all 0 < j < k one of the following alternatives holds.

a) There are no closed ideals of L properly containing I;,, and properly
contained in I;.

b) [U;,I;,1cCl,,,.

Though the above sequence is not unique the non-abelian quotients I;/1;,,
occurring in the sequence are unique up to isomorphism (multiplicities counted).

5. Let I be a non-abelian quotient occurring in the sequence (*). Then as
a Lie algebra I is isomorphic to a tensor product R &® F,, where F, is the
formal power series ring in n indeterminants and R is a simple non-abelian
linearly compact Lie algebra. (Here the symbol & denotes the tensor product
in the category of linearly compact topological spaces, and is a completion of
the usual algebraic tensor product.)

3. Primitivity for linearly compact Lie algebras

Let L be a linearly compact Lie algebra, and L® be a fundamental subalgebra
of L. (See Definition 2.1 above.) We will say that L° is primitive if it is a
maximal subalgebra of L.

We pointed out above that only rather special kinds of finite dimensional
Lie algebras possess primitive subalgebras. (See paragraph 5 of §1.) We will
see below that the same thing is true for the infinite dimensional algebras. We
begin by discussing some concepts required for the proof of our main results:

1. Let L be a linearly compact Lie algebra satisfying the descending chain
condition on closed ideals, ©® be the collection of all closed subspaces of L
which are invariant with respect to the group of continuous automorphisms of
L, and « be a derivation of L. We will say that « is exponentiable if for all
HeO, a(H) C H. In particular we will say that an element x of L is
exponentiable if the derivation ad x is exponentiable.

Proposition 3.1. Let L® be a fundamental subalgebra of L, and a be a
derivation of L which maps L° into L. Then « is exponentiable.

Proof. We define a filtration on L as follows. Starting with L°, we define:

L= {xeL"'|[x,y]e L', vyeL}

for i =1,2,3, etc. It is easy to verify that the L? are closed and of finite
codimension in L, and that the bracket of L? with L/ is in L¢*7 for all i and j.
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The intersection of the L%’s is an ideal in L; however, L° is a fundamental
subalgebra by assumption, so this intersection is zero. This means that the

sequence L, L%, L', - .. is a filtration of L in the sense of [6]. It is easy to
verify inductively that « maps L? into L? for all i.
Now let

[ 1,:L/L* x L/L* — L/L*"

be the truncation of the bracket operation on L. Let G* be the group of all
linear mappings of L/L* onto L/L*, which preserve the bracket [ ], and the
filtration on L/L*. In [9] we proved the following:

Lemma. There exists an integer k, such that for all k > k, every element
o in G* extends to a continuous automorphism p: L — L with the property
that p(L*) = L* for all i. (See Theorem II on page 272.)

Let H be a closed subspace of L belonging to &. We will show that for all
k sufficiently large, « maps H + L* into itself. Since H is invariant under all
continuous automorphisms of L,(H + L*)/L* is invariant under G* by the
lemma. However, G* is an algebraic group whose Lie algebra contains the
endomorphism induced on L/L* by «. Therefore, H + L* is invariant under
a. Since H is closed, H = N(H + L*) (see Chapter 1 of [6],); so a(H) C H.

2. If L is a finite dimensional Lie algebra, every derivation is exponentiable.
We will show that this is not always the case for the infinite dimensional
algebras. To show this we need the following fact.

Proposition 3.2. Let L be an infinite dimensional linearly compact Lie
algebra satisfying the descending chain condition on closed ideals. Then there
exists a proper closed subspace of L of finite codimension which is mapped
into itself by every continuous automorphism of L.

The proof of this proposition involves some properties of the “characteristic
variety of L.” We will discuss this concept and prove the above assertion in
the appendix. )

Our first main result is a corollary of Proposition 3.2.

Proposition 3.3. Let L be a simple infinite dimensional linearly compact
Lie algebra. Then L possesses a unique primitive subalgebra which consists of
the exponentiable elements of L.

Proof. Let L° be the set of exponentiable elements of L. It is clear that L°
is a closed subalgebra of L. By Proposition 3.1, L° contains every fundamental
subalgebra of L. Since L is simple, L’ is itself a fundamental subalgebra
providing it is not equal to L. Suppose L' = L; i.e., suppose every element
of L is exponentiable.

By Proposition 3.2 there exists a proper closed subspace H of finite
codimension in L, which is invariant under ad x for all x in L. This, however,
implies that H is an ideal; and thus contradicts our assumption that L is
simple and infinite dimensional. Therefore L° + L, and we are done.
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Remark. Proposition 3.3 is not true if L is finite dimensional. (See
paragraph 5 in §1.)

3. The following proposition shows that if a linearly compact Lie algebra
admits a primitive subalgebra, then it is a finite dimensional extension of a
simple algebra.

Proposition 3.4. Let M be an infinite dimensional linearly compact Lie
algebra possessing a primitive subalgebra M°, and L be the intersection of all
the closed non-zero ideals of M. Then L has the following properties :

a) L is of finite condimension in M.

b) As a Lie algebra, L is simple and non-abelian.

¢) The adjoint representation of M on L is faithful.

d) LN M°is the unique primitive subalgebra of L described in Proposition
3.3.

Proof. We define a filtration on M just as we did in the proof of Proposition
3.1. Starting with M° we define

M* = {x e M*"*|[x,y] e M*"', vy ¢ M}

fori = 1,2, 3, etc. Let I be an arbitrary closed non-zero ideal of M. Since
I + M° is a subalgebra of M containing M°, the primitivity of M° implies
I + M° = M. Therefore, the homomorphism M°/(M°N1I) — M/I is bijective.
M satisfies the d.c.c. on closed ideals; so M/I does also. Each M* is a closed
ideal of M°, and NM* = {0}; so for some kK M* C M° N I. This shows in
particular that every closed ideal of M is of finite codimension. If L is the
intersection of all non-zero closed ideals, it is also of finite codimension
because of the d.c.c. on closed ideals in M. In particular, L is non-zero; so if
we apply the previous argument to it, we get L D M* for large k.

Next we will show that M® does not contain non-zero ideals of L. Suppose
J is an ideal of L contained in M°. Then [L,J]CJ and JC M°=[L,J] C M°;
and J C M’ = [M°, J] € M’. We showed above that M = L 4+ M°; so we
get [M,J] C M° which implies J C M. If the same argument is repeated with
M" replaced by M', M?, etc., we get J C M?, M?, etc. and finally J € N M*
= {0}, which proves our assertion.

We will now show that L is non-abelian. If L were abelian, we would get
[L, M*] = {0} for large k because, as we saw above, L D M* for large k.
However, if this were to happen, M* would be an ideal of L contained in M°
contradicting what we just proved.

