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NON-HYPERELLIPTIC RIEMANN SURFACES

RICHARD S. HAMILTON

1. Let W be a Riemann surface of genus g > 2. Abel's Theorem gives an
analytic embedding, with respect to an arbitrary base point, of W as a
submanifold of its Jacobi variety J(W) (see Gunning [1, p. 161]). Denote by
Wr the linear equivalence classes in J(W) of divisors consisting of r points in
W. Then W = Wλ and Wr is a subvariety of dimension r for 0 < r < g. More
generally, let W? denote the set of all linear equivalence classes of divisors of
degree r in J(W), which admit at least a linearly independent meromorphic
function, or equivalently, the set of all line bundles on W of Chern class r
which admit at least a linearly independent analytic section. Then Wr = W\,
and W* is a subvariety of J(W). Alan Mayer [4] showed that dim Wa

r < r
- 2a + 2 (provided 1 < r < g - 1, a > 2, and r - 2a + 2 > - 1 ) and
that the maximum is in fact attained whenever W is hyperelliptic. He then
conjectured that the converse was true, and this is our main result.

Theorem 1. // W is not hyperelliptic, then dim W* < r — 2a + 1 (provided
1 < r < g - 1, a > 2, and r - 2a + 1 > - 1 ) .

Thus surfaces which are not hyperelliptic have fewer "special" divisors than
those which are.

2 Before proceeding to the proof of Theorem 1, it may be of interest to
see how two classical theorems on non-hyperelliptic surfaces may be deduced
from this result.

Clifford's Theorem. // W is not hyperelliptic, then no translate of Wr is
contained in —Wr, for 1 < r < g — 2.

Proof. The set of all elements x such that the translate of — Wr by x is
contained in Wr is the set WrQ -Wr = Wr£x (see §3). Hence the
theorem is equivalent to the assertion that if W is not hyperelliptic then W&1

is empty. If 2r < g - 1, Theorem 1 states that dim W\ϊι < — 1. If 2r > g - 1,
let k be the divisor class in J(W) of an abelian differential. Then k - Wr^1

= 2̂<Γ-r2-2r by the Riemann-Roch Theorem, and since 2 < 2g — 2 — 2r
< g — 1 this is the same as the first case.

Nδther's Theorem. // W is not hyperelliptic, then every quadratic differential
on W can be written as the sum of (three) products of abelian differentials.
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Proof. The main step in the classical proof (see Hensel-Landsberg [3, p.
508]) is to find two abelian differentials ωγ and ω2 on W which vanish simul-
taneously (counting multiplicities) at precisely g — 2 points. By Theorem 1,
dim W\_λ < g - 4, so dim W\_λ Θ -Wι < g - 3 < dim Wg_2. Hence it is
possible to pick g — 2 points pl9 , pq_2 such that, for all x e W9 px +
+ P<7-2 + * ί Wg-i* i e there is no non-constant meromorphic function on W
with poles at pl9 , pg_2 and x (counting multiplicities). Let ωx and ω2 be two
linearly independent abelian differentials vanishing at p19 , pg_2. Then by
the Riemann-Roch Theorem ωx and ω2 can have no other common zeroes, and
moveover every abelian differential which vanishes at pl9 , pg_2 must be a
linear combination of ωγ and ω2.

Choose an abelian differential ωz with no zeroes in common with either ω1

or ω2. Suppose that al9 a2. and az are three abelian differentials such that axwt

+ a2ω2 + cxzωz = 0. It follows from the above remarks that az is a linear
combination of ωx and ω2, since it vanishes at p19 , p g _ 2 . Suppose then that
«!<£>! + a2ω2 = 0. Then αr2 vanishes at the g points other than p19 , p g _ 2

where ωj vanishes. But by the Riemann-Roch Theorem any abelian differential
vanishing at these points must be a multiple of ωx. Therefore there are 3g — 3
linearly independent quadratic differentials of the form aιωι + a2ω2 + a3ω3.
But by the Riemann-Roch Theorem there are only 3g—3 linearly independent
quadratic differentials in all; hence every quadratic differential can be written
in the form a^ + a2ω2 + a3ωz.

