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CONSTANT MEAN CURVATURE SURFACES IN
SUB-RIEMANNIAN GEOMETRY

Robert K. Hladky & Scott D. Pauls

Abstract

We investigate the minimal and isoperimetric surface problems
in a large class of sub-Riemannian manifolds, the so-called Ver-
tically Rigid spaces. We construct an adapted connection for
such spaces and, using the variational tools of Bryant, Griffiths
and Grossman, derive succinct forms of the Euler-Lagrange equa-
tions for critical points for the associated variational problems.
Using the Euler-Lagrange equations, we show that minimal and
isoperimetric surfaces satisfy a constant horizontal mean curva-
ture conditions away from characteristic points. Moreover, we use
the formalism to construct a horizontal second fundamental form,
II0, for vertically rigid spaces and, as a first application, use II0

to show that minimal surfaces cannot have points of horizontal
positive curvature and that minimal surfaces in Carnot groups
cannot be locally strictly horizontally geometrically convex. We
note that the convexity condition is distinct from others currently
in the literature.

1. Introduction

Motivated by the classical problems of finding surfaces of least area
among those that share a fixed boundary (the minimal surface prob-
lem) and surfaces of least area enclosing a fixed volume (the isoperi-
metric problem), several authors have recently formulated and investi-
gated similar problems in the setting of sub-Riemannian or Carnot-
Carathédory spaces. In particular, N. Garofalo and D.M. Nheiu in
[15] laid the foundations of the theory of minimal surfaces in Carnot-
Carathéodory spaces and provided many of the variational tools nec-
essary to make sense of such a problem. Building on this foundation,
Danielli, Garofalo and Nhieu, [9, 10], investigated aspects of minimal
and constant mean curvature surfaces in Carnot groups. Among many
other results, these authors showed the existence of isoperimetric sets,
and that, when considering the isoperimetric problem in the Heisenberg
groups, if one restricts to the set of surfaces which are the union of
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two graphs over a ball, then the minimizers satisfy an analogue of the
constant mean curvature equation. In this setting, the authors identify
the absolute minimizer bounding a fixed volume and show that it is
precisely the surface that Pansu conjectured to be the solution to the
isoperimetric problem [22]. Further in this direction of the isoperimetric
problem, Leonardi and Rigot [20] independently showed the existence
of isoperimetric sets in any Carnot group and investigated some of their
properties. Leonardi and Masnou, [19], investigated the geometry of
the isoperimetric minimizers in the Heisenberg groups and also showed
a more restricted version of the result in [10] showing that among sets
with a cylindrical symmetry, Pansu’s set is the isoperimetric minimizer.

In addition to this more general work in Carnot groups and Carnot-
Carathéodory spaces, a great deal of work has been done on the min-
imal surface problem in more specialized settings. For example, the
second author, in [23], showed a connection between Riemannian mini-
mal graphs in the Heisenberg group and those in the Carnot Heisenberg
group and used this connection to prove W 1,p estimates for solutions to
the minimal surface equation. In addition, he found a number of initial
examples of minimal surfaces in the Heisenberg group and used them to
demonstrate non-uniqueness of the solution to the Dirichlet problem in
the Heisenberg group. Recently, both Garofalo and the second author,
[16], and Cheng, Huang, Malchiodi and Yang, [7], independently inves-
tigated minimal surfaces in some limited settings. In [7], the authors
investigate C2 minimal surfaces in three dimensional pseudohermitian
geometries (including, of course, the Heisenberg group) and, using the
techniques of CR geometry, investigate the structure of minimal surfaces
in this setting and, among many results, prove, under suitable condi-
tions, a uniqueness result for the Dirichlet problem for minimal surfaces
in the Heisenberg group and classify the complete minimal graphs over
the xy-plane. Garofalo and the second author restricted their view to
the Heisenberg group and provided, among other results, a representa-
tion theorem for smooth minimal surfaces, a horizontal regularity the-
orem and proved an analogue of the Bernstein theorem, showing that
a minimal surface in the Heisenberg group that is a graph over some
plane satisfies a type of constant curvature condition. This theorem of
Bernstein type also leads to the classification of the complete minimal
graphs over the xy-plane. Cheng and Hwang, [6], classified all properly
embedded minimal surfaces in H of helicoid-type. In [24], the second
author extends the representation theorem of [16] to minimal surfaces
in H1 with lower regularity, provides examples of continuous (but not
smooth) minimal surfaces, and shows a geometric obstruction to the
existence of smooth minimal solutions to the Plateau Problem in the
Heisenberg group. In [8], Cole examines smooth minimal surfaces in
spaces of Martinet-type. While this collection of spaces includes the
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Heisenberg group and many of those considered in [7], Cole’s thesis also
treats three dimensional spaces that do not have equiregular horizontal
subbundles. In [8], Cole derives the minimal surface equation and ex-
amines the geometry and existence of smooth solutions to the Plateau
Problem.