Let J be a closed ideal of L such that L/J is simple and non-abelian. (Such
an ideal exists by Proposition 6.1 of [6].) For every integer i > O let J¢ be the
set of all a € L such that

ad(x) ---ad(xp)aelt

for all k < iandall x,, ---,x, € M. It is easy to verify that [J¢, JF]C Ji+k,
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In particular, since J* = L, J* is an ideal of L. The intersection NJ¢ is an
ideal of M; so this intersection is zero because by definition L is contained in
every non-zero ideal of M. By Chevalley’s principle, J¢: C M° for some large
i; and since we have shown that M’ contains no non-zero ideals of L, J* = {0}.
This shows in particular that J is nilpotent.

In [6] we showed that the graded Lie algebra XJi/J¢*! is isomorphic to a
tensor product I/J @ S where S is a graded polynomial ring. (See Proposition
7.2.) This contradicts the nilpotency of J unless S is just the polynomial ring
in zero variables (i.e. the ring of scalars). In this case, J is zero, and L is
simple as a Lie algebra.

Consider the representation of M on L obtained by restricting the adjoint
representation. The kernel of this representation is a closed ideal I’ of M; so
either I’ = {0} or I’ C L. The second alternative is ruled out because L is
non-abelian, so the adjoint representation on L is faithful.

We have proved all items of Proposition 3.4 except d). To prove d) let L°
be the set of exponentiable elements of the Lie algebra L. It is obvious that
every continuous automorphism of M maps L° into L°, so ad x maps L° into
L’ whenever x is an exponentiable element of M. By Proposition 3.1, M"
consists of exponentiable elements, so [M°, L] C L°. This proves that M° 4 L°
is a subalgebra of M. Because of the primitivity, it is either equal to M or to
M°; and since L* D L N M°, it is equal to M°. Thus L°C M* and M°N L =L".
This concludes the proof of d).

4. As a corollary of Proposition 3.4 we get the following strengthened
form of Proposition 3.3.

Proposition 3.5. Let M be an infinite dimensional linearly compact Lie
algebra possessing a primitive subalgebra M°’. Then M° is the only primitive
subalgebra of M, and consists of the exponentiable elements of M.

Proof. Let M’ be the set of exponentiable elements of M. M’ contains M°
by Proposition 3.1; so either M’ = M° or M’ = M. Let L be the ideal
described in Proposition 3.4, and L° be the set of exponentiable elements of
the Lie algebra L. Every continuous automorphism of M is also a continuous
automorphism of L, and so it has to preserve L°. Therefore, if x is an
exponentiable element of M, then ad x maps L’ into L°. If M’ were equal to
M, then L® would be an ideal of M, contradicting the fact that L is the smallest
non-zero ideal of M. So M’ = M° and we are done.

4. Primitivity for graded Lie algebras
In this section we will consider graded Lie algebras® of the form:

1 By a graded Lie algebra we will mean an ordinary Lie algebra which is graded in
such a way that the bracket of an element of degree k£ with an element of degree [ is
of degree k + I. Some authors use this term to mean an algebra with a bracket
operation which satisfies the identity [x, y] = (—1)k¥+![y, x] if x is of degree k and y of
degree I.
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4.1) g =>g.

We will assume each of the summands g* is a finite dimensional vector space,
and we will also assume that the summation on the left is finite, i.e., that there
is a positive integer k such that g=* % {0} and g=! = {0} for —I < —k.

We will denote by %° the subalgebra of ¢ consisting of elements of degree

greater than or equal to zero, i.e., the sum ), g*. We will also denote by ¢+
1=0

the subalgebra of ¢ consisting of elements of positive degree, and by %~ the
subalgebra consisting of elements of negative degree.

Definition 4.1. We will say that the graded Lie algebra ¢ is primitive if
%’ is a maximal graded subalgebra of ¢, and contains no graded ideals of ¥
except {0}.

1. We point out some simple consequences of Definition 4.1:

Proposition 4.1. Let & be primitive.

a) Then g7' generates G-

b) Ifae %" and[g',al =0, then a = 0.

Proof. Let §j be the graded subspace of ¥~ generated by g~'. We will
show that [§, ¢°] is contained in Y) + %°. This is clearly true for elements of
degree —1 in . Suppose it is true for elements of degree —I. Let a be an
element of degree —I — 1 in Y of the form [x, b] where b is an element in §
of degree —I, and let ¢ be an element of ¥°. Then [a,c] = [[x, bl,c] =
[[x, cl, b] + [x,[b, c]l]. The first term on the right is clearly in § + %°, and
the second term is in § + %° by induction; so the sum is in §) + %°, proving
our assertion. Since [%° §]lisin § + ¥°, ) + ¥°is a graded subalgebra of ¢
containing ¥°, so it must be equal to ¢ since ¢ is primitive. This proves a).

To prove b) we note that if a is in ¥° and [x, a] = O for all x in g~!, then
[y,a] = O for all y in ¢~ by part a). Let b be the graded ideal of ¥° generated
by all elements whose bracket with g~ is zero. It is easy to see that b is also
an ideal of ¢. By the primitivity b = {0}, which implies part b).

Corollary. Let i and j be positive integers, and suppose g=* and g’ are
non-zero. Then g" is non-zero when —i < r < j.

2. Let ¢ be a graded Lie algebra. There is a rather simple way to associate
a linearly compact Lie algebra with ¢. Suppose we replace the sum (4.1) by
the product:

g .

o

s

g =

|

l=

This is also a Lie algebra, with basically the same bracket operation as that
on . @ can be topologized by giving each g' its discrete topology and % the
standard product topology. With this topology & is linearly compact. (See
Chapter 1 of [6].) Note that ¢ can be imbedded in @ as a dense subset by
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identifying homogeneous elements in ¢ with those in &. There is also a way
to recapture ¢ from % as follows:

Let @ = [] g'. This is a closed subspace of finite codimension in ¢, and
[, @] is ccl)?lltained in Zi*i, so the sequence - - -, g%, ¥+, . .. is a filtration
of % in the sense of [6]. It is easy to see that % is the graded Lie algebra
associated with this filtration.

We will need below the following:

Lemma 4.1. If ¢ is a primitive graded algebra, then %° is a primitive
subalgebra of % in the sense of § 3.

Proof. Suppose b is an ideal of ¢ contained in %°. Applying the “‘gradation
functor” to b we get a graded ideal b of & contained in ¢°. Since & is primitive,
this ideal is zero; so #° is a fundamental subalgebra of . Next suppose that
@ is a subalgebra of ¢ containing %°. Applying the gradation functor to @, we
get a graded subalgebra a of ¥ which contains ¢° and has the same codimension
in ¢ as @ does in 9. Since ¢ is primitive, this subalgebra must be either ¢
or ¥°. Therefore, @ must be either Z or Z°.

3.  We will use the results of the preceding paragraph and Proposition 3.5
to prove:

Proposition 4.2. Let ¥ be an infinite dimensional primitive graded Lie
algebra, and let a be a graded subalgebra of % which contains g* for all k
sufficiently large. Then either a contains %~ or is contained in %°.

