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1. Introduction

(A) In this paper we prove the theorems which we announced in [14]
concerning the diffeomorphism groups of a closed surface, and, in addition,
the corresponding theorems for the diffeomorphism groups of the closed non-
orientable surfaces. Our method is to construct a certain principal fibre bundle,
whose total space is the space of smooth conformal structures of a closed
surface, whose base is a Teichmiiller space, and whose structural group is a
subgroup of the diffeomorphism group of the surface. Our bundle has the
further property that its tangent bundle sequence embodies the infinitesimal
deformation of structure theory (for surfaces) of Kodaira-Spencer [22].

Set theoretically, the construction of our bundle is a modification of the
Ahlfors-Bers development of Teichmiiller theory. To show that we have
produced a topological fibre bundle, we need a new theorem about the
continuity of solutions to Beltrami equations with smooth coefficients (see § 3).
We have provided a fairly detailed account of our construction, because even
where it closely follows the Ahlfors-Bers developments, certain adjustments are
needed. Consequently we believe that the reader will find the paper relatively
self-contained. For expositions of Teichmuller theory, and for guides to the
literature, we refer to Ahlfors [2], Bers [6], Rauch [26], and Teichmuller [30].

(B) We now formulate precisely our main results. Let X be an oriented
smooth ( = class C°°) 2-dimensional manifold which is compact and without
boundary. We denote by D(X) the topological group of all orientation
preserving diffeomorphisms of X9 endowed with the C°°-topology of uniform
convergence of differentials of all orders Ό0(X) is the subgroup consisting of
the diffeomorphisms which are homotopic to the identity. (We shall find later
that Ό0(X) is the arc component in Ό(X) of the neutral element.)

We denote by M(X) the space of smooth complex structures on X compatible
with its given orientation, and give M(Z) the C°°-topology. Then (viewing the
elements of M(X) as smooth tensor fields on X) we have a natural action

M(Z) X D(Z) -> M(X) .
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The following results are established in §§ 5, 6, 8.
Theorem. Assume that X has genus g > 1.
1. M(X) is a contractible complex analytic manifold modeled on a Frέchet

space.
2. Ό(X) acts continuously, effectively, and properly on M(X).
3. //

(1.1) Φ: M(Z) -+ T(Z) = M(Z)/D0(Z)

denotes the indicated quotient map (where T(X) is given the quotient topology),
then (1.1) is a universal principal Ό0(X)-fibre bundle.

4. Let G be the Lie group of automorphisms of the upper half plane.
Then T(X) can be embedded as a real analytic submanifold of G2g. The complex
structure of M(X) induces a complex structure on Ύ(X), with Φ holomorphic.

Ύ(X) is the Teichmuller space of the oriented surface X; its complex
structure is the standard one. The quotient group D(X)/D0(Z) acts properly
discontinuously on Ύ(X), and its quotient space R(X) is the Riemann space of
moduli of X.

Part 4 of our theorem is known [1], [7], since T(X) can be identified with
the classical Teichmuller space of closed surfaces of genus g.

There are an analogous result for the case g = 1 (Theorem 10F) and a
suitable statement for the case g = 0 (Theorem 9B). We also have a
formulation, in the context of conformal structures, for non-orientable
surfaces (§11).

In broad terms, our proof proceeds by transfering our activities from X to
its universal cover, and studying Beltrami's equation there. A technical fact
(Theorem 3B) of importance throughout is the continuous dependence of the
solution of Beltrami's equation on its coefficients.

(C) Teichmuller's theorem [6] asserts that T(X) is a cell. Together with
the covering homotopy theorem this implies that the fibration (1.1) is
topologically trivial. We outline in § 8E an alternative proof of that triviality
by constructing a continuous section of Φ, based on the existence theorem for
harmonic maps [16]. There is a holomorphic section if g = 1; but none for
g > 1 [12].

(D) The next results are interpretations of the development in § 7, in the
spirit of Kodaira-Spencer [22] and Weil [32], [33]. We appeal to §7 for an
explanation of the terminology.

Theorem. Assume that X has genus g > 1. Fix any complex structure
JeM(X).

1. The tangent space of M(X) at J consists of the space of d-closed l-forms
on X with values in the vector bundle Th0(X). The kernel of the differential
dΦ(J) is identified with the space of such d-derived l-forms.

2. The tangent space of Ύ(X) at Φ(J) is given by the cohomology space
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Hι(X, Θ), where Θ is the sheaf of germs of smooth sections of Tι'°(X) <g) Γ*
H\X, Θ) is conjugate to the space of J-holomorphic quadratic differentials on X.

3. Suppose we represent X (using J) as the quotient of the upper half plane
V by a Fuchsian group Γ, acting freely on U. Then the differential of Φ induces
an isomorphism of Hι(X, θ) onto Hι(Γ, g).

Here H\Γ, g) denotes the cohomology space of the discrete group Γ
relative to its adjoint representation on the Lie algebra of G. It measures the
infinitesimal deformations of Γ in G.

(E) The following is a purely topological conclusion; it assembles results
from §§8-11.

Let X be a closed surface. We extend the notation Ό(X) to non-orientable
X, defining it for that case as the topological group of all diffeomorphisms.

Corollary.
1. If X is the sphere or protective plane, then Ό(X) = D0(AΓ) has SO(3)

as strong deformation retract.
2. // X is the torus, then D0(Z) has X as strong deformation retract.
3. If X is the Klein bottle, then D0(Z) has 50(2) as strong deformation

retract.
4. In all other cases ΌQ(X) is contractible.
The case of the sphere was first established by Smale [29], using different

methods.
Remark. In case 4, it follows that all fibre bundles with structural group

Ό0(X) are topologically trivial. In particular, that is true of the bundle over
T(Z) with fibre model X, associated with the principal bundle Φ: M(X) -» Ύ(X)
using the natural action of Ό0(X) on X. The total space of that bundle has a
natural complex structure, making it a holomorphic family of compact Riemann
surfaces [3], [22].

Remark. The spaces D(Z), D0(J5O, M(X), and T(Z) are absolute neighbor-
hood retracts, being metrizable manifolds modeled on Frechet spaces. In
particular, they are absolute retracts if they are contractible.

(F) Remark. Theorems ίC and ID suggest the form of a global defor-
mation theory for structures on closed manifolds X: Start with a smooth
bundle γ: V —* X associated with the principal bundle of X. Then the space
&(γ) of Cr-sections (0 < r < <χ>) of γ is an infinite dimensional manifold.
Specify a subgroup ^ of Ό(X); then ^ acts continuously on ^(γ), and we
can form the quotient space Ύ(γ; &). In a large variety of cases the differential
of the quotient map Φ: <£(γ) —>T(γ ^) determines the infinitesimal deformation
theory of Kodaira-Spencer.

2. Complex structures

(A) A complex structure on the oriented vector space R2 is an endo-
morphism J of square — / such that det (v, Jv) > 0 for v e Rz. The space M
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of all such structures is the homogeneous space GL+(R2)jGL(C). Here
GL+(R2) is the group of real 2 X 2 matrices with positive determinant, and
GL(Cι) is the multiplicative group of non-zero complex numbers, embedded
in GL+(R2) by

On the other hand, if we write a + ib in the form r exp iθ, r > 0, we can
identify GL(O) with GL+iR1) X SO(R2), where SO(R2) is the rotation subgroup
of GL+(R2). The corresponding homogeneous space is the space of conformal
structures on R2, and we have the canonical identification

(2.1) GL+(R2)/GL(O) = M = GL+(R2)/GL(Rι) X S0(fl2)

of the complex and conformal structures on R2. (We recall that a conformal
structure on R2 is an equivalence class of positive definite quadratic forms on
R2, where two such forms are equivalent if they are proportional.)

