THE FOUR-VERTEX THEOREM IN HYPERBOLIC SPACE

CURTIS M. FULTON

Let $e_{i}, i=1,2,3$, be the natural frame field on Minkowski 3 -space and ${ }^{\prime} D$ be the connection such that ${ }^{\prime} D_{V} W=\left(V W^{i}\right) e_{i}$. Using the metric \langle,$\rangle of the$ 3 -space which has one minus sign, the hyperbolic plane is represented by $\langle x, x\rangle=-1$. Thus, x is a unit normal of the latter surface and we see that ${ }^{\prime} D_{V} x=V$. Denoting by D the induced connection on the hyperbolic plane we have for its tangent vectors

$$
\begin{equation*}
{ }^{\prime} D_{V} W=D_{V} W+\langle V, W\rangle x . \tag{1}
\end{equation*}
$$

On account of (1) we find $R(U, V) W=\dot{-}\langle V, W\rangle U+\langle U, W\rangle \dot{V}$, and hence the curvature of our surface is indeed -1 .
If T and N designate the unit tangent and normal of a curve in the hyperbolic plane we know that $D_{T} T=\kappa N$ and $D_{T} N=-\kappa T$. Now because of (1) ' $D_{T} T$ $=\kappa N+x$. But ${ }^{\prime} D_{T} T={ }^{\prime} \kappa^{\prime} N$, where ${ }^{\prime} \kappa$ is the space curvature and ${ }^{\prime} N$ the space normal to the curve. We therefore record for later reference

$$
\begin{equation*}
\left({ }^{\prime} \kappa\right)^{2}=\kappa^{2}-1 . \tag{2}
\end{equation*}
$$

Also, if s stands for arc length we infer from (1) that

$$
\begin{equation*}
D_{T} N=N^{\prime}(s)=D_{T} N=-\kappa T=-\kappa x^{\prime}(s) . \tag{3}
\end{equation*}
$$

Through the two vertices which an oval necessarily has we draw a straight line whose equation is $\langle c, x\rangle=0$. Then with all integrals taken around the oval we conclude in the usual manner with the aid of (3) that

$$
\oint\langle c, x\rangle \kappa^{\prime}(s) d s=-\oint\left\langle c, x^{\prime}(s)\right\rangle \kappa d s=\oint\left\langle c, N^{\prime}(s)\right\rangle d s=0 .
$$

This establishes the essence of the proof due to Herglotz [2, p. 201].
We now apply our methods to hyperbolic 3 -space. In the imbedding Minkowski 4-space we see that $\left(^{\prime} \kappa\right)^{2}=\left\langle T^{\prime}(s), T^{\prime}(s)\right\rangle$ is equivalent to

$$
\begin{equation*}
\left(^{\prime} \kappa\right)^{2}=\left(\left\langle x^{\prime}, x^{\prime}\right\rangle\left\langle x^{\prime \prime}, x^{\prime \prime}\right\rangle-\left\langle x^{\prime}, x^{\prime \prime}\right\rangle^{2}\right) /\left\langle x^{\prime}, x^{\prime}\right\rangle^{3}, \tag{4}
\end{equation*}
$$

where the primes indicate differentiation with respect to some parameter u.

[^0]Following Gericke [1] we consider a curve which is the rim of a Möbius Band and also lies on a torus. Let r be the radius of the rotating circle, and R be the radius of the locus described by its center. Setting $p=\cosh R \sinh r$ and $a=\tanh R \operatorname{coth} r$ the curve in question is parametrized as follows, $0 \leq u<4 \pi$,

$$
\begin{aligned}
x^{1} & =p[a-\sin (u / 2)] \cos u \\
x^{2} & =p[a-\sin (u / 2)] \sin u \\
x^{3} & =p \operatorname{sech} R \cos u / 2 \\
x^{4} & =p[\operatorname{coth} r-\tanh R \sin (u / 2)]
\end{aligned}
$$

Because of (2) which remains valid for a space curve, we find the maxima and minima of κ differentiating $\left(^{\prime} \kappa\right)^{2}$ which itself is computed by the use of (4). We state the result of the lengthy computation for the given curve.

$$
\begin{aligned}
& 2 p^{2}\left\langle x^{\prime}, x^{\prime}\right\rangle^{4}\left[\left({ }^{\prime} \kappa\right)^{2}\right]^{\prime} \\
& =\cos (u / 2)\left\{\left[3 a^{5} / 2+3 a^{3}+\left(-3 \operatorname{sech}^{4} R+36 \operatorname{sech}^{2} R\right) / 32\right]\right. \\
& \quad-\left[21 a^{4} / 2+\left(9 \operatorname{sech}^{2} R+72\right) a^{2} / 8+(9 / 8) \operatorname{sech}^{2} R\right] \sin (u / 2) \\
& \quad+\left[24 a^{3}+\left(9 \operatorname{sech}^{2} R+72\right) a / 8\right] \sin ^{2}(u / 2)-\left(24 a^{3}+3\right) \sin ^{3}(u / 2) \\
& \left.\quad+(21 / 2) a \sin ^{4}(u / 2)-(3 / 2) \sin ^{5}(u / 2)\right\} .
\end{aligned}
$$

Now $\sin (u / 2)$ is bounded and the leading term a^{5} can be made so large as to make the expression in braces positive. This is accomplished by making r sufficiently small. In this case then vertices occur only at $u=\pi$ and $u=3 \pi$.

References

[1] H. Gericke, Beispiel einer geschlossenen Raumkurve mit nur zwei Scheiteln, Jber. Deutsch. Math.-Verein 47 (1937) 22-24.
[2] D. Laugwitz, Differential and Riemannian geometry, Academic Press, New York, 1965.

[^0]: Received August 21, 1969.