Proof. Let a be the closure of ¢ in %. Then either @ is a fundamental
subalgebra of ¢ in which case it is contained in %° by Proposition 3.5; or a
contains an ideal b of . By applying the gradation functor to b we get a
graded ideal b contained in a. The sum b + %° is a graded subalgebra of ¢,
so it is equal to & by the primitivity. Since b is contained in a, a contains ¥~.

4. The following pair of lemmas will be the main tool used in the classifi-
cation argument in § 6.

Lemma 4.2. Let 4 be an infinite dimensional primitive graded Lie algebra
whose leading non-zero term is of degree —k, r and s be positive integers
such that r + s < k, and a be a non-zero element of g=7. Then [a,g*] = g™ 7~%.

Proof. Define a graded subspace,

of ¢ as follows:

Let it =g' for |+ —r — s, and let A~7"° = [a,g"%]. Let ¥ be the
normalizer of §) in ¥, i.e., the set of all elements x ¢ ¢ such that [x, §] is
contained in §, and let f = ¥ N §. It is easy to see that { is a graded subalgebra
of 4. Since § contains all elements in ¢ of degree >0, ¥ contains all elements
of degree > k. We will show that f also contains the element a. In fact if
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[ #+ —s, then [a, g'] is contained in A 7*'7since”h 7+ = g7 v*!, If [ = —s,
then [a,g*] = h~7~% by definition. Therefore [a, ¥] is in ), and a is in the
normalizer of §. Since g7 = A~7, ais also in §j, so a is in { as asserted. Now
f contains non-zero elements of negative degree and all elements of sufficiently
high degree, so f contains %~ by Proposition 4.2. Since f is contained in §, §
contains ¢~. In particular, [a,g~*] = g7"~%.

Lemma 4.3. Let ¢ be an infinite dimensional primitive graded Lie algebra
whose leading term is of degree —k, and r be a positive integer <k. Then the
adjoint representation of g° on g=* is irreducible. Moreover, if a is a non-zero
element of g™7, then either a spans g~" or g°" = [a, g°].

Proof. The argument is similar to the preceding one. Let W be an invariant
irreducible subspace of g~ with respect to the adjoint representation of g°.
Define a graded subspace:

of & by setting h* = g' for I + —r and A" = W. Let { be the intersection of f)
with its own normalizer. { is a graded subalgebra of ¢ containing all elements
of degree >k, and it is also easy to see that { contains W by an argument
similar to the above one. Therefore f contains ¥~ by Proposition 4.2. In
particular, W = g=7, and the representation of g° on g~ is irreducible.

Now let a be a non-zero element of g~7, and define a graded subspace
hH = Xh! of ¢ by setting A = g' for [ # —r and A" = [a, g°]. Let f be the
normalizer of §) in ¥. Then a is in f and all elements of degree > k are in f,
so f contains g~7 by Proposition 4.2. Since g’ = /A’ and g~ is in the normalizer
of §, [g°, g 7] is contained in A=7. But A~ = [a, g']; so [g° g~7] is contained
in [g°, a]. Since the representation of g° on g~ is irreducible, either [g°, g77] is
zero and g7 is one-dimensional, or [g°, g=7] = g~7 and g=" = [a, £°] as asserted.

5. Transitive linear representations of finite dimensional Lie algebras

Let g be a finite dimensional Lie algebra over an algebraically closed field
4 of characteristic zero, and V be a finite dimensional vector space over 4 on
which g acts as a Lie algebra of linear transformations. We will say that the
representation of g on V is transitive if, for every pair of non-zero elements v
and w in V there exists an element in g which maps v onto w. It is clear that
a transitive representation is irreducible; therefore, as a Lie algebra, g is
either semi-simple or semi-simple with a one-dimensional center.

We will show:

Proposition 5.1. If the representation of g on V is faithful and transitive,
the semisimple part of g is simple.

Proof. Let g, ---,g, be the simple components of the semi-simple part
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of g. We can write V as a tensor product:
V=V,Q® ---QV,,

and we can write the representation of the semisimple part of g as a tensor
product of irreducible representation of the g; on the V,. Let G; be the
algebraic Lie group associated with the representation of g; on V;, and G be
the product of the G;’s. The transitivity of the representation of g on ¥ implies
that the non-zero orbits of G are open in the Zariski topology. (See Chevalley
[3].) Therefore since ¥ is connected, there is just one non-zero orbit. We
will say that an element v in V is decomposable if it can be written in the
form: v =, ®v,Q .- @ v,, where v, is in V,. If two elements of V are
conjugate via an element of G, and one is decomposable, then the other is
also; so by the remark above every element of V' is decomposable. This
implies that all of the V; except one are one dimensional. (Suppose, for
example, that ¥V, and V, were of dimension > 2. Let v, and w, be two
linearly independent vectors in ¥, and v, and w, two linearly independent
vectors in V,. Then v, ® w, + v, ® w, is not decomposable.)

Therefore, all g; except one must be zero; and the semi-simple part of g is
simple as asserted.

Proposition 5.2. Suppose the representation of g on V is faithful and
transitive. Let v* and v~ be the maximal and minimal weights of V. Then
there exists a root o such that v* — vy~ = a.

Proof. Let w* be a weight vector corresponding to the maximal weight,
and w~ a weight vector corresponding to the minimal weight. Then there
exists an element 4 in g such that Aw~ = w*. Let H,, ---,H,, E,, ---,E,,
be the standard basis for g, where H,, --., H, are a basis for the Cartan
subalgebra of g, and E,, spans the root space corresponding to the root «;.
We can write 4 as a linear combination: 4 = )] ¢;H; + ), d,E,,. Applying
A to w™ we get

wt = {3 co (H)w™ + X dE, (w) .

Each of the individual terms in the sum on the right lies in a different weight
space; so all of the terms but one are zero. The first term must be zero since
w~ and w* are linearly independent, so w* = d,E,,(w™) for some i. Hence
v* = v~ + «,;, proving the assertion.

Corollary. The simple part of the algebra g is either sl(n) in which case
the representation of g on V is its standard n dimensional representation, or
sp(2n) in which case the representation of g on V is its standard 2n dimensional
representation.

Proof (due to Sternberg [8]). We first observe that since v* — y~ is the
maximal weight of ¥V @ V* and g is contained in V @ V*, « is the maximal
root of g. Suppose g is of rank n — 1, and let 4, ---,4,_, be the maximal
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weights of the fundamental representations of g. Since v* and —y~ are both
maximal weights of g (on ¥V and V* respectively), we conclude that v+ =

n—1 n-1
>1a2; and —y~ = Y b;A; where the a’s and b’s are non-negative integers
i=1 ;

= i=1
with > a; > 1and ), b, > 1.

