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RICHARD L. BISHOP

1. Introduction

In [4] S. Kobayashi has proved that the holonomy algebra of a compact
riemannian manifold immersed in euclidean space of one dimension greater
is the whole orthogonal algebra. The purpose of this paper is to generalize
this result to the case of codimention two and, to a certain extent, the non-
compact case. Our technique gives a simple proof of Kobayashi's theorem.
The extensions to codimension two are as follows.

Theorem 1. Let M be a riemannian manifold of dimension D isometri-
cally immersed in a euclidean space RD+2 of dimension D + 2. Then there
are the following possibilities for r(m), the Lie algebra generated by the
curvature transformations at a point meM:

(a) The relative curvature space k(m) at m decomposes into an orthogonal
direct sum, k(m) = V + W, and r(m) = o(V) + o(W), the direct sum of the
orthogonal algebras based on V and W. (V or W may be of dimension zero
or one, so that r(m) is itself an orthogonal algebra.) Or:

(b) There is a complex structure on k(m), r(m) is the unitary algebra of
that structure, and the second fundamental forms are all of signature zero,
unless dim k(m) = 4.

In particular, if there is a point m at which some second fundamental form
is nondegenerate, that is, k(m) = Mm, then the global holonomy algebra hm

at m is one of the possibilities listed.
Theorem 2. Let M be a compact riemannian manifold of dimension DφA

isometrically immersed in RD+\ Then hm = o(V) + o(W), where Mm = V
+ W is an orthogonal direct sum.

The results in this paper are algebraic, except for a minor point used in
passing from Theorem 1 to Theorem 2. They have been used as a starting
point by Stephanie B. Alexander [1] to show that under the hypothesis of
Theorem 2 the immersion is usually the product of two hypersurface
immersions.
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2. Notation

We assume throughout that the structures we deal with are C00. The
tangent space of a manifold M at m will be denoted Mm. The riemannian
inner product is <, >. Euclidean space of dimension F with the ordinary flat
riemannian structure is denoted RF. The Grassmann product of vectors will
be denoted by juxtaposition, without wedges, and, accordingly, the space of
Grassmann bivectors over a vector space V will be denoted F2. When V has
an inner product, the orthogonal algebra of F, that is, the skew-symmetric
endomorphisms of F, denoted o(V), has a natural identification with F2 in-
duced by the inner product <, >, which can be expressed by the formula

= <x, y>y - <y, z}x,

where JC, y9 z e F. The corresponding formula for bracket in F2 is

( 2 ) [xy, zw] = <*, z}yw + <y9 w}xz - <x, w}yz - <y, z)xw.

3. Curvature transformations of immersed manifolds

Let M be a connected D-dimensional riemannian manifold isometrically
immersed in RD+E. Then for a choice of orthonormal basis and normal basis
at m € M the classical formulas for the curvature tensor are

( 3 ) Rfiijk = Σ(SahjSaik — SafιkSaij),

where SαΛi are the components of the second fundamental forms, ft, ί, j , /: =
1, , D, a = 1, ••-,£. The second fundamental forms may be interpreted
as E symmetric endomorphisms of Mm,Su , SE. If the normal basis is
changed, then the second fundamental forms undergo a corresponding (linear
orthogonal) change.

We may interpret the curvature tensor as a symmetric linear mapping of
M2

m into itself, in which case the expression in terms of the second funda-
mental forms is quite simple (see [3, p, 195]):

( 4 ) R(xy) = Σtfα*)(S«y).
a

For a symmetric endomorphism 5 we denote D(S) the subspace which is
simultaneously the range of 5, the orthogonal complement of the kernel of 5,
and the span of the nonnullity eigenvectors of 5. The relative curvature sub-
space k(jn) at m is D(Sτ) + D(S2) + + D(SE). By a proper choice of
normal basis we can make k(m) = D(Sλ). The orthogonal complement of
k{m) is annihilated by all second fundamental forms and is called the relative
nullity subspace, denoted ^(m). The dimension of 9t{rri) is called the index
of relative nullity v(m) at m, so that v is an integer-valued function on M.
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4. The holonomy algebra