3. In this section we recall some of the basic properties of the subvarieties
W*9 and calculate their dimension in the case where W is hyper elliptic. All
the results in this section occur in Mayer [4].

If A and B are subvarieties of a complex torus /, we define new subvarieties:

-A = {-a\atA}9

A®B = {a + b\aeA9bz B) ,

A ΘB = {c\c + B QA} = Γi{A - b\b e B) .

Here —A is a subvariety since it is the inverse image of A under multiplication
by — 1 A ®B is a subvariety because it is the image of A X B under addition
φ : 7 X / —> 7, which is a proper map (see the "Proper Mapping Theorem",
Gunning and Rossi [2, p. 162]); finally, A QB is the intersection of the
subvarieties A — b, and hence is itself a subvariety.

Theorem 2. dim Wr = r (for 0 < r < g).
Proof. Wo = {0}, Wx = W, and Wg = J(W) by Abel's Theorem, so

Theorem 1 is true for r = 0, 1, g. In general Wr+1 — Wr Θ W19 so dim Wr+1

< dim Wr + 1. But since the extreme cases are known, we must have
dim Wr = r for 0 < r < g.

Lemma 1. Wf θ - Wλ = Wa

rχ\ (for r > 0, a > 1).
Proof. If a divisor class admits at least a + 1 linearly independent mero-
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morphic functions, there will be at least a linearly independent combination
of them which vanish at each point. Hence W^l θ - ^ C ^ f , which implies
Wa

rχ\ c Wa

r θ —Wx. On the other hand, if d 6 Wa

r θ —W19 then for every
point x e W the divisor class d — x admits at least a linearly independent
meromorphic function. Hence among the meromorphic functions admitted by
the divisor d, we can find, for each x e W which is not a point of d, at least
a linearly independent one which vanishes at x. If the divisor d did not
admit at least a + 1 linearly independent meromorphic functions, this would
be impossible since then all the meromorphic functions admitted by d would
vanish everywhere, but a > 1. Therefore Wt θ —Wι C W;£.

Let k be the divisor class of an abelian differential.
Theorem 3.

i) k — Wa

r = Wb

8, where s = 2g — 2 — r and b = g — 1 — r + a.
ii) Wa

r.s Θ-Ws= Wrs forO<s<r,a>l.
iii) W? © Ws = Wa

r_s forO<s<r<g- 1, α > 1.
Proof, (i) is the Riemann-Roch Theorem, (ii) is true for s = 0 (trivially)

and for s = 1 (by Lemma 1). Suppose it is true for s = t > 1. Then

W?-,-! θ - Ϊ F I + 1 = ^?- ί _ 1 θ [~WX θ - Ψ J

= w?-,-! Θ -wj © - ^ = WΪH © -ψ, = ϊFr t+1 -

Hence it is also true for s = t + 1. Therefore by induction it is true for all s.
To prove (iii), let t = 2g — 2 — r and b = g — 1— r + a. Then if r <
g — 1, b will be at least 1 and

k-[w«rθ Ws] = [k- Wf] θ-Ws = Wb

tθ -W$ = Witt = k- W?_s .

Therefore WΐθW, = Wa

r_s.
Theorem 4. Let 1 < r < g — 1 and a > 2, αnd suppose W* is not empty.

Then dim J F ^ + 1 < dim Wa

r < dim Wa

rz\ - 1.
Proo/. Let F be an irreducible subvariety of Wf^ of maximal dimension;

then dim V < g. Since Wa

r_x ®Wι^W^,V®Wι^ W?. Moreover, V®Wι

is irreducible, since it is the image of V X Wx under the addition map 0 : J(W)
X JQV)-+JQV). If dim V®Wι were equal to dim V, we would have V
= F φ Ŵ , and by induction V = V@Wg which is impossible unless V = 0
since dim F < g. Therefore dim W% > dim W%x + l/ύW} Φ 0.