Now for all simple algebras except 4,,_, and C,,_, the maximal root is a ;
for some i, so it is impossible for & to be written in the form y* — y~ =
1 (a; + b)a; with 3] (a; + b;) = 2. In the case of A4,_, the maximal root is
2, + 2,_;, so the only possibility is vy* = 2, and —y~ = 1,_, or visa versa.
These two representations are both equivalent to the standard representation
of sL(n). For C,_, the maximal root is 21, and so y* = —y~ = 4, which
gives the representation of C, _; as the standard representation of sp(2n).

6. A theorem of Kac

Combining Lemmas 4.2 and 4.3 with the results of the preceding section
we will prove:

Proposition 6.1. Let ¥ = 3 g* be an infinite dimensional primitive graded
Lie algebra over an algebraically closed field of characteristic zero. Then

a) g is simple or simple with a one dimensional center.

b) The simple part of g° is either sl(n) or sp(2n).

¢) The adjoint representation of the simple part of g" on g=! is either the
standard n dimensional representation of sl(n), or the standard 2n dimensional
representation of sp(2n).

d) Either g=* = {0} or g% is one dimensional.

e) g =/{0}fori< —2.

Proof. The adjoint representation of g° on g~! is faithful by Proposition 4.1
and transitive by Lemma 4.3, so a), b) and c) are a consequence of the results
proved in §5. To prove d) and e) suppose dim g2 = 1. Then, by Lemma
4.3, the representation of g° on g~* is transitive. However, since [g!, g7']
= g~?, this representation can be identified with an irreducible subrepresen-
tation of A*g~'. Suppose the simple part of g° is si(n). Since the representation
of g° on g7! is the standard »n dimensional representation, A?g~! is irreducible
and, with one exception, inequivalent to the standard representation. (The one
exception is # = 3 in which case A* = A""!.) Therefore, with one possible
exception, g% = {0}.

Next suppose that the simple part of g° is sp(2n). Then A°¢~' decomposes
into two irreducible subspaces, one of which is one dimensional and the other
n(2n — 1) — 1 dimensional. By comparing dimensions one sees that neither of
these representations is equivalent to the standard one, so again g~ = {0}.

When the simple part of g° is s/(3) we need a slightly more complicated
argument. In this case either g~? is zero or g~ = A’g~'. Suppose the latter.
Let p* be the maximal weight of the representation of g° on g~°, and v~ the
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minimal weight of the representation of g° on g~'. The representation of s/(3)
on A’%g~! is the transpose of the representation on g7', so v~ = —pu*. Let v*
be a weight vector corresponding to the p*, and v~ a weight vector corre-
sponding to v~. Applying Lemma 4.2 with v~ = a we get an element x in g~*
such that [x,»~] = v*. We can assume x is a weight vector corresponding to
a weight 8; so we get u* = v~ + B or p = 2v~. However, § is a weight of the
standard representation and v~ is its minimal weight, so this is impossible.
Hence g~ = {0}. This excludes the case g° = sI(3).

Now suppose g% is one dimensional. We will show that g3 is zero or one
dimensional. In fact, let a be a non-zero element of g=!. Then [a,g7%] = g*
by Lemma 4.2, so dimension g=2 is less than one or equal to one as claimed.

Let g’ be the simple part of g°, and b be a non-zero element of g~?. By
Lemma 4.2, [b, g7'] = g°. Since g’ acts trivially on g~%, the representations
on g~! and g~* are intertwined. This is impossible if dim g=* = 1, so dim g3
= 0. By the corollary to Proposition 4.1, g7% = {0} for all kK > 3. This
concludes the proof of Proposition 6.1.

Corollary. If dim g% = 1, then g° is sp(2n) plus a one dimensional center.

Proof. Let g’ be the simple part of g°. Since [g’, g7%] = 0, the Lie bracket
on g7! defines an antisymmetric bilinear form on g~! invariant with respect to
g, so g’ clearly has to be sp(2n). If g° did not have a center, then we would
have [g° g7%] = 0. We will show that this would imply [g*, g7 %] = O for all
k. In fact, suppose we have shown this for ¥ — 1. Then [g™*, [g*, g %]] is
contained in [g7?, g¥~'] which is zero by induction. By Proposition 4.1,
[¢7% g¥] = 0. This implies that g% is an ideal in ¢, and contradicts the
primitivity of #. q.e.d.

Using the above results one can prove the following theorem :

a) There is just one primitive infinite dimensional graded algebra with
2 = sl(n).

b) There are just 2 primitive infinite dimensional graded algebras with
g = gl(n).

c) There is just one primitive infinite dimensional graded algebra with
g’ = sp(2n).

d) There is just one primitive infinite dimensional graded algebra with g°
= sp(2n) + {cl} and g% = {0}.

e) There is just one primitive infinite dimensional graded algebra with g°
=sp(2n) + {cI} and dimg~? = 1.

Thus there are six classes of primitive infinite dimensional graded algebras
in all. These correspond to the six classes or primitive infinite groups dis-
covered by Cartan.

The proof of this theorem can be found in [18]. It is not hard, but the details
are a little messy. To indicate the idea of the proof we will carry out the details
for a):
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In this case g72 = {0}; so [g7?, g7'] = {0}. For every positive integer k we
will define an injective linear mapping:

p: 8° — Hom (S**'(g™), &)
as follows. Let a be an element of g*, and x,, - - -, x;,, be elements of g~'. Set
Ao(Xyy oy x,_) =adx,adx,adx; --- ad x;,a .

Since adx;adx; = adx;adx;,4, is a k + 1 linear mapping of
k+1

gl X gltX - X g into g7! which is symmetric in its £ 4+ 1 variables.

Therefore, by a universal property of the symmetric product there exists a

unique mapping p, in Hom (S§¥*'(g""), g~') which makes the diagram

g—l X e X g—l_,Sk-i-l(g—l_)

N4

g—l
commute. It is clear that 2,,, = 2, + 4,5 SO pg.5s = po + p». We define
p:8* — Hom (§**'(g™"), &™)

by setting p(a) = p,. It is not hard to show from Proposition 4.1 that p is in-
jective. Moreover, the representation of g° on g¥ commutes with the represen-
tation of g’ on Hom (S**!(g™"), g7); so to identify g* we must look for invariant
subspaces of Hom (S**'(g™"), g7"). This is not hard to do, since the represen-
tation of g° on g~! is just the standard n dimensional representation of si(n). It
turns out that there are just two invariant subspaces, one of which is isomorphic
to $*(g!), and the other isomorphic to elements of trace zero in Hom (S*+!(g~1),
g™Y). It is easy to exclude the first possibility because of the fact that the g*’s
have to form a Lie algebra, so there is just one possibility left.