As is well known, the homogeneous space M can be represented as the
open unit disk Δ = {z e C: \z\< 1} in R2. We do so by associating with each
μ € Δ the equivalence class of the quadratic form

(2.2) Q(x, y) = \z + μl\2 , z = x + iy .

(B) Let AT be an oriented connected smooth (=C°°) 2-manifold. From its
principal GL+(Λ2)-bundle we construct the associated homogeneous bundle
with fibre M. We denote by M(X) the space of smooth sections of this bundle,
endowed with the C°°-topology, i.e., the topology of uniform convergence of
all differentials on compact subsets of X. The elements of M(Z) are well known
to be the almost complex structures on X which are compatible with its
orientation. Since X is 2-dimensional, every almost complex structure is
integrable, and so M(AΓ) is the space of complex structures on X [31, Ch. II
N°3]. Of course the identification (2.1) means that M(Z) can equally well be
considered as the space of conformal structures on X.

3. Beltrami's equation

(A) Let D be a subregϊon of R2. The Frechet space C°°(D, C) is the vector
space of smooth complex-valued functions on D with the C°°-topology. The
space M(D) of complex structures on D may be identified with the subset
C~(JD, Δ) of C°°(D, C) through our identification (2.2) of Δ with Λί. Explicitly,
each μ: D -* Δ induces the conformal (=complex) structure on D represented
by

(3.1) ds = \dz + μ(z)dz\ .
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We note that the zero function induces the usual complex structure on D.
Suppose that D has the structure (3.1) and C its usual complex structure.

Then the map w: D -» C is holomorphic if and only if it satisfies Beltrami's
equation

(3.2) w-z = μwz ,

where

1 Idw .d

2\dx ' dy Γ 5 ~~ ~2\ldx l~dy

(B) Since \μ(z)\ < 1 for all z € D, the Beltrami equation (3.2) is elliptic.
(3.2) is uniformly elliptic in D if and only if there is a number k such that

I μ(z) I < k < 1 , ze D .

The theory of uniformly elliptic Beltrami equations is thoroughly developed
[3], [4], [10], [24].

Every such equation has a solution which is a diffeomorphism of D onto a
region in the plane. If D is the plane C, there is a unique solution of (3.2),
denoted by wμ, which is a diffeomorphism of C onto itself and leaves the points
0, 1, oo fixed. If D is the upper half plane U = {z e C: Im z > 0}, there is a
unique solution of (3.2), again denoted by wμ, which is a homeomorphism of
the closure of U onto itself and leaves 0, 1, oo fixed. In both cases wμ will be
called the normalized solution of (3.2).

We shall need the following theorem about the dependence of wμ on μ. For
its proof we refer to the companion paper [15]. (The theorems of our
announcement [14] were based on a more primitive version, proved by us
somewhat differently, following [10]). In the statement of the theorem, D is
either U or C.

Theorem. For each positive number k < 1, the map μt-+wμ is a homeo-
morphism of the set of μe M(D) with sup {| μ(z) \ : z € D} < k onto its image
in C°°(D, C).

Remark. The construction of homeomorphisms and diffeomorphisms as
global solutions of elliptic systems provides a promising tool in topology. For
instance,

1) the above theorem implies almost immediately Smale's theorem that the
identity component of the diffeomorphism group of the 2-sphere has the
rotation group as strong deformation retract-as we shall find in § 9

2) the homotopy types of the groups of diffeomorphisms of closed surfaces
of higher genera can be determined by constructing harmonic maps [16]
(diffeomorphic solutions of a second order elliptic system, namely the Euler-
Lagrange equation of the energy integral of §8E below), utilizing the results
of [20] and [28]. Further discussion will be given in §8E.
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4. Fuchsian groups

(A) The uniformization theorem says that every simply connected Riemann
surface ( = surface with complex structure) is conformally equivalent to the
Riemann sphere, to C, or to the upper half plane U (each with its usual
complex structure). A complex structure on the surface X induces a complex
structure on its universal covering surface X, which is therefore (equivalent
to) one of the above.

With four exceptions (X the plane, punctured plane, torus, or sphere),
X — U, and the cover group Γ is a properly discontinuous group of holo-
morphic automorphisms of U, acting freely on U. Such a group is called a
Fuchsian group. (By requiring a Fuchsian group to act freely we are violating
standard usage; for our purposes it is convenient to do so).

(B) The group G of all holomorphic automorphisms of U consists of the
Mobius transformations

Az == {az 4- b){cz + d)~ι; a,b,c,deR; ad - be = 1 .

G is therefore a 3-dimensional Lie group, isomorphic to SL(R2) modulo its
center. Its Lie algebra g is sl(R2), the algebra of 2 X 2 real matrices of trace
zero. The adjoint representation u ι-> uA of G on g is defined by uA = (AdA)u,
where Ad A: g —> g is the differential at the identity in G of the map
B^A~ιBA.

The elements of G are conveniently classified by the positions of their fixed
points. An element A e G, not the identity, is called hyperbolic, parabolic, or
elliptic according as A has two fixed points in jRU{oo}, one fixed point in
ΛU{oo} (and no others), or two conjugate non-real fixed points. For us, the
hyperbolic and parabolic transformations are of special importance because Γ
acts freely and therefore cannot have elliptic elements.

If A € G is hyperbolic, one of its fixed points is attractive, the other repulsive.
The attractive fixed point zγ is described by the condition Anz —> zL asn-> oo
for any z € U. The attractive fixed point of A is the repulsive fixed point of
A~\ These assertions are readily verified by noting that every hyperbolic
transformation is conjugate in G to a homothetic expansion z »-• kz (k > 1).

Lemma 1. // Γ is not cyclic, the centralizer of Γ in G is trivial.
This classical fact is proved in two steps, both easy. First one proves that

two non-trivial elements of G commute if and only if their fixed points coincide.
Next one verifies that a discrete subgroup of G whose elements all have the
same fixed points is cyclic.

Lemma 2 // X is compact, Γ consists of hyperbolic transformations. If
two elements of Γ have a common fixed point, they commute.

This lemma is also classical. The first assertion is proved in [6, p. 97]. The
second assertion follows from the first, because if two non-commuting



TEICHMULLER THEORY 25

hyperbolic transformations have a (unique) common fixed point, then their
commutator is parabolic.

(C) Let X be a compact Riemann surface of genus g > 1. As we have
seen, there exists a holomorphic covering map π: U —> X. π is of course not
unique; it may be composed with any element of G. To specify one such π,
we mark the surface X by choosing a basepoint xoe X and a canonical system
of loops al9 , ασ, i 1 9 , fcρ generating the fundamental group TΓiCY, * 0 ).

Lemma. For each complex structure J e M(X) there is a unique J-
holomorphic covering map π: U —*X with Fuchsian cover group Γ such that,
for some zo<zπ-\xQ),

1) the element Axe Γ determined by ax has its fixed points at 0 and oo,
2) the element Bx e Γ determined by bx has its attractive fixed point at 1.
Proof. Given /, choose any holomorphic covering map 7 :̂ U —> X and

any zx e πi\x^. Denote the cover group by Γx. Then the elements Ax and Bx

of Γx determined by ax and bx do not commute. Thus, by Lemma 2 of §4B,
the fixed points of Ax and the attractive fixed point of Bx are distinct. Hence
there is a unique A e G which moves the fixed points of Ax to 0 and 00, and
the attractive fixed point of Bx to 1. π = πx o A~ι is the required covering map.