While there has been great progress in the understanding of min-
imal and constant mean curvature surfaces in the setting of Carnot-
Carathéodory spaces, there are still many fundamental open questions
left to address. Most notably, much of the focus has been on the mini-
mal surface equation and the majority of the work has focused on more
limited settings such as the Heisenberg group, groups of Heisenberg
type or three dimensional pseudohermitian manifolds. In this paper, we
will address more general problems using a new tool to help discrimi-
nate between the various types of constant mean curvature surfaces that
abound in different Carnot-Carathéodory spaces.

Question: In a Carnot-Carathéodory manifold M , do the surfaces

of least perimeter or the surfaces of least perimeter enclosing a fixed

volume satisfy any partial differential equations? Can the solutions be

characterized geometrically?

In Euclidean space, there is a beautiful connection between the geom-
etry of surfaces and the solutions to these variational problems: minimal
surfaces are characterized as zero mean curvature surfaces while isoperi-
metric surfaces have constant mean curvature.

In this paper, we restrict ourselves to a large class of sub-Riemannian
manifolds which we call vertically rigid sub-Riemannian (VR) spaces.
These spaces are defined in Section 2 and include basically all exam-
ples already studied (including Carnot groups, Martinet-type spaces
and pseudohermitian manifolds) but are a much larger class. On such
spaces, we define a new connection, motivated by the Webster-Tanaka
connection of strictly pseudoconvex pseudohermitian manifolds, that is
adapted to the sub-Riemannian structure. Using this connection and
the variational framework of Bryant, Griffiths and Grossman [3], we in-
vestigate minimal and isoperimetric surface problems. The framework
of [3] provides a particularly nice form of the Euler-Lagrange equations
for these problems and leads us to define a horizontal second fundamen-

tal form, II0, and the horizontal mean curvature, Trace(II0), associated
to a hypersurface in a Carnot group. Given a noncharacteristic subman-
ifold Σ of a VR space M , let {e1, . . . , ek} be an orthonormal basis for
the horizontal portion of the tangent space to Σ and let e0 be the unit
horizontal normal to Σ (see the next section for precise definitions).
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Then, we define the horizontal second fundamental form as

II0 =



〈∇e1

e0, e1〉 . . . 〈∇e1
e0, ek〉

...
...

...
〈∇ek

e0, e1〉 . . . 〈∇ek
e0, ek〉




and define the horizontal mean curvature as the trace of II0. We note
that the notion of horizontal mean curvature has appeared in several
contexts (see [2, 7, 9, 10, 11, 16, 23]), and that this notion coincides
with the others, possibly up to a constant multiple. However, we em-
phasize that the version of the mean curvature above applies to all VR
spaces (before this work, only [9, 10] deals with mean curvature in any
generality, but again is limited to Carnot groups) and has the advantage
of being written in an invariant way with respect to the fixed surface.
With this notion in place, we have a characterization of C2 solutions to
the two variational problems discussed above:

Theorem 1.1. Let M be a vertically rigid sub-Riemannian manifold

and Σ a noncharacteristic C2 hypersurface. Σ is a critical point of the

first variation of perimeter if and only if the horizontal mean curvature

of S vanishes.

Similarly,

Theorem 1.2. Let M be a vertically rigid sub-Riemannian space and

Σ a C2 hypersurface. If Σ is a solution to the isoperimetric problem,

then the horizontal mean curvature of Σ is locally constant.

Thus, we recover an analogue of the classical situation: the solutions
to these two problems are found among the critical points of the asso-
ciated variational problems. Moreover, these critical points are charac-
terized by having the trace of the second fundamental form be constant.