The group consisting of parallel translations of Mm around loops based at m
is called the holonomy group at m. Since M is connected the holonomy groups
at different points are isomorphic. The holonomy group at m is a Lie group
and we shall denote its Lie algebra hm. It is well known that hm contains all
of the curvature transformations at m, that is, the range of the mapping given
by (4). In fact, by [2] and [5] Λm is spanned by the parallel translates to m
of the curvature transformations at all of the points of M. Denote by r{m)
the Lie algebra generated by the curvature transformations at m thus r(m) is
a subalgebra of hn and it is clear that r(m) c k(m)2 for every m.

5. Kobayashi's theorem

If M is a compact immersed hypersurface, that is, E = 1, then hm = o(Mm).
It follows, from standard facts relating orientability of M to the existence of
orientation reversing parallel translations, that the holonomy group of M is
the orthogonal group if M is nonorientable, and is the special orthogonal
group if M is orientable. To prove hm = M2

m, we note that if m is at maximal
distance in RD+1 from the origin, then the second fundamental form S of the
outward pointing normal at m is positive definite. Thus the curvature tensor
R = S S is nonsingular, so its range is all of M2

m.

6. Generators of an orthogonal algebra

The range of the curvature mapping R is a subspace of k(m)2. In this sec-
tion we investigate some circumstances under which a subspace of k(m)2 will
generate all of k(m)2. Abstracting, we suppose that U is a real vector space
with a positive definite inner product <, > and that V and W are nonzero
subspaces such that U =V + W. Then U2 = V2 + VW + W2. If V Π W = 0,
then VW may be identified with the tensor product V ® W.

Lemma 1. U2 is generated by VW.
Proof. Let v19 v2eV,weW such that <H>, w> = 1. Then, by (2),

[v{w, v2w] = vxv2 + terms in VW .

Thus V2 is contained in the algebra generated by VW. Similarly W2 is also in
that algebra, hence all of ί/2.

Remark. Lemma 1 applies, with the same proof, to the case of a complex
vector space with a nondegenerate symmetric bilinear form in the case where
neither V nor W is isotropic.

Lemma 2. // v Φ 0, then vU generates U2.
Lemma 3. // v € V, v Φ 0, w e W, w φ 0, and V Π W Φ 09 then vV +

wW generates U2.
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Proof. By Lemma 2 the algebra generated by vV + wW contains V2 +
W2. Hence if u e V Π W, u Φ 0, it also contains u(V + W) = uU, which
generates t/2.

Lemma 4. IfvεV,w€W, and vw Φ 0, then vw+V2+W2 generates U2.
Proof. Let V1 be spanned by V and w, Ŵ  by W and t;. Then vVλ +

w^i C span of vw + V2 + W2, so the result follows from Lemma 3.
Lemma 5. // V = WL and not both V and W have dimension two, then

X = V2 + W2 is a maximal proper subalgebra of C/2.
Lemma 5 follows from a well known theorem about irreducible symmetric

spaces.
Lemma 6. // V Π W = 0, dim V > 2, dim W > 1, and V Φ W\ then

X=V2+W* generates I/2.
Proofs of Lemmas 5 and 6. We first show that X and any other element

of U2 generates t/2.
If dim V = 1 with V spanned by v, then any element not in X is congruent

to some vw mod X, where weW. Then wU c span of vw + X, which
generates U2 by Lemma 2.

We have covered the cases where one of the two subspaces has dimension
one, and in the other cases possible under the hypotheses of either lemma,
one of the subspaces has dimension greater than two, so we now assume
dim V > 2. Then for an orthonormal basis v19 v29 of V and any element

not in X, where wt e W, we may assume w2 Φ 0, in which case, by (2),

= vzw2 mod X .

So X and Σ * W generate U2 by Lemma 4. This completes the proof of
Lemma 5.