To conclude the proof of a) we must exhibit a Lie algebra with g° = si(n).
Such an algebra is the algebra of formal vector fields:

0 0

et n sIn € F n
h ox. + f ox. f
satisfying the “divergence condition”:
of;
— =0.
Z 0x;

(See Example 2 in §2.)
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Remarks. 1) The statement of the above theorem appeared in a short note
of Kac in [11]. The datails are due to appear in [12].

2) Kac also gave a classification for the graded simple algebras whose grada-
tions are infinite in both directions. There does not appear to be any relation
between this result and the theory of primitive algebras developed in § 3.

7. The Weisfeiler filtration

Let L be a linearly compact Lie algebra over an algebraically closed field of
characteristic zero, and L° be a primitive subalgebra of L. The adjoint repre-
sentation of L on L induces a finite dimensional representation L° on L/L".
Let W be an irreducible subspace of L/L" for this representation, and H be the
preimage of W in L with respect to the projection L — L/L’. We define an
increasing sequence of subspaces in L as follows. We set L~! = H and, by in-
duction, we define

L+ = [L-, L "] + L7 .

We will show that for some k, L™* = L. Since H is of finite codimension in
L, the sequence L~!, L2, etc... stabilizes for some k; so for some k, [L~!, L~*]
is contained in L~*. However, since L~* is generated by L™, this implies that
[L-*,L~*] is contained in L~*. Since L° is primitive, L=* = L proving our
assertion.

Next we define a decreasing sequence of subspaces in L° as follows. We set

L'={xeL’|[y,x]e L’ wvyeL"},
and by induction we define
L™= {xeL'|[y,x]eL™ ', yyeL}.

It is easy to see that L" is a closed subspace of L of finite codimension. (See
Chapter 2 of [6].) We will show that nL = {0}. It is clear that this intersec-
r=0

tion is invariant when bracketed with elements of L~!. However, as we saw
above, L~! generates L; so this intersection is an ideal. Since L° is a funda-
mental subalgebra the intersection is zero as claimed.

Next we will show that for all —k < i,i < o, [L?, L7] is contained in Li+J,
When i and j are negative, this is obvious by definition. It is also obvious,
when i is negative and j is positive since [L-!, L"] is contained in L7~!. To
prove it for i and j positive we observe that for i > 0, L? is the set of all ae L
with the property that ad x,0ad x,0 -+ cadx;ae L® for all 0 < I < k and all
sequences X,, - - -, x; in L. This fact and the generalized Leibnitz rule imply

[Lt, L] C L+ foralli,j > 0.
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We summarize the remarks above in the following proposition:
Proposition 7.1. The sequence L~%,L~**1 ... I° L' ... isa Lie algebra

filtration in the sense of [6] with the property that L=*|L° is irreducible for the
adjoint action of L°.

Let ¢ = i g" be the graded Lie algebra associated with the above filtra-

r=—k

tion. We list a few of its properties:

a) g ! generates ¥-.
(7.1) b) If ye%®and [x,y] = O for all x e g™!, then y = 0.
¢) The adjoint representation of g° on g™! is irreducible.

(Property a) follows from the identity L~*Y = L= 4 [L~*, L], property b)
from the definition of L? for positive i, and property c) from the definition of
L)

We will use these properties of ¢ to get information about L. We will con-
sider separately the case where g° is non-semisimple and the case where g° is
semisimple, since the first case turns out to be somewhat easier to handle.

We recall that in § 4 we showed every graded algebra ¢ can be imbedded
as a dense subset in a linearly compact algebra %. We will call ¢ the linear
compactification of %.

Proposition 7.2. If g° is not semisimple, then L is isomorphic to the linear
compactification of %.

Corollary 1. ¥ is a primitive graded algebra.

Corollary 2. If L is infinite dimensional, it is isomorphic to the linear com-
pactification of one of the graded algebras listed at the end of § 6.

Proof. The representation of g° on g~* is faithful by condition b) of (7.1)
and irreducible by condition c); so g° is semisimple plus a one dimensional
center. This means we can find an element z in the center of g° such that ad z
is —1 times the identity mapping on g~'. We will show that ad z is { times the
identity mapping on g’ for all i. Assume this is true for g7, r > 1. Every ele-
ment of g=7~! is the sum of elements of the form [x, y] with xe g~ and ye g™".
Applying z to such an eclement we get

(ad z)([x, ¥]) = [(ad 2)(x), ¥] + [x, (ad ()]
—[x, y1 — rlx, ]
= —(@r+ Dlx,y];

Il

so the assertion is true for all terms of negative degree by induction.

Next note that the statement is true for g° since z is in the center of g°. As-
sume the statement is true for g7,r > 0. We will prove it for g"*'. Let y be
an element of g7*!, and x an element of g~'. We get
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(ad 2)([x, y]) = rlx,y] = [(ad 2)(x),¥] + [x, (ad 2)(»)]
= —[x,y1 + [x,(ad 2] ;

)
[x, (ad 2)(»)] = [x, (r + 1yl forall xeg™ .

By part b) of (7.1), (ad z)(y) = (r + 1)y. This proves our assertion for all
integers r.

Now let 2 be an element in L° representing z. We will show that L decom-
poses into an (infinite) direct sum of finite dimensional subspaces &7,
—k < r < oo, such that on g7, ad 2 is r times the identity mapping.

Let s be a large positive integer. ad 2 induces a linear mapping on the finite
dimensional vector space L/L* which we can decompose into its primary sub-
spaces (corresponding to distinct eigenvalues). It is clear that these eigenvalues
are just the integers between —k and s — 1. Let 2 be the subspace corre-
sponding to the i-th eigenvalue. ad Z on g¢ is conjugate to ad z on g, so it is
equal to i times the identity mapping. Therefore, on L/L*® we get the required
decomposition. By letting s tend to infinity and and using the fact that L is com-
plete in the filtration topology we get the required decomposition on all of L.

If xis in ¢” and g is in g*%, then [x,y] is in g"** by Jacobi’s identity; so the
graded algebras 3 g° and ) &* are isomorphic. It is clear that L is the linear
compactification of Y, g%; so this concludes the proof of Proposition 7.2. q.e.d.

The result above is also true when g° is semisimple, providing L is infinite
dimensional ; however, the proof requires a slightly more sophisticated argu-
ment. This argument will take up the next two sections.

8. A lemma of Kobayashi-Nagano-Weisfeiler

A special case of the following lemma was proved by Kobayashi and Nagano
in [13]. The lemma in its general form is due to Weisfeiler (private communi-
cation).

l
Lemma 8.1. Let ¥ = P> g' be a finite dimensional graded Lie algebra

i=—Fk

over an algebraically closed field of characteristic zero. Assume:

i) g°! generates 4-.

i) Ifae%®and[x,al =0 forall xe g™, then a = 0.
iii) The adjoint representation of g° on g=' is irreducible.
iv) g * and g' are non-zero; k,1 > 0.