We note that the characterization of minimal surfaces in terms of both
a PDE and in terms of mean curvature was achieved first by Danielli,
Garofalo and Nhieu, [9], in Carnot groups and by the second author,
[23], for minimal graphs in the Heisenberg group. The technique de-
scribed above provides a broad extension of this characterization and
describes mean curvature in a geometrically motivated manner. From
this point of view, this is most similar to the treatment of mean curva-
ture by Cheng, Huang, Malchiodi and Yang, [7], who use the Webster-
Tanaka connection to investigate the minimal/CMC surface problem.
In contrast, some of the earlier definitions of mean curvature relied on
the minimal surfaces equation for the definition (as in [23]) or via a
different geometric analogue such as a symmetrized horizontal Hessian
(as in [11]).

On the other hand, for isoperimetric surfaces, the only known links
between isoperimetric sets and constant mean curvature are under cer-
tain restrictions on the class of sets in the first Heisenberg group ([9,
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19]), for C2 surfaces in 3-dimensional pseudohermitian manifolds [7]
and for C2 surfaces in the first Heisenberg group using mean curvature
flow methods due to Bonk and Capogna [2] and, recently, for C2 sur-
faces in all Heisenberg groups due to Ritoré and Rosales [25]. Thus, our
treatment of these problems unifies these results and extends them to a
much larger class of sub-Riemannian manifolds. Moreover, we provide
a number of new techniques and tools for investigating these problems
in a very general setting.

As mentioned above, the geometric structure of minimal surfaces has
only been studied in cases such as the Heisenberg group, pseudohermi-
tian manifolds, and Martinet-type spaces. In general, even in the higher
Heisenberg groups, nothing is known about the structure and geometry
of minimal surfaces. As an illustration of the power of this framework,
we use the horizontal second fundamental form to provide some geo-
metric information about minimal surfaces in any VR space. To better
describe minimal surfaces, we introduce some new notions of curvature
in VR spaces:

Definition 1.3. Let II0 be the horizontal second fundamental form
for a C2 noncharacteristic surface, Σ, in a vertically rigid sub-Riemann-
ian manifold M . Let {µ1, . . . , µk} be the eigenvalues (perhaps complex
and with multiplicity) of II0. Then, the horizontal principle curva-
tures are given by

κi = Re (µi)

for 1 ≤ i ≤ k.
Moreover, given x ∈ Σ, we say that Σ is horizontally positively

(non-negatively) curved at x if II0 is either positive (semi-)definite or
negative (semi-) definite at x, and is horizontally negatively curved
at x if there is at least one positive and one negative κi. Σ is horizon-
tally flat at x if κi = 0 for 1 ≤ i ≤ k.

Let Σ be a C2 hypersurface in M , a vertically rigid sub-Riemannian
manifold. Then, the horizontal exponential surface at x ∈ Σ,
Σ0(x), is defined to be the union of all the horizontal curves in Σ pass-
ing through x. The notion of horizontal principle curvatures described
above gives rise to a new definition of convexity:

Definition 1.4. A subset U of a Carnot group M with C2 boundary
Σ is (strictly) horizontally geometrically convex, or (strictly) hg-
convex, if, at each noncharacteristic point x ∈ Σ, Σ0(x) lies (strictly) to
one side of T h

x Σ, the horizontal tangent plane to Σ at x. We say that
Σ is locally (strictly) hg-convex at x if there exists an ǫ > 0 so that
Σ0(x) ∩ B(x, ǫ) lies (strictly) to one side of T h

x Σ.

We note that this notion of convexity is distinct from those described
in [11] or [21]. In Section 6, we give explicit examples showing the
nonequivalence of the various notions.
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With these definitions in place, we prove an analogue to the classical
statement that a minimal surface in R3 must be nonpositively curved.

Theorem 1.5. Let Σ be a C2 noncharacteristic minimal hypersurface

in a vertically rigid sub-Riemannian space M . Then, Σ cannot contain a

point of horizontal positive curvature. If we further assume that M is a

Carnot group, then Σ cannot be locally strictly horizontally geometrically

convex.

We emphasize that this is the first description of the geometry of
minimal surfaces in a relatively general class of spaces.

The rest of the paper is divided into five sections. In Section 2, we
define vertically rigid sub-Riemannian spaces, the adapted connection
we mentioned above, and an adapted frame bundle for such objects.
In Section 3, we briefly review the relevant machinery from [3]. In
Section 4, we address the minimal surface problem using the machinery
of Bryant, Griffiths and Grossman. Section 5 addresses the isoperimetric
problem in this setting, and finally, in Section 6, we define the horizontal
second fundamental form and prove the geometric properties of minimal
surfaces described above.