To complete the proof of Lemma 6 we only need to show that X is not a
subalgebra if V Φ W1. Let v1eV,wιeW such that (v19 τv2> = 1, and let
v2eV,w2zW such that vxv2wxw2 Φ 0. Then [ t ^ , wxw2\ = v2w2 + . $ΛΓ.

Example. It is clear that in Lemma 6 the restriction dim W > 1 is
necessary. The following example shows that the remaining restrictions in
Lemmas 5 and 6 are also necessary. Let U be 4-dimensional with orthonormal
basis x, y, z, w. Then xy, zw, xz + yw, xw — yz span a subalgebra, the unitary
algebra w(2) of the complex structure / such that Jx = y,Jz = w. Then w(2)
properly contains a subalgebra of the form X with V = W 1, where V is
spanned by x, y, and W by z, w. It also contains a subspace of the form X
with V Φ W-1, where K is spanned by JC, y and JΓ by x — H>, y + z, but w(2)
9*= V2. It is not hard to show that all counterexamples to the dim V = dim W
= 2 cases of Lemmas 5 and 6 are of this type.
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7. The signature nonzero case

Under the hypothesis of Theorem 1, let us also assume that for some choice
of normal frame at m some second fundamental form Sλ has nonzero signa-
ture. We let U = k(m) and henceforth consider only the restrictions Sa \ U,
but we shall omit " | U" from our notation. As we rotate the normal frame
from the chosen position to its opposite, 52 passes to —S19 and hence under-
goes a change in signature. Thus for another choice of normal frame we must
have that Sλ is singular (on U), and it is this frame with which we now work.
Let V = £>(Sα) and W = D(S2), so U = V + W and V Φ U.

Lemma 7. The range of R contains (SJV^V + (S2V±)W. If V Π W = 0,
then the range of R equals V2 + W2.

Proof, Itxε W1-, then S^ = 0 and R(xy) = (SjxXS^y). Thus the range of
R contains (S^^V, and, simΠarly, it contains (S2V±)W. If V Π W = 0,
then SJV1- = V and S2V

L = W. But the range of JR is always contained in
V2 + W2.

Lemma 8. The subalgebra generated by V2 + W2 is r(m).
Proof. ltW=U, then, by Lemma 7, r(m) contains wU for some w Φ 0;

so by Lemma 2 we have r(m) = U2 = V2 + W2. Otherwise SλW± φO\so r(m)
contains V2 + W2 again by Lemma 2.

Theorem l(a'). If some second fundamental form at m has nonzero signa-
ture, then there are the following possibilities for r(m) :

(a) r(m) = £(m)2, or
(b) r(m) = V2 + W2, where V and W are nonzero, orthogonal to each

other, and k(m) = V+W,or
(c) r{m) = M(2), the unitary algebra of some complex structure on k(m),

and dim k(m) = 4.
Proof. This follows by combining Lemmas 8 and 6 and, in the case dim V

= dim W = 2, using the fact pointed out in the example.
Remark. In case (b), if neither of V or W has dimension one, the frame

for Mm and the normal frame may be chosen so that the matrices of S19 S2

have the form

( A 0 0\ /0 0 0\

0 0 0 J , 1 0 B O J ,
0 0 0/ \0 0 0/

where 4̂ and B are nonsingular diagonal matrices. This choice of normal
frame is unique up to sign and order. Since 52 and S2 commute, the normal
curvature vanishes.

