ON THE GROUP OF CONFORMAL TRANSFORMATIONS OF A COMPACT RIEMANNIAN MANIFOLD. III

CHUAN-CHIH HSIUNG

1. Introduction

Let $g_{i j}, R_{h i j k}, R_{i j}=R^{k}{ }_{i j k}$ be respectively the metric, Riemann and Ricci tensors of a Riemannian manifold M^{n} of dimension n, and denote

$$
\begin{equation*}
P=R^{n i j k} R_{n i j k}, \quad Q=R^{i j} R_{i j} \tag{1.1}
\end{equation*}
$$

Throughout this paper all Latin indices take the values $1, \cdots, n$ unless stated otherwise, and repeated indices imply summation. In a recent paper [2] the author proved

Theorem 1. Suppose that a compact Riemannian manifold $M^{n}(n>2)$ with constant scalar curvature $R=g^{i j} R_{i j}$ admits an infinitesimal nonhomothetic conformal transformation v, and let L_{v} be the operator of the infinitesimal transformation v. If

$$
\begin{equation*}
a^{2} L_{v} P+b(2 a+n b) L_{v} Q=\text { const } . \tag{1.2}
\end{equation*}
$$

where a and b are constants such that

$$
\begin{equation*}
c \equiv 4 a^{2}+2(n-2) a b+n(n-2) b^{2}>0 \tag{1.3}
\end{equation*}
$$

then M^{n} is isometric to a sphere.
In particular, when $a=0$ or $b=0$, Theorem 1 is reduced to a result of Yano [4], which is a generalization of some results of Lichnerowicz [3] and the author [1]. Yano pointed out that condition (1.3) is equivalent to that a and b are not both zero.

Very recently, Yano and Sawaki [5] obtained the following theorem similar to Theorem 1 :

Theorem 2. Suppose that a compact Riemannian manifold $M^{n}(n>2)$ with constant R admits an infinitesimal nonhomothetic conformal transformation v. If

$$
\begin{equation*}
L_{v} L_{v}\left[(n-2) a^{2} P+4 b(2 a+b) Q\right] \leq 0 \tag{1.4}
\end{equation*}
$$

[^0]where a and b are constants such that $a+b \neq 0$, then M^{n} is isometric to a sphere.

The purpose of this paper is to generalize both Theorems 1 and 2 to
Theorem 3. Suppose that a compact Riemannian manifold $M^{n}(n>2)$ with constant R admits an infinitesimal nonhomothetic conformal transformation v. If

$$
\begin{equation*}
L_{v} L_{v}\left(a^{2} P+\frac{c-4 a^{2}}{n-2} Q\right) \leq 0 \tag{1.5}
\end{equation*}
$$

where

$$
\begin{align*}
& c \equiv 4 a^{2}+(n-2)\left[2 a \sum_{i=1}^{4} b_{i}+\left(b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}\right)^{2}\right. \tag{1.6}\\
&\left.\quad-2 b_{1} b_{3}-2 b_{2} b_{4}+2 b_{5} b_{6}+(n-1) \sum_{i=1}^{6} b_{1}^{2}\right]>0
\end{align*}
$$

a and b's being constants, then M^{n} is isometric to a sphere.
It is obvious that Theorem 3 is reduced to a generalization of Theorem 1 when $b_{2}=\cdots=b_{6}=0$, and to Theorem 2 when

$$
b_{1}=\cdots=b_{4}=b /(n-2), \quad b_{5}=b_{6}=0
$$

We need the following theorem of Yano [5] to prove Theorem 3:
Theorem 4. Suppose that a compact orientable Riemannian manifold M^{n} ($n>2$) with constant R admits an infinitesimal nonhomothetic conformal transformation v so that

$$
\begin{equation*}
L_{v} g_{i j}=2 \phi g_{i j}, \quad \phi=\text { const } . \tag{1.7}
\end{equation*}
$$

and let ∇ denote the operator of covariant derivation of M^{n} with respect to $g_{i j}$. If

$$
\begin{equation*}
\int_{M^{n}} T_{i j} \phi^{i} \phi^{j} d A \geq 0 \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{i j}=R_{i j}-\frac{R}{n} g_{i j} \tag{1.9}
\end{equation*}
$$

$\phi^{i}=\nabla^{i} \phi=g^{i j} \nabla_{j} \phi$, and $d A$ is the element of area of M^{n} at a point, then M^{n} is isometric to a sphere.

2. Lemmas

Throughout this section M^{n} will always denote a compact orientable Riemannian manifold of dimension $n>2$. Let Δ be the Laplace-Beltrami operator on M^{n}. Then, for any scalar field f on M^{n},

$$
\begin{equation*}
\Delta f=-\nabla^{i} \nabla_{j} f \tag{2.1}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\int_{M^{n}} \Delta f d A=0 \tag{2.2}
\end{equation*}
$$

from the well-known Green's formula:

$$
\begin{equation*}
\int_{M^{n}} \nabla^{i} \xi_{i} d A=0, \tag{2.3}
\end{equation*}
$$

where ξ_{i} is any vector field on M^{n}.
Lemma 1. If a nonconstant scalar field ϕ on a manifold M^{n} satisfies $\Delta \phi=$ $k \phi$, where k is constant, then k is positive.