The authors thank the referee for many helpful comments and sug-
gestions.

2. Vertically rigid sub-Riemannian manifolds

We begin with our basic definitions:

Definition 2.1. A sub-Riemannian (or Carnot-Carathéodory)
manifold is a triple (M, V0, 〈·, ·〉) consisting of a smooth manifold Mn+1,
a smooth k + 1-dimensional distribution V0 ⊂ TM and a smooth inner
product on V0. This structure is endowed with a metric structure given
by

dcc(x, y) = inf

{∫
〈γ̇, γ̇〉 1

2 |γ(0) = x, γ(1) = y, γ ∈ A

}

where A is the space of all absolutely continuous paths whose deriva-
tives, when they are defined, lie in V0.

Definition 2.2. A sub-Riemannian manifold has a vertically rigid
complement if there exist

• a smooth complement V to V0 in TM ,
• a smooth frame T1, . . . Tn−k for V ,
• a Riemannian metric g such that V and V0 are orthogonal, g agrees

with 〈·, ·〉 on V0 and T1, . . . Tn−k are orthonormal,
• a partition of {1, . . . , n − k} into equivalence classes such that for

all sections X ∈ Γ(V0), g([X, Tj ], Ti) = 0 if j ∼ i.

A sub-Riemannian space with a vertically rigid complement is called
a vertically rigid (VR) space.
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Remark 2.3. The final assumption is the only one to impose any
real constraints on the sub-Riemannian structure. Its value is in that it
causes an important piece of torsion to vanish, specifically the second
part of Lemma 2.16, which simplifies computation. As we shall soon
see, it is present in most examples currently seen in the literature.

For a VR space, we shall denote the number of equivalence classes
of the partition by v and the size of the partitions by l1, . . . lv. In
particular, we then have l1 + · · · + lv = n − k. After choosing an order
for the partitions, for j > 0 we set

Vj = span{Ti : i is in the jth partition}.
Then

TM =
v⊕

j=0

Vj .

After reordering we can always assume that the vector fields T1, . . . , Tl1

span V1, the next l2 span V2 etc.
There are 3 motivating examples for this definition:

Example 2.4. Let (M, θ, J) be a strictly pseudoconvex pseudoher-
mitian structure (see [26]). Then V0 = ker θ has codimension 1 and a
vertically rigid structure can be defined by letting T1 be the character-
istic (Reeb) vector field of θ and defining g to be the Levi metric

g(X, Y ) = dθ(X, JY ) + θ(X)θ(Y ).

Since T1 is dual to θ and T1ydθ = 0 the required commutation property
clearly holds.

Example 2.5. Let (M, v0) be a graded Carnot group with step size
r. Then the Lie algebra of left-invariant vector fields of M decomposes
as

m =
r⊕

j=0

vj

where vj+1 = [v0, vj ] for j < r and [v0, vr] = 0. We then set Vj =
span(vj) and construct a (global) frame of left invariant vector fields for
each vj , j > 0. If T is a left invariant section of Vj and X any horizontal
vector field, then at every point

[T, X] ∈ V0 ⊕ Vj+1

by the defining properties of graded Carnot groups (with Vr+1 = 0).
Thus, the final rigidity assumption is satisfied.

Example 2.6. We now give two explicit examples of Carnot groups
to more concretely illustrate the previous example. In addition, in later
sections, we will construct surfaces in each of these Carnot groups as
examples of different phenomena.
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One of the simplest and most basic Carnot groups is the first Heisen-
berg group. We can identify this group, denoted H, with R3, using
coordinates (x, y, t). Letting X1 = ∂x − y

2∂t, X2 = ∂y + x
2∂t, T = ∂t,

we have a presentation of the sub-Riemannian Heisenberg group with
V0 = span {X1, X2}. Noting that the only nontrivial bracket among
these vector fields is [X1, X2] = T and letting V1 = span {T}, we have a
vertically rigid structure on H.

Another simple example is the Carnot group H×R. Using coordinates
(x, y, t, s) we can write a presentation for the Lie algebra of this group
as spanned by {X1, X2, X3, T} where

X1 = ∂x − y

2
∂t

X2 = ∂y +
x

2
∂t

X3 = ∂s

X4 = ∂t.