5. The action of D(Z) on M(Z), g > 1

From now until § 9, AT will be a compact oriented surface of genus g > 1,
marked as in § 4C. In this section we study the action of Ό(X) on M(X). It
is convenient to avoid the use of charts on X, employing the uniformization
theorem to lift M(X) and D(Z) to U. We carry out the lifting in §§ 5A and B.

Many results of this section are true under less stringent assumptions on X.
We use the compactness of X only in Propositions 5 A and 5D.

(A) Since X is marked, by Lemma 4C each complex structure / in M(X)
determines a smooth covering map π:U—>X whose cover group Γ is Fuchsian.
The map π induces a map TΓ* : M(X) -»M(U) whose image we denote by
M(.Γ); its elements are the jΓ-invariant complex structures on U. Recall from
§ 3 that M(U) is C°°(U, J). The uniformization theorem assures that for each
μeM(U) there is a diffeomorphism w: U -+ w(U) c C which satisfies
Beltrami's equation (3.2). Moreover, μ is Γ-invariant if and only it woγ
satisfies (3.2), which happens when and only when

(5.1) (μ o r)flγ' = μ for all γ € Γ .

For reasons which will become evident in § 7A we denote by A\Γ) the Frechet
space of all μ β C°°(U, C) which satisfy (5.1).

Proposition. M(Γ) is the convex open set in A\Γ) consisting of those
μeA\Γ) such that sup{|μ(z)|: z 6 U) < 1; and π*: M(X) -> M(Γ) is a
homeomorphism.
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Proof. Since X is compact, Γ has a compact fundamental domain ω.
Equation (5.1) shows that sup{|μ(z)|: z e U} = max {|μ(z)|: ze ώ] for all
μ € ΛPCΓ). Thus μ maps U into J if and only if that maximum is less than
one. The assertion concerning π* requires no proof.

As an open set in the complex Frechet space Aι(Γ), M(Γ) has a natural
complex structure. The map TΓ* therefore induces a complex structure on
M(X). Any choice of / € M(X) leads to the same complex structure on M(Z)
because a diffeomorphism w: U -> U induces a holomorphic automorphism
w*: M(Γ) -• MίwΓw1). Thus we obtain the

Corollary. M(X) is a contractible complex analytic manifold modeled on
a Frechet space.

(B) Let D([/) be the group of orientation preserving diffeomorphisms of U.
As a subset of C°°(E/, C), D(t/) is metrizable. Furthermore, it is a topological
group, by an easy application of Arens' theorem [5]. Let D(Γ) be the normal-
izer of Γ in D([/). Then the covering map π induces a continuous epimorphism
π*: D(Γ) -> D(Z) with kernel Γ, given by Λ + (/)o π = πof.

Lemma. 7r̂  w an open map.
Proof. The hyperbolic metric ds = |z — zl"11 rfz | defines on [/ a complete

Γ-invariant Riemannian structure of constant curvature —4. Any two points
z19 z2 in U can be joined by a unique geodesic segment whose length is the
hyperbolic distance p{zλ, z2).

Let (gn) be a sequence in D(X) converging to the identity 1. Choose zQ in
U and a sequence (/n) in D(Γ) so that π*(fn) = gn and fn(z0) -+ zQ. The
hypothesis on (gn) means that for each small open set 0 in U there is a
sequence (γn) in Γ such that γn o/n -> 1 in C°°(0, C). Hence on each compact
subset of 0

Pifnizd, fn(Z2)) = piγΛfn^)), Tnifn^))) < Kp{Zχ, Z2)

for some number K. It follows that the same inequality (with different K) holds
on compact subsets of U. Because fn(z0) —• z0, a subsequence (still called (/J)
converges, uniformly on compact subsets of t/, to a map /: C7 —> Z7. But
τr(/(z)) = lim gn(π(z)) = π(z). Thus / € Γ; in fact / = 1 because /(z0) = z0 and
JΓ acts freely. We conclude that fn -> 1 in D(Γ), for in the above convergence
γnofn -> 1 in C°°(0, C), ̂ TO must be the identity for large n. The lemma is
proved.

Corollary, π* induces an isomorphism between the topological groups
D(Γ)/Γ andlKX).

Let D0(Γ) = {/ € D(Γ): /of = j-o/ for all γ € Γ}, the centralizer of Γ in
D(Γ). Recall that Ό0(X) = {g € Ό(X): g is homotopic to the identity}.

Proposition, π*: Ό0(Γ) -> I>o(^) w ΛW isomorphism of topological groups.
Proof. It is well known that π*(Ό0(Γ)) = D0(Z); see for instance [6, pp.

98-100]. We have already noted that the kernel of π*: D(Γ) -> D(Z) is Γ.
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Since D0(Γ)ΠΓ, the center of Γ, is trivial by Lemma 1 of §4B, π*:
—> D0(Z) is bijective.

It remains to show that πi1: D0(Z) -»D0(Γ) is continuous. Given / in D0(Γ),
let (gn) be a sequence in Ό0(X) converging to g = π+(f). We must prove that
w-n = π^ign) -* /• By the lemma, there is a sequence (/n) in D(Γ) such that
fn -> / and **(/„) = gn. Now hn = fnow~ι <= kernelTΓ* = Γ, and

hnoγoh-1 = fnoγof-1-+foγof-1 = r

for all 7- e Γ. Choose non-commuting elements ^ and y2 of Γ. For sufficiently
large π, Λn commutes with both ft and f2, whence hn is the identity. (Otherwise
the fixed points of hn would coincide with those of both ft and γ29 which is
impossible).

(C) The covering map7r transfers the natural action (pulling back the
complex structure) of Ό(X) on M(Z) to an action of D(Γ) on M(Γ), given by

(5.2) (τr*7) g = τr*(/ TΓ^) for ̂  e Ό(Γ), J 6 M(Z) .

Of course (5.2) is the restriction of the natural action of D(£7) on M(ί/). That
action has a convenient expression when μ e M(U) is of the form μf = fz/fz,
f € D(£/). Indeed, μf = 0 /, the pullback by / of the usual complex structure
on £/. Thus

(5.3) j V ί = (0-Λ * = 0.(fog) = Λ o g .

Each μ in M(Γ) has the form μf\ for we may take j — wμ, the solution of
(3.2) introduced in §3B, since Proposition 5A insures that μ is bounded by
some k < 1.

Proposition.
1. The action M(Γ) X D(Γ) -* M(Γ) de/med by (5.2) is continuous.
2. TAe isotropy group of Oe M(Γ) ώ D(Γ) ΠG = N(Γ), ίΛe normalizer

of Γ in G.
3. Γ = {g 6 D(Γ): ̂  βcί y /ΠV/ΛZ/J cm M(Γ)}.
4. D0(Γ) βc/^ freely on M(Γ).
Proof. 1. The continuity of (5.2) follows from general principles. For an

alternative proof using (5.3) and Theorem 3B, we observe that each of the
following maps is continuous:

(μ, 8) »-» (Wμ, 8) •-» *>μ °8 *-+ μ 8

2. The isotropy group of 0 € M(Γ) consists of all g € D(Γ) which are
holomorphic automorphisms of U with its usual complex structure that group
isD(Γ)ΠG.

3. Since M(Γ) consists of the .Γ-invariant complex structures on U, it is
evident that Γ acts trivially on M(Γ). Thus Γ is a subgroup of the group ΓQ
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of all g which act trivially by part 2, Γo in turn is a subgroup of G. If Γo Φ Γ,
there would exist a fundamental domain ω for Γ and a pair of Γ0-equivalent
points z15 z2 € ω with zx e Int α>. Let //bea smooth function on Int ω which has
compact support containing z1 but not z2. Extending the definition of μ to U
by (5.1) we obtain an element of M(Γ) which is not Γ0-invariant. We conclude
that Γo = Γ.