In case (a), and also case (b) if one of V or W has dimension one, the
normal curvature may or may not vanish. If the normal curvature vanishes,
then case (c) cannot occur.
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8. The signature zero case

The possibility not included in the analysis in §7 is that all second funda-
mental forms at m are nonsingular on U = k(m) and hence their signatures
are all zero. Again using the convention that we omit noting restrictions to U,
choose any normal basis and let A = S&1. Then A — μl = (—μSi + SJSς1

is nonsingular for all real μ\ so A has no real eigenvalues.
Denote the complexifications of U and r(m) by Uc and r(m)c. We extend

the inner product to Uc to be complex bilinear, and it follows that r(m)c is the
algebra generated by all xy + (Ax)(Ay) = (S&'xXSfr'y) + iS&lx){S&*y),
where x,ye Uc. We identify o(Uc) and (C/c)

2 by the formula (1) as before.
For any complex number q denote the null space of (A — qT)h by V(q, h).
In particular, V(q, 0) = 0, V(q, 1) is the space of eigenvectors of A having
eigenvalue q, and Uc is the direct sum of the subspaces V(q) = V(q, D).
Since A is real, V(q, h) = V(q, A). We call V(q) the g-eigenspace of A.
Denoto AA the extension of A to IPC, that is, AA(xy) = (Ax)(Ay).

Lemma 9. For every pair of complex numbers q, r, the subspace V(q)V(r)
of V] is contained in the (qr)-eigenspace of AA.

Proof. We prove by induction on (A, /) that V(q, h)V(r, j) is contained in
the (<jrr)-eigenspace of AA. Since this is clear for h = / = 0 we proceed with
the inductive step. For convenience let V(q, — 1) = 0. Suppose that x € V(q, h)
and y 6 V(r, /). Then Ax = qx + z and Ay = ry + w, where z € V(q, h — 1)
and we V(r,j- 1). Thus

(AA — qrl)xy = ^rj:y + #JOV + rzy + zw — grxy = gjnv + rzy

By the inductive assumption,

JW, z^, zw e V(q, h -

are annihilated by some power of A A — qrl; hence so also is xy.
Lemma 10. Lei F = Σim3>o V(4), W = V. Then VW is contained in the

range of AA + I and UC = V + W.
Proof. From Lemma 9 we have that AA + I is nonsingular on its invari-

ant subspace VW, since qr Φ — 1 if Im q > 0 and Im r < 0.
Theorem 1 (b') // oil second fundamental forms at m have the same rank,

and hence zero signature, then r(m) is either k(m)2 or the unitary algebra of
an isometric complex structure on k(m).

Proof. By the remark after Lemma 1, VW generates U\ unless V and W
are both isotropic. Hence we assume that V is isotropic, and hence also W is
isotropic, since W = V. The condition for this to happen is that there be an
isometric complex structure J on U having V and W as its eigenspaces, say V
consists of all x — Ux, where x e U. Moreover, it then follows that VW is the
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complexification of the unitary algebra u(J) of J. Indeed, u(J) consists of ele-
ments of U2 which commute with J and it is easily shown that the real and
imaginary parts of (x — iJx)(y + Uy), that is, xy + JxJy and xJy + yJx,
commute with 7, so VW is contained in u(J)c. However, the dimensions of
u(J)c and VW over C are the same; so VW = w(/)c.

It is well known that SO(2n) / U(ri) is an irreducible symmetric space, so
u(J) is a maximal subalgebra of U2. Thus if the range of R contains more than
VW, then r(m) = U2. This completes the proofs of Theorems 1 and l(b').

Remark. If we utilize Lemma 9 and its proof further we can conclude the
following when r(m) = u(J):

(1) If dim U > 4, then V = V(i, 1) and A = 7.
(2) If dim U = 4, then besides the possibility A = / we can also have

V = V(q, 1) + V{-l/q, 1) for some 4, or V = F(z, 2) φ V(i, 1).
In the case where A = / we can choose a frame of U and a normal frame

such that matrices of S19 52> J on U are

G
respectively, where Q is positive definite and diagonal.

9. The proof of Theorem 2

As in the proof of Kobayashi's Theorem, if we choose a point m at maximal
distance from the origin in RD+2, we will have a positive definite second
fundamental form at m. This clearly eliminates the zero signature case and
also gives us k{m) = Mm. Thus hm contains a subalgebra r(m) = V2 + W2,
where V + W = Mm and F = WL, and Lemma 5 completes the proof.
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