But we also have Wϊ® —WιQ W?z}. Let Z be an irreducible subvariety
of Wa

r of maximal dimension; then 0 < dim X < g. Since I Θ - ^ C H^ri
we conclude as before that dim X 0 — Wι > dim Z and hence dim W*
< dimWϊil - 1.

Theorem 5. Let a> 1, 1 < r < g — 1, ΛΛ^ r — 2a + 2 > — 1 . Then
dim W? < r - 2a + 2.

Applying the right hand side of the previous Theorem inductively,
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we deduce that

dim Wt < dim Wr_a+1 -(a-l) = r-2a + 2,

provided that W? is not empty.
Theorem 6. // W is hyper elliptic, and r and a are as above, then dim W?

= r-2a + 2.
Proof. Let d be the divisor class of a meromorphic function / on W of

order 2. Then the divisor class nd admits n + 1 linearly independent mero-
morphic functions 1, /, f, , /n. Therefore dim Wζf1 > 0. But applying the
left hand side of Theorem 4 inductively we deduce that

dim W% > dim W?a_2 + r-2a + 2>r-2a + 2,

provided that r — 2a + 2 > 0.
4. We now observe that it is sufficient to prove Theorem 1 in the case

a = 2. For if W* is empty there is nothing to prove, and W? will always be
empty if a > 2 and r = 1. Otherwise we may apply the right hand side of
Theorem 4 inductively to prove that dim W* < dim W2

r_a+2 — (α — 2). Now
if Theorem 1 is true for a = 2, dim Wl_a+2 < r — a — 1, which proves
dim Wγ<r — 2a+ 1. Thus in general deficiencies in the dimensions of the
W\ will propagate themselves upward.

We may now reinterpret Theorem 1 by means of the following observation.
Theorem 6. dimW2

r = r-2 if and only if Wr_λ = W2

r®-Wι(for2<r
<S-1).

Proof. Since W\ = Wr_x θ —W19 we always have W\ θ -W,Q Wr_x.
But Wr_ί is an irreducible subvariety, being the image under addition of a
product of irreducible subvarieties (i.e. a product of r — 1 copies of W).
Therefore unless W*τ@ —Wι is equal to Wr_l9 its dimension must be strictly
smaller. On the other hand, the proof of Theorem 4 shows that dim W\
< dim W* θ - Wλ. Therefore dim W\ < r - 3 unless Wl®-Wλ = Wrml.

Hence, to complete the proof of Theorem 1, it is sufficient to prove the
following theorem.

Theorem 7. // Wr = W2

r+ι 0 — Wι for some integer r, 1 < r < g — 2,
then W is hyper elliptic.

5. To prove Theorem 7, let r be the smallest integer with 1 < r < g — 2
such that the hypothesis holds. If r = 1, then W\ is not empty and W is
hyperelliptic. We will show that if r > 1 we get a contradiction.

Let W(t) be the Cartesian product of Wι with itself t times. An index of
order r is defined to be an unordered collection A = {i19 - , ir} of r distinct
elements of the set {1, •, g — 1}. Write \Λ\ — r and pA = piλ + \-pir

for points p19 •• ^pg_x.
Let 5 be the subset of W(g_1} of all points (p19 , /Vi) s u c ^ that either
1) ft + + ̂ - ! 6 J^-i,
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2) Pi = Pj for some i Φ j ,
3) pA*W*r for some ^ with |Λ | = r,
4) pB<zWl® — Wx for some £ with |J5| = r — 1, or

5) Pc + Pj <z jy*+ι for some C with | C | = r.

Lemma 2. TΛe jβ/ 5 is a proper subvariety of W{g_X).
Proof. Conditions (1) and (3) define proper subvarieties since dim W\

< dim W r; condition (4) does since Wr_x <£ W\® —Wx by the minimal
choice of r. For condition (5), if / <f C, this is the same as condition (3) for
A = CUj; while if / e C, write C=j\JD. Suppose 2pj + pD € W\+x for all
p e W{g_X). Then 2 ^ φ TF,^ C FFJ+1, or 2 ^ c ϊ ^ r + 1 θ I F , . ! = JFJ, so that
W\ is not empty and W is hyperelliptic. Otherwise condition (5) must determine
a proper subvariety. Since W(g_X) is irreducible, the union of a finite number
of proper subvarieties will again be a proper subvariety.