Part 4 is equivalent to the assertion that D0(Z) acts freely on M(X), because
TΓ* is an isomorphism on D0(Γ). Since the complex structure / e M(Z) corre-
sponding to 0 € M(Γ) was chosen arbitrarily, we need only consider the
isotropy group of 0 6 M(Γ) relative to D0(Γ). That group is ΌQ(Γ)Γ\N(Γ),
the centralizer of Γ in G, which we know to be trivial.

Corollary. The natural action of Ό(X) on M(X) is continuous and effective.
D0(Z) acts freely.

(D) Proposition. Ό(X) acts properly on M(X).

Proof. The condition of proper action means that the map θ:M(Z) X D(Z)
— M(Z) X M(X) defined by 0(7, f) = (/, /•/) is proper. We shall prove the
corresponding assertion in U.

First, let K c M(Γ) X Ό(Γ)/Γ be a closed set, and ((μn, vn)) a sequence
in Θ(K), converging to (μ, v). Fix z0 in ί7 and a compact fundamental domain
ω for Γ, and choose a sequence (fn) in D(Γ) so that vn = /£n /n, (^n, /nΓ) € K,
and zn = fn(z0) z ω.

Let τvn = wμn, w = wμ9 and h = wp. By Theorem 3B, wπ —• w. Determine
a sequence ( g j in G so that g w ow n o/ n fixes the points 0, 1, oo. Then (5.3)
and Theorem 3B imply that gn o wn o /n —> Λ in particular, gn(wn(zn)) -^ Λ( ô) € [/.
Since the points wn(zn) lie in a compact subset of U, we can pass to a subse-
quence so that gn —• g e G. Then /n—•H>- 1ogoΛ:=/e D(Γ). Obviously
(i"n, ίn) -+ (μ, f), and (μ, v) = (^, //•/) is in the image of K. Thus, θ is a
closed map.

It remains to prove that θ~ι(J19 J2) is compact for any (715 J2) e M(Z) X M(X).
We may use J — Jx to determine 7r: U -+X; then (/1?/2) corresponds to
(0, ») € M(Γ) X M(Γ). If θ f o , ΛΓ) = θ(ft, /2Γ) = (0, y), then 0 = μλ = A

= 0 /j o/-1, and ^ o/-1 € Λ^(Γ) by Proposition 5C. We conclude that ©"^O, v)
either is empty or can be mapped bijectively onto N(Γ)/Γ. But N(Γ)/Γ is a
finite group [34, Ch. II].

Corollary 1. D0(Z) αcte properly on M(X).

In fact, every closed subgroup acts properly.
Corollary 2. The natural action of Ό(X)/Ό0(X) on M(X)/Ό0(X) is properly

discontinuous.
The proposition implies that the action is proper. But Ό(X)/Ό0(X) is discrete

because ΌQ(X), for compact X, is open in D(Z). Hence the corollary.
The group Ό(X)/Ό0(X) is the modular group of genus g. The first proof

that its action is properly discontinuous was given by Kravetz [23].
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6. The map P

To complete the proof that the action of Ό0(X) on M(X) defines a principal
fibre bundle, we need local cross-sections, which are provided by the Bers
coordinates on Teichmϋller space [1], [7]. To obtain those coordinates we
follow the classical path [1], [6], [7], imbedding Teichmϋller space as a smooth
manifold of dimension 6g — 6 in G2g, where again G is the real Mobius group.
The imbedding is accomplished by a smooth mapP: M(X) -» G2g which
factors through M(X)/Ό0(X). In §7 we shall prove that the differential of P
establishes an isomorphism between the theories of infinitesimal deformations
of complex structures and of Fuchsian groups.

(A) The assumption introduced in § 5, that X is a marked surface of genus
g> 1, is still in force. We define P: M(X)-+G2g by PU)^{AuBλ, . . ,Ag,Bg).
Here At and Bi are the elements of Γ determined by the loops at, bu and Γ
is the group determined by / as in Lemma 4C. Of course the set {Aλ, , Bg}
generates Γ. In the spirit of [1], [6], we denote by Sf the set of points
(A19 - ,Bg)eG2g such that
(6.1) the product of commutators Π^^glA^ Bt] = 1,
(6.2) the fixed points of Ag and Bg are real and distinct,
(6.3) A^O) = 0, A^oo) = oo, JJ^l) = 1.
It is clear that P maps M(Z) into Sf.

Proposition. Sf is a real analytic submanijold of G2g of dimension 6g — 6.
Proof. Let N be the set of (Al9 , Bg) β G2g which satisfy (6.2) and (6.3).

It is clear that N is a real analytic (6g — 3)-dimensional submanifold of G2g.
The map φ: N —> G given by

φiAl9 , Bg) = Πx^g[Au Bt]

is real analytic, and y = φ~\Ό C N. The proposition will therefore follow
from the implicit function theorem as soon as we prove that the differential of
φ at every s e £f is surjective.

Choose s = (Al9 , Bg) e S? and u, v € Q. Let

C(t) = ^ U i , , J5g_15 Ag exp ίw, 5 ρ exp tv)9 teR .

An easy calculation gives

C(t) = exp

where A — Ag and 5 = Bg. Thus

is in the image of the differential dφ(s), and all we need to prove is the
following lemma, which the reader can easily verify.
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Lemma. If A, B eG have distinct real fixed points, the map

(6.4) (u, v) π-> uB — u + v — vA

from g X g —• g is surjective.

Remark. uB — u + v — vΛ = w is the infinitesimal form of the equation
[A, B] — C studied by Ahlfors [1, Lemma 3] in a similar context.

(B) Take any JQ € M(X), and let π: U —» X be the covering map determined
by Jo and the marking of X. Then the cover group Γ is generated by
s = P(/o) € G2*. Composing P with the inverse of the map π*: M(Z) — M(Γ)
produces a map, still called P: M(Γ) -> 5 .̂

Lemma. P(μ) = wμosow~1 for all μ e M(Γ).
P/ΌO/. For any μ in M(Γ), ^ = πow~ι: U —> Z is a covering map,

holomorphic from U with its usual complex structure to X with the complex
structure (TΓ*)"1//. The cover group Γμ = ^ o Γ o w ; 1 is Fuchsian, and the
loops ax and &! on X determine the transformations WμAjW'1 and wμB{w~λ in
/V Because w,, fixes the points 0, 1, and oo, πμ is the cover map determined
by Lemma 4C from the marking of X and the complex structure (π*)~ιμ, and
hence the lemma is proved.

Proposition. P: M ( Γ ) — ^ is continuous. The restriction of P to any finite
dimensional affine subspace is real analytic. Moreover, the kernel Ker dP(O)
of the differential at 0 consists of all v e A\Γ) such that

(6.5) fM(z) = l im^ ( z )

vanishes for all ze U and γ e Γ.
Proof. The continuity of P follows at once from the last lemma and

Theorem 3B. For any γ e Γ consider the map μ\-+yμ — w^w"1 € G, which is
real analytic on finite dimensional subspaces by [4], and whose directional
derivative at 0 in the direction v vanishes if and only if f(v)(z) vanishes for all
z € U. The required real analyticity of P is now obvious, for each component
map of P has the form μ ι-* γμ. Furthermore, v e Ker dP(0) if and only if (6.5)
vanishes for all γ in a set of generators of Γ, hence for all γ.