8.1)

Then % is simple, | = k, and the Killing form identifies g=7 with the dual of
g forall 0 < r < k.
Proof. Let ¢ be the radical of ¢. We will show that ¢ is graded. Let t’ be
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the graded ideal in ¢ associated with . It is easy to see that [t/, ©'] is contained
in the graded ideal associated with [t, t]. The same is true of the higher derived
algebras, so 1’ is solvable and therefore contained in tr. However, dimt’ =
dim t; so t/ = t proving our assertion.

Next we will show that t N g~' = {0}. Suppose this intersection were not
zero. By i) and iii) this implies that v contains ¥~. We will show inductively
that if g~* is in ¢ then g7! is in the i-th derived algebra 1. Suppose g~ is in
=Y, Since ¢~V is an ideal, [g7", g'] is in t®~?. This bracket is non-zero by
ii); so t“~P N g° == {0}. Therefore, 1> N g~' + {0} by ii); and so g~! is con-
tained in t*” by iii). Since t‘© is zero for large i, we get a contradiction; so
tN g7! = {0} as claimed.

This argument also shows that t N ¢° = {0}, for if not then by ii) there
would be non-zero elements in v N g7%.

By the Levi theorem there exists a semi simple subalgebra §) in ¢ such that
¢ = r@Y. Let i be the graded subalgebra of ¥ obtained from §j by applying
the gradation functor to the “reversed filtration”;

L=L"'DL*'> ... DL* = {0},

where L¢ = _Z g’. It is clear from the above remarks that §’ contains g~! and

r=—K
%°, so Yy contains ¢ by i). However, the dimension of § is the same as that
of i/, so ) = & and v = {0}. This proves that ¢ is semisimple.

Let ¢ be the mapping of ¢ into ¢, which preserves the gradation and on g¢
is just i times the identity mapping. It is easy to check that ¢ is a derivation.
Since ¢ is semisimple, ¢ is an inner derivation. It follows that every ideal in
% is graded since the distinct eigenspaces of ¢ are just the graded subspaces
of .

Since ¢ is semisimple we can write it as a direct sum of its simple ideals:
G =9 D.--9,, @, simple .

Clearly g™! is contained in just one of these summands. Suppose g~! is con-
tained in ¢,. Then %~ is contained in ¥, by property i), so ¢,, ¢, etc. must
consist entirely of non-negative elements. However, property i) implies that
if an ideal contains non-zero positive elements, then it contains non-zero
negative elements; so 4, = 4, = -.. = ¢, = {0}, and & is simple.

Finally, suppose ! # k, for example suppose ! > k. Let x be an element of
g, and y an element of gf. Then ad x ad y is a graded mapping of ¢ which
maps terms of degree j onto terms of degree i 4+ I + j."Since i 4+ [ > 0 for
all i, this mapping is nilpotent and trad x ady = 0. This shows that with
respect to the Killing form, x is orthogonal to all of ¥. By Cartan’s criterion
this cannot happen, so ! = k as asserted. The same argument shows that g° and
gt are put into duality by the Killing form ; we leave the details to the reader.
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Corollary. Let 9 be a graded Lie algebra satisfying the axioms (8.1).
Then g° is not semisimple.

Proof. Let ¢ be the “degree derivation” introduced above, i.e., ¢ maps g
into g¢ and on g¢ is i times the identity mapping. Since ¢ is simple, ¢ is an
inner derivation; and since ¢ is degree preserving, it must be an inner deriva-
tion of the form ad z where z is in g°. Since ¢ is zero on g° z is in the center
of g°, and hence g° is not semisimple.

Remark. There is a 1 — 1 correspondence between graded Lie algebras
satisfying Axioms (8.1) and non-semisimple primitive subalgebras of simple
Lie algebras. For details we refer to Golubitsky [5].

9. The Cartan classification theorem?

In this section we will finish our sketch of the Cartan classification theorem.
For this we will need several lemmas.

Lemma 9.1. Let ¢ = i g be a graded Lie algebra satisfying the
-k

Weisfeiler conditions (7.1) and, in addition, the following two conditions :
i) g' generates 4.
ii) No non-zero graded ideals of ¢ are contained in %-.

Then % is primitive.

Proof. Let b be a graded subalgebra of ¢ containing ¢°. If b contains g%,
then by condition a) of (7.1), b contains ¥~ and so is equal to ¢. Therefore,
we can assume b g~' = {0}. Suppose b contains no non-zero elements
of degree —i + 1, but does contain non-zero elements of degree —i. Let a
be such an element. Then [a, g*!] = 0; so, by condition i), [a, %*] = 0. Let
a be the set of all elements a in ¥~ with the property that [a, ¥*] = 0. We

will show that if @ is in a and x,, - - -, x,, are in ¢, then adx, --- adx; a is in
%~. The proof will be by induction on k, the case K = 1 being obvious. Sup-
pose this statement is true for k — 1. The expression ad x, - - - ad x,a is obvi-

ously in ¢~ if the x; are all in ¢~ or g°. This expression is also in ¢~ if x, is
in ¢*. (In fact it is zero.) If one of the x,;’s is in ¢*, but not the last one, we
can move it into the last place by applying Jacobi’s identity several times. This
will introduce commutator terms of the form: ady, .- ad y,_,a which are in
%~ by induction; so this proves our assertion.

It is clear by what we have just shown that a generates a non-zero ideal
contained in ¢~. This contradicts our second hypothesis, so b = %°, and ¢ is
primitive.

Lemma 9.2. Let 4 = ), g° be an infinite dimensional graded Lie algebra

-k

satisfying the Weisfeiler conditions (7.1) and, in addition, the following two

2 In this section all algebras are defined over a base field which is algebraically
closed and of characteristic zero.
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conditions :
i) g' generates G*.
i) g% is semisimple.

a) g'={0}foralli << —2.

b) g% is either zero or one dimensional.

c) g tis the center of 4, and ¥ /g™* is primitive.

Proof. Let b be the largest graded ideal of ¢ contained in ¥~. By con-
ditions b) and c) of (7.1), b contains no non-zero elements of degree —1. The
quotient ¢ /b is a graded algebra satisfying the conditions (7.1) and the two
conditions of Lemma 9.1; so ¢ /b is primititive. Since g° is semisimple, the
leading non-zero term of the graded algebra & /b is of degree —1 by the
corollary to Proposition 6.1; so b = g7% + g7**!' 4 ... + g~ We will show
that g7 = 0 if i > 2. If not, g-* and g~**! are non-zero and in b, for £ > 2.

Let 5 be the graded subspace of ¢ consisting of all a ¢ ¢ with the property
that [g~*,a] = [g"**!,a] = 0. Since b is an ideal and contains no non-zero
positive elements, [b, g'] = 0 for i > k; so §) contains non-zero elements of
positive degree. It is easy to see that [g™*, )] C ), so §) contains g~! by property
b) of (7.1). This means that [g~!, g7 **1] = O.