Next let Z be the subvariety of W{g_X) X Wx of all points (p19 , pg_19 q)
such that for some indices A Φ B, both of length r, pA + q € Wl+ι and
PB + Q € ΪPΪ+i Let β be the projection of Z onto W(α_i,. Q is a subvariety
by the "Proper Mapping Theorem" quoted above.

Lemma 3. Q is a proper subvariety of Wig_ly.

Proof. Let A Φ B be two indices of length r. Let k ζ A but £ $ B. Write
A = k\JL with | L | = r — 1, k$L. Choose pl9 . >,pk-19pk+ι, ? P & -i so
that p x ί W^ φ — Wx and pBίW*r. There will be only finitely many q with
pB + Q€ W2

r+1 (for otherwise p 5 0 ^ C W*r+ι which implies p B e W*r+1 Q Wλ

= W^). Then /?£ + ^ $ W\ so by the same argument there are only finitely
many choices of q and s with pL + q + s e Wl+1. Choose pk to be not one of
these s. Then if pB + qe Wl+ι, pA + qtW*+ι. Thus the image of the
subvariety ZAB = {(p, q) e W{g_X) X Wx\pA + q e W\_x and pB + ςr e JPr_i}
in ϊy ( α_υ does not contain p. Since β is the union of the images of the ZAB, Q
is proper.

Lemma 4. // p € JPr, ί/iere ^jtύϋ a q € Wx with p + q <- W2

r+ι.

Proof. Wr C fP r + 1 0 - F ! . Thus we can write p = r - q with r e W*r+X

and ^ € Ψ 1 5 and p + q = r.

Now choose p = (p15 , pg_x) 6 JΓ(^_υ with p i S and p $ β . For each /I
with |̂ 4 I = r choose by Lemma 5 a point # 4 e Wx with pA + QA^ Wl+\ Since
PA + Pji Wl+ι for all /, ^ ^ P./ for all . Also if \B\ = r but A Φ B, then
QA Φ <1B> f° r otherwise we would have (p, qA) e Z which cannot happen since
p $ β . Since P! + + pg_x <£ W^_1? there exists a non-zero abelian differential
ω which vanishes at p19 . . . , p ^ , and this condition determines ω uniquely
up to a constant factor. But since pA + qA e W2

r+X9 there exist g — r linearly
independent abelian differentials vanishing at piχ9 , p ί r , qA for each
A = {ϊΊ, , zr} Hence there is a non-zero abelian differential vanishing at
Pi, , pα_i and at qA, which is therefore a non-zero multiple of ω. Hence ω
vanishes at qA for each index A of length r. Since pl9 - , p g - 1 and the qA are
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all distinct, and there are r ~~ J indices of length r, we get a contradiction if
Is — \\
( r I > 8 — 1. Hence either r = 1 or r — g — 2. If r = 1 the surface is
hyperelliptic as we saw before. Suppose r = g — 2. If g = 3 we are done also.
Suppose £ > 4.

Lemma 5. Lei Z and Y be analytic spaces and V a proper subvariety of
X X Y. TAe« ίΛere exίsto a proper subvariety S of X such that if x$S then
T(x) = {y e YI(jt, y) € F} w a proper subvariety of Y.

Proof. For each y € Y, let S(y) = {x ζ X\(x,y) z V). Then 5(y) is a
subvariety of Z , as is 5 = Π S(y). Since F is proper, some pair (JC, y) £ F ,

and for this pair x <£ 5(y), so X £ 5. Hence 5 is a proper subvariety of X. If
x i S, then x <£ S(y) for some y, and this pair (*, y) £ K, so y $ T( t)
= {y e YI (x, Y) € F} and T(x) is a proper subvariety of Y.