(C) Lemma. P(70) = P ^ ) // and only if Jo and ̂  are Ό0(X)-equivalent.
Proof. We shall prove that P(0) = P(μ), μ e M(Γ), if and only if 0 and

μ are D0(Γ)-equivalent. By Lemma 6B, P(0) = P(μ) if and only if wμ € D0(Γ).
But 0 and μ are D0(Γ)-equivalent if and only it μ = μf for some / e D0(Γ).
That / can only be w,. In fact Aι^foAιof~ι and w ^ ^ o w ; 1 both fix 0 and
00, while foBxo f-\=zB^ and wμoBιowμ~

ι both have the attractive fixed point
1. Thus, g = fow~ι leaves 1 fixed and maps the set {0, oo} on itself; this
implies g is the identity and / = wμ, because g e G.
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7. The infinitesimal theory

Here we investigate the connection between the global space of complex
structures on X, described by M(X)/Ό0(X), and the theory of infinitesimal
variations of complex structures, measured by appropriate cohomology spaces.
There is also a connection with the theory of infinitesimal deformations of
Fuchsian groups. In fact, the cohomology spaces associated with those two
theories are isomorphic, the isomorphism being given by the differential of P.
In a sense, P: M(Z) —• & is the envelope of the cohomology isomorphisms.
Our point of view in this section has been influenced by Weil's paper [32].

(A) A complex structure Jo on X defines on each tangent vector space
TX(X) an endomorphism J0(x) of square = — /. This extends to a complex
endomorphism /0(JC) of CTX(X) = C ®R TX(X) that space has the direct sum
decomposition 7 °̂ 0 TJ:1, where I V (resp. T°X

Λ) is the image of the projection
operator J(/— ίJ0(x)) (resp. £(/ + U0(x))). This induces a similar decomposition
on all tensor products of CTX(X) and its dual space CTX(X)*.

Let A? be the vector space of smooth differential forms on X of type (o, p)
with values in the vector bundle Tι*°(X). The (0, l)-component 3 of the exterior
differential maps Ap into A***1. Following Kodaira-Spencer [22], let Θ denote
the sheaf of germs of smooth sections of Γ l f 0 ® Γ * M . The 3-cohomology
group Hι(X, Θ) measures the infinitesimal variations of /0 because 3 is zero
on Λ\ H\X, Θ) = AxjdA\

Remark. The complex structure Jo identifies the vector space of smooth
real vector fields on X with A0. Indeed, suppose v e C°°(CT(X)) is expressed
as v = vι>° + v0'1; then v is real if and only if (v1*0)' = v*Λ.

(B) Once more we pass to the universal covering space U by the holo-
morphic covering map π. In the notation of § 5A, the space A0 lifts to

A\Γ) = {/ € C~(C7, C): (/ o γ)lf = / for all γ € Γ}

the space A1 lifts to Aι(Γ). Of course, with this interpretation 3/ = fΈ.
Let Q(Γ) be the lift of the vector space H°(X, Γ*1'0 ® T*1*0) of holomorphic

quadratic differentials then Q(Γ) consists of the holomorphic functions φ on
U which satisfy

(φor)(rγ = φ f o r a l l r e Γ .

The vector spaces H°(X, Γ*1'0 ® Γ*1'0) and Hι(X, θ) are conjugate. This special
case of Serre's duality theorem [27] - also known as Teichmuller's Lemma - is
a consequence of the next

Proposition. Ker dP(0) = dA°(Γ) = Q(Γ)L, where

= \v 6 A\Γ): Γ vφdz Λdz = 0 for all φ e Q(Γ)\.
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Proof. Let v e Ker dP(0). By [3, p. 138], [1],

γM = f°r — r'f> w h e r e fz = v

But f(v) vanishes for all r £ Γ by Proposition 6B. Therefore / e A\Γ), and we
have proved

(7.1) Ker dP(0) c M°(Γ) .

Next, take any / € Λl°(Γ) and set v = f-z. Then for each ψ e β(Γ), ω = fψdz
is a 1-form on X. By Stokes' theorem

j vφdz Λ dz= idω = 0 .

Thus

(7.2) a^°(Γ) C β ( Γ ) 1 .

From (7.1) and (7.2), codim Ker dP(0) > dim Q(Γ), which is 6^ - 6 by the
Riemann-Roch theorem. Since the kernel of dP(O) has codimension no greater
than 6g — 6, the dimension of ^ , we conclude that β ( Γ ) 1 = KerdP(O).

(C) We now define Hι(Γ, g), the 1-dimensional cohomology space of Γ
relative to the adjoint representation, as follows. A 1-cocycle is a map /: Γ->g
satisfying

(7.3) /(ri°r 2 )-/(ri) r 2 + /(r 2) 5

and the coboundary du of u e Q is the 1-cocycle

— ur — u .

Thus H\Γ, g) is the quotient vector space of cocycles modulo coboundaries,
which measures the infinitesimal deformations of Γ in G [32], [33].

Proposition. The tangent space Tt(S?) = H\Γ, g), where s = P(0) € 5*.
Proof. We construct a linear map L: Γ s(^) —> ϋP(.Γ, g) as follows: From

each smooth curve c:(—1,1)—><^ with c(0) = ,y, construct a curve of homo-
morphisms φt: Γ —> G by setting c(ί) = (^(-^i), , φt(βg)). The curve ^£

gives rise to a 1-cocycle /: Γ -^ g in the usual way:

r-
ιφt(γ) = exp itf{r) + o (0) for all r 6 Γ .

Clearly / depends only on the tangent vector c'(0) € 7,(^0. We define L(c'(0))
to be the image of / in H\Γ, g).

We show next that L is injective. Suppose that the cocycle / determined by
φt is a coboundary: f(γ) — ur — u. Then the curves φt(γ) and exp (tu)r exp (—m)
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are tangent at t = 0 for all γ € Γ. Because Aι and φt{A^ fix 0 and oo, u is a
diagonal matrix. Because Bx and ψt(β^) leave 1 fixed and Bx has distinct fixed
points, u is the zero matrix.

It remains to show that L is surjective, a consequence of the

Lemma. dim Hι(Γ, g) = 6g — 6 = dim £? .

Proof. We already know that dim Hλ(Γ, g) > dim Sf — 6g — 6 because
L: Ts(y) -> Hι(Γ, g) is injective. On the other hand, it is easy to verify,
using (7.3), (6.1) and Lemma 6A, that the space of 1-cocycles has dimension
not exceeding 6g — 3. Finally, u>~* δu maps g injectively to the space of
1-coboundaries: if uAχ = u, then u is diagonal; if also uBι = u, then u is the
zero matrix.

(D) Theorem. The differential

dPφ): AKΓ) - HKΓ, g) = TJ&)

of P: M(Γ) -> y at 0 induces an isomorphism HKX, Θ) -> H\Γ, g).
Prw/. Proposition 7B says that Ker dP(0) = 3^4°(Γ), and that the real

dimension of Hι(X, Θ) = dim β(Γ) = 6g - 6.

8. The Teichniuller space T(X), g > 1

(A) Proposition. P: M(X) —> £f is an open map with local sections; i.e.,
for each s e F(M(Z)) there exist a neighborhood N of s in Sf and a real
analytic map f:N—> M(X) with Pof as the identity on N.

Proof. Because Jo was chosen arbitrarily in § 6B, we need only show that
the map P: M(Γ) -*£f is open at the origin and has a local section f:N—>M(Γ)
defined in a neighborhood N of s = P(0). This is immediate from Propositions
7B, 7C, and the implicit function theorem.

Recall that Ίeichmύllefs space T(Z) is the quotient M(X)/Ό0(X) with
quotient topology. In view of Lemma 6C, Proposition 8A has the immediate

Corollary. P: M(X) -> y has the form P = hoφ, where Φ: M(X)->Ύ(X)
is the quotient map, and h: Ύ(X) -^ P(M(X)) is a homeomorphism.