On the other hand, [g™!, g7**'] = g* by property a) of (7.1); so we get a
contradiction. This shows that g¢ = {0} for i < —2.

Since g~%is an ideal in ¢, [g~?, g¥]=0 for k>1. In particular, [g~}, [g72, g']]
= [g7% [g7%, g1l = 0. Since g° is simple and [g7%, g'] = 0,[g7%, g'] = g and
hence [g7?%, g°] = 0. This shows that g~% is in the center of .

We can identify g2 with a subspace of A%g~'. Since [g°, g72] = O, every ele-
ment of g~? defines an invariant bilinear form on g~'. Since g° acts irreducibly
on g~!, there can be only one such bilinear form up to scalar multiples; so
dim g=% = 0 or 1. This concludes the proof of Lemma 9.2. q.e.d.

We will now show that the first hypothesis of Lemma 9.2 is superfluous.

Lemma 9.3. The conclusions of Lemma 9.2 are valid without the assump-
tion that g' generates 4+ (providing we still assume g° is semisimple).

Proof. Let a be the graded subalgebra of ¢+ generated by g'. It is easy to
see that if x is in g7 and y is a term of degree grater than 1 in q, then [x, y]
is in a. This implies that the sum: ¥~ @ g @D a is a subalgebra of ¥. We will
show that this subalgebra is infinite dimensional. In fact, if it were finite dimen-
sional, it would satisfy all the hypotheses of the Kobayashi-Nagano-Weisfeiler
lemma, so g* would be non-semisimple. (See the corollary to Lemma 8.1.)
Since g° is semisimple, ¥~ @ g’ @ « is infinite dimensional.

Now ¢~ @ g° @ a satisfies all the hypotheses of Lemma 9.2, so g=¢ = 0 for
i < 2,g7%is one dimensional or {0} and g7 is in the center of ¥~ @ g Da.
To conclude the proof we have to show that g=* is in the center of . (It will
follow that & /g~* is primitive since g° acts irreducibly on g'.) Since g% is in
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the centerof - @ g° P a, [g7%, ¢°] = [g7% g'] = 0. We will show by induction

that [g~2, g'] = O for all i > 0. Assume this is true for g¢!. Let x be an element

of g7!,y an element of g¢ and z an element of g~2. Then [x, [y, zI] = [[x, ¥, z]

+ [y, [x,z]] = 0 by induction. Since this is true for all x, [y, z] = 0 by condition

b) of (7.1). Thus g2 is in the center of ¢ as asserted. q.e.d.
We will now prove the main result of this section.

Proposition 9.1. Let L be an infinite dimensional linearly compact Lie
algebra, L be a primitive subalgebra of L,

L=L*>...OL'D>L'D ...

be the Weisfeiler filtration of L, and 4 = f} g' be the graded Lie algebra

i=—k
associated with this filtration. Then @ is primitive.

Proof. We have already proved this for the case where g° is non-semi-
simple, so we can assume g° is semisimple. By Lemma 9.3 either ¢ is primi-
tive, or g~? is in the center of ¢ and is one dimensional. Let z be a vector in
L which projects onto a basis vector of g~2.

We will show that we can find a vector x in L~! such that z + x is in the
normalizer of L°. Since z projects onto an element of degree —2 which is in
the center of ¢,[z, L’ ]C L~ and [z, L'] C L. We define a linear mapping
c: 8" — g as follows: If aisin g° we let a’ be a representative of a in L°,
and let c(a) be the image of [z, a’] in g~'. Because of the above conditions on
z this map is well defined and does not depend on the choice of a’. We will
show that the mapping c satisfies the “cocycle condition.” Let a and b be ele-
ments of g’ and ' and b’ be elements of L° representing them. Then by
Jacobi’s identity, [z,[d’, b’]] = [lz,d’],b']1 + [d',[z,b']]; hence c([a, b]) =
[a, c(b)] — [b, c(a)], which is precisely the cocycle condition for the adjoint
representation of g° on g~!. Since g° is simple there exists an element » in g!
such that c(a) = [a, v] for all a ¢ g° by Whitehead’s lemma. (See Jacobson [10,
Chapter I1I].) Let x be a representative of v in L~*. Then for all @’ in L°, [z, ']
= [a’, x], modulo elements of L°. Therefore, z + x is in the normalizer of L°.
This implies that the subspace of L spanned by L° and z + x is a subalgebra,
contradicting the primitivity of L°.

We conclude that g2 = {0} and that ¢ is primitive as claimed.

Corollary. L is isomorphic to the linear compactification of one of the
graded algebras listed at the end of §6.

The proof of this corollary involves the following type of question: Given
a filtered Lie algebra and the corresponding graded Lie algebra, when are the
two algebras isomorphic? (We ignore for the moment questions of completeness
and linear compactness.) D. Rim has developed an elegant technique for handl-
ing this type of question [17]. He shows that the filtered algebra can be regard-
ed as a “deformation” of the graded algebra, and applies standard techniques of
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deformation theory to show that a graded algebra is indeformable if certain
“infinitesmal deformations” (represented by cohomology classes in H'(gr L,
gr L)) vanish.

Our situation is somewhat special. We know the corollary is true for four of
the six algebras listed in §6 (by Proposition (7.1)) and the remaining two
algebras are of the form: ¥ =g '@ g'® ..-. For graded algebras of this
type the infinitesmal deformations can be effectively computed just by knowing
the representation of g' on g~!, which, in our case, is just the standard repre-
sentation of sl(n) or the standard representation of sp(2n). Some straightfor-
ward computations show that both of the graded algebras in question are
indeformable.

A more pedestrian proof of the corollary can be found in [14] or [18].

Appendix

Let L be a linearly compact Lie algebra defined over the field 4, and A be
an open subalgebra of L. We recall that 4 is a fundamental subalgebra of L
if it contains no ideal of L except {0}. In [6] we proved:

Proposition 1. L possesses a fundamental subalgebra if and only if it sat-
isfies the d.c.c. on closed ideals. (See Theorem 3.1.)

Remark. It is clear that every continuous automorphism of L maps funda-
mental subalgebras onto fundamental subalgebras.

Given L and a fundamental subalgebra 4, we will define a filtration on L as
follows: Let A® be the set of all a € L for which ad(x,) - -- ad(x,)a € A4, for
all k<i, and all x,, ---, x, ¢ L. We will set A* = L fori =0 and 4° = A4.

Lemma 1. The A® have the following properties:

a) At is an open subalgebra of L.

b) [A?, 4] C A9,

c) At D A for all i.

d) Udi=Land N A" = {0}.

Proof. Part a) follows by induction using the fact that A4? is the kernel of
the adjoint representation of 4A° on L/A*"'. Part b) is a rather easy conse-
quence of Jacobi’s identity. Part c) and the first part of d) are obvious, and
the second part of d) follows from the fact that N A? is an ideal and therefore
is zero because A is a fundamental subalgebra.