Now regard W{g_X) = W(ff-.2) X fF15 and let L be a subvariety of W{g_2) such
that if (p19 , pg_2) φ L then there exists a point /7g_x with (p19 , p g _ 2 , p ^ )
ί 5 U Z. This is possible by the previous lemma. Then the abelian differential
ω constructed previously will vanish at the 2g — 2 distinct points pl9 , pg_x,
Qι, -, 9,-1, where we let qi = qAi with A i = {1,. ., i - 1, ί + 1, ,g - 1}
as the index obtained by omitting /. We chose qg_x so that px + + pg_2

+ Qg~\ £ W*g_19 and we see now that if px + . + pg_2 + y € WJ_X, then there
exist two linearly independent abelian differentials vanishing at pl9 , pg_2

and y, and thus there is a non-zero abelian differential vanishing at
Pi> J Pg-v> y a n d Pp-i But this must be a non-zero multiple of ω. Thus ω
will vanish at y. Since ω has precisely 2g — 2 distinct zeroes, y must be one of
the points px, •-, pg_x, qx, , qg_x. If y = ^ we have p ^ ^ + ^ € WP̂ _j
which contradicts condition (5) of the definition of 5. If y = qό with / ψ
g — 1, then PAg-i + y € JVJ.i and pAj. + y e W^_t which contradicts the as-
sumption that (pl9 , pg_x) ί Z. Hence ^α_! is the unique point in Wx with
Pi + + Pg-2 + #0-1 € W^-i; this proves

Lemma 6. TA^re exists a proper subvariety L of Wig_2) such that if
(Pi> , Pg-ι) i L there is a unique point qg_x with px + + pg_2

+ qg.λ e W2

g_x.
Now fix a choice of (p19 , pg,3) with ^ + + pg_z $ W\_2 0 — ̂  so

that for at least one point pg_2 we have (p19 , p g _ 3 , pff_2) ί L. This is possible
by Lemma 6. Let R = {(pg_2, pg_x) € Wx X Wx\px + + P,_i € W2

g.x}. Then
there are only finitely many pg_2 for which (pl9 , p^.g) s L, and for all other
choices of pg_2 there is a unique p α _! with (pg_2, pg-d e Λ. Hence R is a
subvariety of dimension 1, for it is proper and cannot be a finite set since it
projects onto an infinite set in the first factor. Moreover, there, must be an
irreducible component N which projects onto the first factor, and this must be
unique. In fact, N is a 1-sheeted branched cover of Wx under projection on the
first factor. Consequently the projection of N onto the first factor is one-to-one.
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Lemma 7. N also projects onto the second factor.
Proof. If not, then N projects onto a single point pg_λ. This means that

A + + Pg-i + Pg-2 + Pg-i « W*g_x for every pg_2. Then Λ + . . . + p ρ _ 3

+ Pg-, € fl^.ι θ Wι = W]_2, and ft + + /Vs € JP,_2 θ - J ^ , contrary
to their choice.

Since the definition of R is symmetric in pg_2 and pg_u the projection of N
onto the second factor must also be one-to-one. Thus N is the graph of a bi-
analytic automorphism of W onto itself. Let G be the group of all such maps.
Since g > 4, the group G is finite. Thus we have established

Lemma 8. There exists a proper subvariety M of W(g_2) such that if

(Pu '"> Pg-l) ί Λί, ft + + Pg-3 + Pg-2 + Pg-1 € WJ^, flAW* (ft, , Pα_2)
ί L, ίλen p ^ ! € Gpg_2 where Gpg_2 = {^(pg_2)|g € G}.

Now choose (p^ - , pg_2) so that
1) (A, P2> , Pg-2> ί ^ 5

2) (ft, ft, , /V4> Pα-2» Pg-s) $ L,
3) (ft, p2, "-9 Pg-z) i M, (ft, , pα_ 4, pα_2) $ M,
4) P&_3 ί Gp σ _ 2 .

Then there exists a p ^ with px + + p g _! € W*βl since Wg_2

C ^ _ j θ -Wλ. Also by Lemma 8, pg_x e Gpg_2 and p^_! e Gpg_3. Thus p^_3

€ Gp0_2 which is a contradiction. This proves r Φ g — 2 and completes the
proof of Theorem 7.
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