Proof. From equations (2.1), (2.2) we obtain

$$
\begin{align*}
0=\int_{M^{n}} \Delta\left(\phi^{2}\right) d A & =2 \int_{M^{n}}\left(\phi \Delta \phi-\phi^{i} \phi_{i}\right) d A \tag{2.4}\\
& =2 \int_{M^{n}}\left(k \phi^{2}-\phi^{i} \phi_{i}\right) d A
\end{align*}
$$

which gives Lemma 1 immediately.
Lemma 2. Let v be an infinitesimal conformal transformation on M^{n} so that

$$
\begin{equation*}
L_{v} g_{i j}=2 \phi g_{i j} \tag{2.5}
\end{equation*}
$$

Then

$$
\begin{align*}
L_{\mathrm{v}} R_{n i j k}= & 2 \phi R_{h i j k}-g_{n k} \nabla_{j} \phi_{i}+g_{h j} \nabla_{k} \phi_{i} \tag{2.6}\\
& -g_{i j} \nabla_{k} \phi_{h}+g_{i k} \nabla_{j} \phi_{h},
\end{align*}
$$

$$
\begin{equation*}
L_{v} R_{i j}=g_{i j} \Delta \phi-(n-2) \nabla_{j} \phi_{i} \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
L_{v} R=2(n-1) \Delta \phi-2 R \phi \tag{2.8}
\end{equation*}
$$

Lemma 2 can be proved by a straightforward computation.
Lemma 3. If M^{n} has constant R and admits an infinitesimal nonhomothetic conformal transformation v so that (1.7) holds, then

$$
\begin{gather*}
\Delta \phi=R \phi /(n-1), \tag{2.9}\\
R>0
\end{gather*}
$$

Equation (2.9) follows from equation (2.8) due to the constancy of R, and equation (2.10) from Lemma 1.
Lemma 4 (Yano and Sawaki [5]). If M^{n} admits an infinitesimal conformal transformation v so that equation (2.5) holds, then, for any scalar field f on M^{n},

$$
\begin{equation*}
\int_{M^{n}} \phi f d A=-\frac{1}{n} \int_{M^{n}} L_{v} f d A \tag{2.11}
\end{equation*}
$$

Proof. Substituting $f v_{i}$ for ξ_{i} in the Green's formula (2.3) we obtain

$$
\begin{equation*}
\int_{M^{n}} f \nabla^{i} v_{i} d A=-\int_{M^{n}} v_{i} \nabla^{i} f d A=-\int_{M^{n}} L_{v} f d A \tag{2.12}
\end{equation*}
$$

On the other hand, since

$$
L_{v} g_{i j}=\nabla_{i} v_{j}+\nabla_{j} v_{i}
$$

from equation (2.5) we have $\nabla^{i} v_{i}=n \phi$, which and equation (2.12) yield the required equation (2.11) immediately.

3. Proof of Theorem $\mathbf{3}$

On the manifold M^{n} consider the covariant tensor field of order 4:

$$
\begin{align*}
W_{h i j k}= & a T_{h i j k}+b_{1} g_{h k} T_{i j}-b_{2} g_{h j} T_{i k}+b_{3} g_{i j} T_{h k} \tag{3.1}\\
& -b_{4} g_{i k} T_{h j}+b_{5} g_{h i} T_{j k}-b_{\varepsilon} g_{j k} T_{h i},
\end{align*}
$$

where

$$
\begin{equation*}
T_{h i j k}=R_{h i j k}-\frac{R}{n(n-1)}\left(g_{i j} g_{h k}-g_{i k} g_{h j}\right) \tag{3.2}
\end{equation*}
$$

and a and b 's are constants satisfying (1.6). Then

$$
\begin{equation*}
W^{n i j k} W_{n i j k}=a^{2} P+\frac{c-4 a^{2}}{n-2} Q-\frac{1}{n}\left(\frac{2 a^{2}}{n-1}+\frac{c-4 a^{2}}{n-2}\right) R^{2} \tag{3.3}
\end{equation*}
$$

where c is defined by (1.6). From equation (3.3) it follows that

$$
\begin{equation*}
L_{v}\left(W^{n i j k} W_{n i j k}\right)=L_{v}\left(\left(a^{2} P+\frac{c-4 a^{2}}{n-2} Q\right)\right. \tag{3.4}
\end{equation*}
$$