Remark. Map Q(Γ) into A\Γ) by ψ^ψλ'2, where λ(z)\dz\ is the
hyperbolic metric on U, and denote the image by J^KΓ). Proposition 7B
implies that A\Γ) is the direct sum of KerdP(O) and 3fι{Γ)\ this can be
viewed as a case of Hodge's theorem. Hence μ ̂  Pμ is a difϊeomorphism from
a neighborhood of the origin in 3fi?\Γ) to an open set in όf9 and the set of all
such difieomorphisms provides complex local coordinate charts, the Bers
coordinates, on F(M(Z)). These charts define a complex analytic structure [7]
which is the quotient by P of the complex analytic structure of M(X) defined
in § 5A. Each Bers coordinate chart can be extended (uniquely) to a global
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coordinate chart /, which is a holomorphic homeomorphism of P(M(X)) onto
an open subset of Jf KΓ). The restriction of / to /~ι(MCΓ)) is a local section
of P, the Ahlfors-Weill section [14], and the image of / is a bounded domain
of holomorphy in MTι(Π [7], [9].

(B) A principal fibre bundle is determined by a continuous action of a
topological group on a space, which is free, proper, and locally trivial [21];
the local triviality amounts to the existence of local sections of the quotient
map.

Theorem. The quotient map Φ: M(X) —• Ύ(X) defines a universal principal
fibre bundle with structure group ΌQ(X).

Proof. The theorem consolidates the results of §§ 5C, 5D, and 8A. The
bundle is universal because M(X) is contractible by Corollary 5A.

(C) Teichmϋller's Theorem. T(X) is homeomorphic to R*g~\
We refer to [6] for a particularly simple proof.
Corollary 1. The bundle Φ: M(X) -> T(X) is topologically trivial
Proof. By Teichmϋller's theorem there is a map g: Ύ(X) X [0, 1] -> Ύ(X)

with g(τ, 0) = r0 and g(r, 1) = r. By the covering homotopy theorem there
is a map/: T(Z) X [0, 1] -> M(X), which covers g. σ(τ) = /(r, 1) defines a
section of the map Φ.

Corollary 2. M(X) is homeomorphic to T(Z) X D0(Z). In particular,
D0(X) is contractible.

Proof. Let σ: Ύ(X) -> M(Z) be any section of Φ. Then (r, g) >-+ σ(τ) g is
a homeomorphism from T(Z) X D0(Z) to M(Z).

(D) Remarks.
1. Recently M. E. Hamstrom [19] has computed the homotopy groups of

the homeomorphism group jf(X) (a topological group with compact-open
topology) of any compact surface X with or without boundary. Comparison
of her results with ours shows that in every case Jfo(X) and D0(Z) have the
same homotopy groups. It is reasonable to guess that the identity map /: Ό0(X)
—> JfQ(X) is a homotopy equivalence, which could be established if it were
true that Jfύ(X) is an absolute neighborhood retract. It is not known whether
J^0(X) enjoys the last property, although it is a locally contractible metrizable
group.

2. Recall that D0(Z) consists of all / e D(Z) homotopic to the identity. In
the topological category, R. Baer's theorem [17] states that homotopic
homeomorphisms of X are isotopic. The fact that D0(X) is connected (by
Corollary 2 above) gives Baer's theorem in the smooth category.

3. Corollary 1, the contractibility of T(Z), and the contractibility of D0(Z)
are equivalent properties. A. Grothendieck conjectured such a relationship
[18], emphasizing the importance of a topological proof that Ό0(X) is con-
tractible. We sketch an analytical proof (therefore violating the spirit of
Grothendieck's conjecture) in § 8E, and construct an explicit section of Φ.

4. By Remark 8A, Ύ(X) has a complex structure such that Φ: M(X)
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—>T(Z) is holomorphic. Moreover, Ύ(X) is a Stein manifold [9]. Since the
bundle Φ: M(Z) —> T(Z) is topologically trivial, one might ask whether it is
holomorphically trivial. The answer is no there are no holomorphic cross-
sections of Φ [12]. By contrast, in § 10 we shall define a holomorphic section
of Φ when g = 1.

5. In the work of Ahlfors and Bers [2], [7], X is endowed with a fixed
conformal structure, and one considers the space M{X) of all conformal
structures whose Teichmiiller distance [6], [13] from the given one is finite. Let
Q0(X) be the group of homeomorphisms of X, which are quasiconformal
(relative to the given conformal structure) [6] and homotopic to the identity.
Q0(X) operates on M(X), and the quotient is T(Z). Let W: M(X) -* T(Z) be
the quotient map. Then Ψ does not define a fibre bundle with group Q0(X),
for Q0(X) is not a topological group relative to the topology of M{X). Still, Ψ
is a locally trivial map [13], globally trivial if and only if T(X) is contractible.
The Ahlfors-Bers theory applies to non-compact surfaces it is not known in
general whether T(X) is contractible.

6. We should verify that for compact X the Teichmiiller space of Ahlfors
and Bers coincides with ours. It is clear that there are a continuous injection
/: M(Z) —• M(Z), and an open map Q: M(X) —• <f satisfying P = <2°7,
whose image is the classical Teichmiiller space [3], [6]. That P and Q have
the same image follows, for instance, from [11, Theorem 3] the point is simply
that every homeomorphism of X is homotopic to a difϊeomorphism.

(E) We shall now outline an alternative proof that the action of D0(ΛΓ) on
M(X) produces a trivial fibre bundle. Our proof makes essential use of an
unpublished theorem of J. Sampson.

Each complex structure on X gives rise to a holomorphic covering
map π: U —» X, and the hyperbolic metric on U thereby induces a metric on
X of constant curvature —4. Therefore we may interpret M(X) as the space
of Riemannian metric structures of curvature — 4 on X.

Given the metrics μ, v in M(X) and a smooth map/: I - > I w e form its
Dirichlet integral (energy)

£(/) = 1 J>(/ω)(|/,|2 + \Wdxdy .

Here z — x + iy is an isothermal parameter relative to μ, and v is given in
isothermal parameters by ds = piw)\dw\.

It was proved by Sampson and Eells [16] and by Shibata [28] that there is
a smooth map /: X —• X which has minimal energy among maps homotopic
to the identity. (Such an / is called a harmonic map, relative to μ and v.) The
strictly negative curvature of v and the formula for the second variation of E
imply that the harmonic / is unique; we denote it by f(μ9 v). Shibata [28]
proved that f(μ, v) is a homeomorphism. Theorems of Lewy [25] and Heinz
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[20] imply that / is a diffeomorphism. Thus, for any fixed μ in M(Z), we
obtain a mapy »-> f(μ, v) from M(X) into D0(Z). Sampson has proved that
this map is continuous (oral communication).

Let (X, v) denote the manifold X endowed with the Riemannian metric v.
Since the composite of a harmonic map and an isometry is harmonic, we obtain
the commutative diagram, where g e D0(X):

(X, μ) > (X, v)

f(μ,v g)\ }8

(X,Vg)

Thus

(8.1) go f(μ, v g) = f(μ, v) for all g e D0(Z) .