From the A* we can construct a graded Lie algebra Y, A*/A4**!, — oo < i
< oo, which we will denote by ¥, (since the construction depends on A).
All the terms of degree < — 1 in ¥, are zero since A* = L for i < 0. Let
V be the set of terms of degree — 1. If we bracket an element of ¥ by another
element of V' we get zero since the bracket is of degree — 2; so V is a finite
dimensional abelian subalgebra. Let S(}) be the universal enveloping algebra
of V. Since V is abelian, S(V) is just the ring of polynomials over V. (See
Jacobson [10, Chapter V].)
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Now let Z% be the graded dual space of #,. This is an ¥, module since
&, acts on it by the transpose of its adjoint action. Therefore, it is a V module
and also an S(V) module. In [6] we proved:

Proposition 2. ¥% is a finitely generated S(V) module. (See Chapter 3,
Proposition 3.2.)

Let I, C S(V) be the annihilator ideal of the S(¥) module #%, 4’ be an
extension field of 4, and 7™(4’, A) be the variety of zeroes of I, in V* & 4'.
Since V = L/A, there is a projection map L — V' which dualizes to give an
injection mapping: V*® 4" — L* ® 4. We will denote by 7(4’, A) the
image of ¥"%(4’, A) in L* Q 4.

Now suppose B is another fundamental subalgebra of L. We can duplicate
the above construction using B instead of 4. Our main result is

Theorem 1. ¥ (4, A) = v (4, B).

Proof. The proof involves several steps. We will first prove

Lemma 2. 7 (4, A) = 7 (4, A%).

Proof. Let V =LJ/A" V' =L/A%X, and W = A'/A%X. Since [A°, A¥]
C A¥, W is contained in the annihilator of #*, regarded as an S(V’) module.
Therefore, £*, can be regarded as an S(V) module. Moreover, it is clear
from the above remark that we will get the same result whether we compute
its characteristics regarding it as an S(V) module or regarding it as an S(V’)
module. As a graded S(V) module, #*; is identical with Z% except for a
finite number of terms, and it is not hard to see that this implies that the zero
varieties are the same.

Lemma 3. Let 0—»S— T — U— 0 be an exact sequence of modules
over a commutative ring R, and Ig, I and I, be the annihilator ideals of
S, T,and U. Then Ig-1;, C I, C I N Iy.

Proof. LTR.

Lemma 4. Let A and B be fundamental subalgebras of L with the
following two properties:

a) ADBDA.

b) [4,B] C B.

Then v(4',A) = v (4', B).

Proof. Let V =L/A and V' = L/B. Since [4, B] C B, we can regard
Z%¥ as an S(V) module, and its set of characteristics will be the same whether
we regard £¥ as an S(V) module or as an S(V’) module?.

From the inclusions 4 © B D A’ we get AX D B¥ D A%*! for all K just
from the definitions of these objects. Let &% = (4¥X/B¥)* and J% =
(BX|A%+)*. The direct sums Y, % and Y % are S(V) modules, and are
related by the following pair of exact sequences:

3 See the proof of Lemma 2.



PRIMITIVE LIE ALGEBRAS 281
0— Y JK-' ¥ (BE!/BE)* 31 X 50,
k=0 K=0 K=0

0> NFE S (AKJAX*Y* 5 T TK 50,
K=0 K=0 K=0

where the middle term in the first sequence is #%, and the middle term in the
second sequence is a truncation of £%.

Applying Lemma 3 to these sequences and comparing the middle terms, we
get 7°(4', A) = ¥ (4, B) as claimed.*

Using Lemma 1 and Lemma 3, we will now prove the theorem.

Let A and B be fundamental subalgebras of L. Replacing B by BN 4 if
necessary we can assume B C A. Let C, = B N AX. Then (Cg)' = B' N A%X+*!
C BN AX* = Ckg,,. Hence, we have Cx D Cg,, D (Cx)'. We obviously
have [Cg,Cx,,] C Cg,, for all K > 0; therefore, we can apply Lemma 3
with A4 replaced by Cx and B by Cx,,. We get ¥ (Cg, 4’) = ¥V (Ck,,, 4’) for
all K > 0. When K = 0, Cx = B and by Chevelley’s principle Cx = AX for
large K. So we get 7" (B, 4") = ?" (A%, 4') for large K; and the second set is
equal to (4, 4’) by Lemma 1.

Since 7°(A4, 4’) is the same for all A we will just denote it by 7" (4').

Definition 2. We will call ¥"(4’) the characteristic variety of L with respect
to the extension field 4’.

We will prove one property of this set:

Theorem II. If L is finite dimensional, then ¥ (4') = {0} for all extension
fields A4’ of A. However, if L is infinite dimensional, there exist finite algebraic
extensions 4’ of 4 for which v (4") + {0}.

Proof. Let A be a fundamental subalgebra of L, and let us compute 7"(4’)
using the filtration 4, A, A% etc. Let V = L/A, and let I, be the annihilator
ideal of the S(V) module #%.

Suppose that for every finite algebraic extension 4’ the zero variety of I, in
V* ® 4’ consists just of {0}. Then by the Hilbert nullstellensatz, I, has to
contain SX(V) for all K greater than some K,. Since £% is a finitely generated
S(V) module, we can assume it is generated by its terms of degree < K.
Then all terms of degree > K, + K, are zero, so L is finite dimensional.
Conversely, if L is finite dimensional, then A% = {0} for some K,, and in
this case I, D S¥(V) for all K > K,. So for all extension fields 4’ of 4 the
zero variety of I, in V* ® 4’ is {0}.

We will now prove the result needed in § 3.

Proposition 3.2. Let L be an infinite dimensional LCT Lie algebra
satisfying the d.c.c. on its closed ideals. Then there exists a proper open
subspace of L which is invariant with respect to every continuous automorphism
of L.

Proof. Let ¢ be a continuous automorphism of L. It is a corollary of

4 The idea behind this argument was suggested to the author by Shlomo Sternberg.
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Theorem 1 that ¢': L* ® 4’ — L* ® 4’ preserves the characteristic variety of
L. Now choose a finite extension field 4’ of 4 so that ¥"(4') # {0}. We can
regard #°(4’) as a collection of 4-linear mappings of L into 4’. (Regard 4’
as a finite dimensional vector space over 4.) Let H be the intersection of the
kernels of these mappings. H is open since it contains every fundamental
subalgebra of L, so it is a subspace of the required kind.

Remark. There are various ways to generalize the construction of 77(4’).
For example, if I is a closed ideal of L, one can define a characteristic variety
¥°(4',I) by considering the filtration I N A%, K = 0,1, - - -, where the AX’s
are as above. These generalized characteristic varieties will be discussed in the
Harvard thesis of Colin Godfrey.
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