By assuming the infinitesimal nonhomothetic conformal transformation v to
be defined by (1.7), from equations (3.1), (3.2), (1.9), (2.5), (2.6), (2.7), (2.9) we can easily obtain

$$
\begin{aligned}
L_{v} W_{h i j k}= & 2 a \phi R_{h i j k}-\left[a+(n-2) b_{1}\right] g_{h k} \nabla_{j} \phi_{i} \\
& +\left[a+(n-2) b_{2}\right] g_{h j} \nabla_{k} \phi_{i}-\left[a+(n-2) b_{3}\right] g_{i j} \nabla_{k} \phi_{h} \\
& +\left[a+(n-2) b_{4}\right] g_{i k} \nabla_{j} \phi_{h}-(n-2) b_{5} g_{h i} \nabla_{k} \phi_{j}+(n-2) b_{6} g_{j k} \nabla_{i} \phi_{h} \\
& -\frac{\phi R}{n(n-1)} g_{i j} g_{n k}\left[4 a+(3 n-4)\left(b_{1}+b_{3}\right)\right] \\
& +\frac{\phi R}{n(n .5)} g_{i k} g_{h j}\left[4 a+(3 n-4)\left(b_{2}+b_{4}\right)\right] \\
& -\frac{3 n-4}{n(n-1)} b_{5} \phi R g_{h i} g_{j k}+\frac{3 n-4}{n(n-1)} b_{6} \phi R g_{j k} g_{h i}+2 b_{1} \phi g_{h k} R_{i j} \\
& -2 b_{2} \phi g_{h j} R_{i k}+2 b_{3} \phi g_{i j} R_{h k}-2 b_{4} \phi g_{i k} R_{h j}+2 b_{5} \phi g_{h i} R_{j k} \\
& -2 b_{6} \phi g_{j k} R_{k i} .
\end{aligned}
$$

Multiplying both sides of equation (3.5) by $W^{n i j k}$ and making use of equations (3.1), (3.2), (1.9), (3.3), (1.6) and $R^{i}{ }_{i j k}=0$, an elementary but lengthy calculation yields

$$
\begin{equation*}
W^{n i j k} L_{n} W_{h i j k}=2 \phi W^{n i j k} W_{h i j k}-c T^{i j} \nabla_{j} \phi_{i} \tag{3.6}
\end{equation*}
$$

By substituting equation (3.6) in the well-known formula

$$
\begin{equation*}
L_{v}\left(W^{h i j k} W_{h i j k}\right)+2 W^{h i j k} L_{v} W_{h i j k}-8 \phi W^{h i j k} W_{h i j k} \tag{3.7}
\end{equation*}
$$

we thus have

$$
\begin{equation*}
\phi L_{v}\left(n i j k W_{h i j k}\right)=-4 \phi^{2} W^{n i j k} W_{h i j k}-2 c \phi T^{i j} \nabla_{j} \phi_{i} \tag{3.8}
\end{equation*}
$$

Since the manifold M^{n} is of constant R, it is known that fo $n<2$

$$
\begin{equation*}
\nabla^{j} R_{i j}=0, \tag{3.9}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\nabla^{j} \boldsymbol{T}_{i j}=0 \tag{3.10}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\nabla^{j}\left(T_{i j} \phi \phi^{i}\right)=T_{i j} \phi^{i} \phi^{j}+\phi T_{i j} \nabla^{j} \phi^{i} \tag{3.11}
\end{equation*}
$$

Without loss of generality we may assume our manifold M^{n} to be orientable, since otherwise we need only to take an orientable twofold covering space of
M^{n}. Substituting equation (3.8) in equation (3.11), integrating the resulting equation over the manifold M^{n} and using equation (2.3) we obtain

$$
\begin{align*}
2 c \int_{M^{n}} T_{i j} \phi^{i} \phi^{j} d A= & \int_{M^{n}} \phi L_{v}\left(W^{h i j k} W_{h i j k}\right) d A \tag{3.12}\\
& +4 \int_{M^{n}} \phi^{2} W^{n i j k} W_{h i j k} d A
\end{align*}
$$

On the right side of equation (3.12), the second integral is nonnegative since its integrand is so, and the first integral is equal to, by Lemma 4 and equations (3.3), (1.5),

$$
-\frac{1}{n} \int_{M^{n}} L_{v} L_{v}\left(W^{h i j k} W_{h i j k}\right) d A=-\frac{1}{n} \int_{M^{n}} L_{v} L_{v}\left(a^{2} P+\frac{c-4 a^{2}}{n-2} Q\right) d A \geq 0 .
$$

Hence the integral on the left side of equation (3.12) is nonnegative, and Theorem 3 follows from Theorem 4 immediately.

References

[1] C.C. Hsiung, On the group of conformal transformations of a compact Riemannian manifold, Proc. Nat. Acad. Sci. U.S.A. 54 (1965) 1509-1513.
[2] -, On the group of conformal transformations of a compact Riemannian manifold. II, Duke Math. J. 34 (1967) 337-341.
[3] A. Lichnerowicz, Sur les transformations conformes d'une variété riemannienne compacte, C. R. Acad. Sci. Paris 259 (1964) 697-700.
[4] K. Yano, On Riemannian manifolds with constant scalar curvature admitting a conformal transformation group, Proc. Nat. Acad. Sci. U.S.A. 55 (1966) 472-476.
[5] K. Yano \& S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differential Geometry 2 (1968) 185-190.

Lehigh University

[^0]: Communicated November 28, 1967. Supported partially by the National Science Foundation grant GP-7513.