We now define a map F: M(X) -» Ύ(X) X D0(Z) by

F(v) = (Φ(v), Kμ, v)-1) ,

where of course Φ: M(X) —> Ύ(X) is the quotient map. Sampson's theorem
implies that F is continuous. Moreover, (8.1) yields

(8.2) F(v g) = F(v) g for all g 6 D0(Z) ,

where D0(Z) acts on T(Z) x D0(Z) in the obvious way: (r, f)-g = (r, fog).
It follows that F is injective, for if F(v) — F(i/), then Φ(v) = Φ(v'), so v' = vg9

g € D0(Z). Thus, by (8.2),

so g — 1 and v = vf. That F is surjective and a homeomorphism now follows
from the identity

{φiv), g) = F(v)-f(μ, v)og = F(vf(μ, v) og) ,

valid for all g € D0(Z). We conclude at once, without appealing to either
Teichmuller's theorem or §§5-7, that D0(Z) and T(Z) are contractible
Hausdorff spaces, and that Φ:M(X)^Ύ(X) & trivial fibre bundle with
structure group D0(Z). In fact, (8.2) means that F defines a bundle equivalence
between Φ: M(Z) -> T(Z) and the trivial bundle πλ\ Ύ(X) X D0(Z) -^ T(Z).
An explicit section a: T(Z) -> M(X) of Φ is given by

a{Φ{v)) = F-\Φ(v), 1) - vf(μ, v) .
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9. The sphere

In this section X will be the Riemann sphere. Hence D(X) and ΌQ(X)
coincide.

(A) Proposition. ΌQ(X) is homeomorphic to Gc X Ό0(X 0,1, oo), where
Gc is the group of holomorphic automorphisms of the sphere, and Ό0(X 0,1, oo)
denotes the subgroup of Ό0(X) of elements holding 0, 1, oo fixed.

Proof. The map (A,f)^Aof from Gc X D0(Z; 0, 1, oo) to Ό0(X) is
continuous, because ΌQ(X) is a topological group. Moreover, it is bijective,
the inverse map being / H-> (Af, Ajιof)9 where Af is the unique member of
Gc taking 0,1, oo to/(0), /(I), /(oo). Finally, f>-+Af is continuous by com-
pactness properties of holomorphic functions.

Remark. Gc has the rotation group SO(3) as maximal compact subgroup,
and hence as strong deformation retract.

(B) Define the charts hx and h2 on X by stereographic projection from 0
and oo respectively. Each /eM(AT) gives rise to a pair of functions
μl9 μ2 6 C°°(C, Δ) related (compare (5.1)) by

(9.i) μ2(fω)rω/rω = A ω , z e c - {o},

where / = h2ohςι: C — {0} -> C — {0} is the mapz »-• 1/z.
Let wt: C —> C be the normalized solution of Beltrami's equation w-z

= /iίiv̂ O' = 1,2). Then / ^ o w ^ f r : ^ because of (9.1). In other words,

Wj = ΛΓ 1 O WJOΛJ = A^1 o w 2 o λ 2 e D 0 ( Z ; 0, 1, oo) .

Of course w^ is the unique element of T)0(X; 0, 1, oo) which is a holomorphic
map from X with complex structure / to X with its usual complex structure.

Theorem. The map J «-> Wj is a homeomorphism from M(Z) onto
D0(Z; 0, 1, oo).

Proof. The map is clearly bijective, and is a homeomorphism by applying
Theorem 3B to both wλ and w2.

Corollary (Smale [29]). SO(3) is a strong deformation retract of Ώ(X).

10. The torus

In this section X is a torus, and x0 is a point of X. Since our arguments are
quite similar to those we have already given for g > 1, we shall omit many
details.

(A) Fix a point x0 in X, and mark X by choosing a pair of simple loops
a and 6, which generate πλ{X\ * 0), so that a crosses b from left to right at x0

and there are no other intersections. Analogous to Lemma 4C we have the
Lemma. For each J in M(X) there is a unique (J-)holomorphic covering

map π: C —> X with cover group Γ such that
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1) The loop a determines the translation

Az = z + 1 in Γ .

2) 77ze Zoo/? b determines the translation

Bz = z + τ in Γ, Im τ > 0 .

3) TΓOO) = 0.

Now choose Jo β M(Z), and let TΓ: C—>Z and Γ be determined by the
lemma. As in § 5 A, there is an induced map π * : M(X) —• M ( O whose image
is M(.Γ), the space of Γ-invariant complex structures on C. Because of the
simple form of Γ, the equation for Γ-invariance of μ € M(C) becomes

(10.1) μ°r=:μ f o r a i i ^ β Γ .

As before, we denote by A\Γ) the Frechet space of all μ <= C°°(C, C) which
satisfy (10.1). The following assertions are proved in the same way as the
corresponding ones in § 5A.

Proposition. M(Γ) is the convex open set in Aι(Γ) consisting of the
μeA\Γ) such that sup{|μ(z)|: z e C} < 1, and TΓ* : M(Z) -+ M(Γ) is a
diffeomorphism.

Corollary. M(X) is a contractible complex analytic manifold modeled on
a Frechet space.

(B) Let D0(Γ) be the centralizer of Γ in D(C), and Ό0(Γ 0) the subgroup
fixing 0. As in § 5B, define TΓ* : Ό0(Γ 0) -* D(Z) by π*(f) o TΓ = TΓ O /.

Proposition, TΓ*: D O ( Γ ; 0) ^ D 0 ( Z ; x0) is an isomorphism of topological
groups.

We follow the reasoning of § 5B, with the Euclidean metric in place of the
hyperbolic metric.

(C) Once again, the natural action of D 0 ( Z ; JC0) on M(Z) is transferred
by TΓ to the action

(10.2) μr8 = μfg

of Ό0(Γ; 0) on M(Γ). Analogous to Propositions 5C and 5D we have the
Proposition. The action M(Γ) X D 0(Γ 0) -• M(Γ) given by (10.2) is free,

continuous, and proper.
Corollary. The natural action M(X) X Ό0(X; j t o )->M(Z) is free, con-

tinuous, and proper.
(D) Define P: M(X) -* U by P(J) = τ, where Bz = z + τ is determined

by Lemma 10A. Composing P with the inverse of TΓ* : M(X) ->M(Γ) produces
a map, still called P: M(Γ) —• U. Analogous to §§ 6B and C we have

Lemma 1. Let τ0 = P(0) e U. Then

P(μ) = wμ(τ0) for all μ 6 M(Γ) .
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Proof. For any μ e M(Γ), πμ = πo w~ι: C —• X is the covering map
determined by Lemma 10A, and Γμ = wμΓw~ι. In particular, # oz = z + P(0)
and Bμ(z) = z + P(μ) are related by Bμ = wμoB0ow~ι.

Lemma 2. P(μ) = P(v) if and only if μ and v are D0(Γ; O)-equivalent.
Proof. Because Jo was arbitrary we may assume v = 0. By Lemma 1,

P(μ) = P(0) if and only if wμ commutes with z •-> z + τ0 and hence with Γ
(for wμ always commutes with z >-> z + 1). But 0 and μ are D0(.Γ O)-equivalent
if and only \ί μ — μf for some / € D 0 (Γ; 0), which, being normalized, can
only be wμ.

(E) Proposition. P : Mi/1) —• £/ is continuous and surjective. Further,

σ: U-+M(Γ) defined by

σ(z) = IIZLL
Z — τ0

is a holomorphic section of P.
Proof. The continuity of P is immediate from Theorem 3B. By (10.1), all

constant maps λ: U -> Δ are Γ-invariant complex srtuctures these form the
image σ(J7). To verify that P o a: ί/ —• C/ is the identity map, note that

Wλ(z) = (i + ;o-!Cz + ί z ) .
Corollary. P : M(Z) -^ ϋ is an open map.
In fact, P : M(Γ) —> V maps each neighborhood of 0 € M(Γ) to a neighbor-

hood of τ0 € C7. But 0 e M(Γ) corresponds to an arbitrary Jo e M(Z).
Remark. The holomorphic section a was discovered by Teichmuller.

Teichmϋller's theorem [6] gives a section σ: Ύ(X) -^ M(X) for any compact
X, taking its values in the space M(X) of bounded measurable complex
structures. But if the genus of X is greater than one, Teichmϋller's section is
not continuous.

(F) Theorem. The quotient map Φ: M(X) -* T(Z) = M(Z)/D 0 (Z; JC0)
defines a trivial principal fibre bundle, and Ύ(X) is homeomorphic to U.

Corollary. D0(X xQ) is contractible. Thus every fibre bundle with structure
group D0(X ;c0) is topologically trivial.

Those assertions merely consolidate the results of §§ IOC, D, E.
(G) Proposition. The map X X D0(Z JC0) -* D0(Z) defined by (r,/)

π-> τ o f is a homeomorphism.
Proof. Write any feΌ(X) in the form τfof0 where fo(xo) = x0. f is

homotopic to /0.
Corollary. Ό0(X) has X as strong deformation retract. In particular, it is

the identity component of D(Z).

11. Non-orientable surfaces

A closed non-orientable surface X cannot have a complex structure, but one
can still consider the space M(X) of conformal structures on X. Moreover,



40 CLIFFORD J. EARLE 8c JAMES EELLS

for any conformal structure there always exists a universal covering map π: X
—> X such that the cover transformations are conformal maps. Here X is the
sphere, Euclidean plane, or hyperbolic plane (with its usual conformal
structure). The methods of the previous sections can thus be applied to the
study of non-orientable surfaces, with only minor changes of details. We shall
outline here the principal results. In all cases we find that the diffeomorphism
group Ό(X) has the same homotopy groups as the homeomorphism group
(Hamstrom [19]).

(A) If X is not the real projective plane or the Klein bottle, there is a
covering map π: U —> X, whose cover group Γ consists of conformal auto-
morphisms of U. There is of course an induced map;:*: M(X) —> M(Γ),
where M(Γ) is the space of jP-invariant conformal structures. The equation
for Γ-invariance takes a new form for orientation-reversing elements of
Γ μ € M(ϋ) is Γ-invariant if and only if

(11

(11

.1)

.2)

(μ

iμ

°r)rΊf
°r)Yzlrz

= μ

= P

if γ

if r

s Γ is holomorphic,

e Γ reverses orientation.

Let A\Γ) be the Frechet space of μ^C°°(JJ,C) which satisfy (11.1) and
(11.2). Because of (11.2), A\Γ) is a real but not a complex linear space. In
fact, let ΓQCZΓ be the normal subgroup of orientation preserving (holomorphic)
maps. Then Λ\Γ^ is the direct sum of Aι(Γ) and iA\Γ). Still we have

Proposition. M(Γ) is an open convex set in A\Γ), and π*: M(X) —>M(Γ)
is a diffeomorphism. In particular, M(X) is contractible.

(B) Mimicing the reasoning of § 5 we obtain the
Proposition. The natural action of D0(Z) on M(X) is free, proper, and

continuous.
Here D0(Z) is the group of diffeomorphisms homotopic to the identity, and

X is not the projective plane nor the Klein bottle. To complete the story for
such X, we note that our construction in §8 of a harmonic section
σ: M(Z)/D0(Z)-^M(Z) did not require X to be oriented. Defining the
Teichmϋller space Ύ(X) = M(X)/Ό0(X) we have

Theorem. The quotient map Φ: M(X) —• T(Z) defines a trivial principal
fibre bundle.

Corollary. T(Z) and D0(Z) are contractible. In particular, D0(Z) is
connected.

(C) The real projective plane X is the quotient of the Riemann sphere
CU{oo} by the group Γ of order two generated by the antipodal map γ(z)
= — 1/z. The space M(Z) of conformal structures on X is diffeomorphic to
M(Γ), the space of μ e M(C) satisfying (11.2). (Comparison with (9.1) reveals
that each μ e M(C) which satisfies (11.2) is also smooth at oo.)

Similarly, the group D(Z) of all diffeomorphisms of X is diffeomorphic to
Ώ(Γ), the centralizer ( = normalizer) of Γ in D(C). As in §9, let Gc be the
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group of all conformal automorphisms of CU{oo}. The intersection of Gc and
D(Γ) is SO(3), the group of rotations of the sphere. Let iV0 be the set (not a
group) of / in Ό(Γ) with /(0) = 0 and fz(O) real and positive. Since for any /
in D(Γ), \fM\ > \J/(0)\ > 0 (where Jf is the Jacobian of /), we have the

Lemma. D(Γ) is homeomorphic to SO(3) X No.
Proposition. The map μ »-• μf = f.jfz is a homeomorphism from No onto

M(Γ).
Proof, μ >-> μf is clearly a continuous map into M(C). It takes its values

in M(Γ) because each / e No commutes with γ. It is injective because if μ/—μg,
then fog-ιeGcΓ\D(Γ) = SO(3) the normalization at 0 makes / = g. Finally,
we must exhibit a continuous inverse map from M(Γ) to No. Given μ e M(Γ),
let w = wμ be the normalized solution of (3.2). w o γ o w'1 = h is an orientation-
reversing conformal involution of the sphere. Since w is normalized, h inter-
changes 0 and oo. Further, h has no fixed points. It follows that h(z) — r/z,
where r = A(l) = w ( - l ) < 0. Put

Clearly, /̂  e Λ̂ o and satisfies (3.2). Theorem 3B implies that the map μ^fμ

is continuous.
Corollary. The group of diffeomorphisms of the real projective plane has

SO(3) as strong deformation retract.
(D) It remains to consider the Klein bottle. We take X = C/Γ, where Γ

is generated by Az = I + 1/2 and Bz = z + /; as usual, π: C—>Z is the
natural map. The space of Γ-invariant conformal structures is

M(Γ) = {μzM{C)\ μoA = μ, μoB = μ} .

Let Ό0(Γ) be the centralizer of Γ in Ό(C), and π*: D0(Γ) -> D0(Z) the
natural map. The kernel of π* is the group of all real translations z ι-> z + ί,
t e R. Let No be the set (not a group) of / in D0(Γ) such that the real part of
/(0) vanishes.

Proposition.
(a) D0(Z) is homeomorphic to SO(2) X iV0.
(b) No is homeomorphic to

M0(Γ) = {μeM(Γ): wμoB = BoWμ\ .

(c) Define σ: R+ -* M(Γ) 6y σ(r) = (1 - r)(l + r)"1. For μ M ( Γ ) ,
wĵ ) o w,, commutes with B if and only if wμ(ί) = rί.

(d) The map (r, )̂ «-> //, where wμ = wff(r) o ŵ , ώ α homeomorphism from
R+ X M0(Γ) (?mo M(Γ).

The proofs, which we omit, are analogous to several others in §§ 10 and 11.
Corollary. Let X be the Klein bottle. Then D0(Z) has SO(2) as strong

deformation retract.
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Remark. For every X except the projective plane and Klein bottle, we
have found a subgroup Go of D(Z) acting freely on M(Z) such that the natural
map from M(X)/GQ, the Teichmiiller space, onto M(X)/Ό(X) is a ramified
covering map. For the projective plane and Klein bottle, however, our luck
ran out. We were compelled to use subsets No of Ό(X) which were not sub-
groups. Alternatively, we could have chosen subgroups Go contained in No,
at the cost of accepting quotient space M(X)/G0 of higher dimension. For
more general manifolds X and spaces of structures, of course, the unlucky
cases are the rule. It seems very unusual to have a subgroup of Ό(X) which
acts freely and produces a finite dimensional quotient.
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