Taking V0 = span {X1, X2, X3} and V1 = span {X4} yields a vertically
rigid structure.

In the previous examples, the vertical structure was chosen to care-
fully mimic the bracket-generating properties of the sub-Riemannian
distribution. We include another example, where the bracket-generation
step size need not be constant to illustrate the flexibility of this defini-
tion.

Example 2.7. Let M =R3. We define a Martinet-type sub-Riemann-
ian structure on M by defining V0 to be the span of

X = ∂x + f(x, y)∂z, Y = ∂y + g(x, y)∂z

where f and g are smooth functions. The metric is defined by declaring
X, Y an orthonormal frame for V0. (In particular, if we take f = 0 and
g = x2, we see that the step size is 1 on x 6= 0 and 2 at x = 0.) Now
define T1 = ∂z and extend the metric so that X, Y, T1 are orthonormal.
Again the commutation condition clearly holds.

To illustrate the generality of the definition, we give one last example.

Example 2.8. Let {X1, . . . , Xk} be a collection of smooth vector
fields on Rn that satisfy Hörmander’s condition (see [17]). We will
construct the {Ti} as follows. As the Xi bracket generate, let {Ti} be a
basis for the complement of the span of the {Xi} formed by differences
of the brackets of the Xi and linear combinations of the Xi themselves.
These Ti are naturally graded by counting the number of brackets of X ′

is
it takes to include Ti in the span. Define a Riemannian inner product
that makes the {X1, . . . , Xk, T1, . . . , Tn−k} an orthonormal basis. This
structure satisfies all the conditions for a vertically rigid structure except
possibly the last.
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We note that the majority of the examples in the literature, either
from subelliptic PDE, control theory and/or robotic path planning, sat-
isfy the last condition.

The advantage of vertically rigid structures is that they admit connec-
tions which are adapted to analysis in the purely horizontal directions.

Definition 2.9. A connection ∇ on TM is adapted to a vertically
rigid structure if

• ∇ is compatible with g, i.e., ∇g = 0,
• ∇Tj = 0 for all j,
• Torp(X, Y ) ∈ Vp for all sections X, Y of V0 and p ∈ M .

The motivating example for this definition is the Webster-Tanaka
connection for a strictly pseudoconvex pseudohermitian manifold [26].

Lemma 2.10. Every vertically rigid structure admits an adapted con-

nection.

Proof. Let ∇ denote the Levi-Cevita connection for g. Define ∇ as
follows: set ∇Tj = 0 for all j. Then for a section X of V0 and any vector
field Z define

∇ZX = (∇ZX)0

where (·)0 denotes the orthogonal projection onto V0. This essentially
defines all the Christoffel symbols for the connection. It is easy to
see that it satisfies all the required conditions. For example, to show
∇g = 0, take vector fields X, Y, Z and write

X = X0 +
∑

xiTi

Y = Y0 +
∑

yiTi

where X0, Y0 ∈ V0. Using the fact that ∇Ti = 0, we have

∇g(X, Y, Z)

= Zg(X, Y ) − g(∇ZX, Y ) − g(X,∇ZY )

= Zg(X0, Y0) +
∑

Z(xiyi) − g((∇ZX0)0, Y0)

− g(
∑

Zxi, Y ) − g(X0, (∇ZY0)0) − g(
∑

Zyi, X)

= g(∇ZX0, Y0) − g((∇ZX0)0, Y0) + g(X0,∇ZY0)

− g(X0, (∇ZY0)0) +
∑

Z(xiyi) −
∑

Z(xi)yi −
∑

Z(yi)xi

= 0.

The last equality follows since X0 and Y0 are horizontal vector fields and
using the product rule. The statement about torsion follows directly
from the definition. q.e.d.
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Lemma 2.11. If X, Y, Z are horizontal vector fields then

〈∇XY, Z〉 =
1

2

(
X〈Y, Z〉 + Y 〈X, Z〉 − Z〈X, Y 〉

+ 〈[X, Y ]0, Z〉 + 〈[Z, X]0, Y 〉 + 〈[Z, Y ]0, X〉
)
.

Proof. We note that since ∇g = 0 and V0 is parallel,

〈∇XY , Z〉 = X〈Y, Z〉 − 〈Y,∇XZ〉.
Since the torsion of two horizontal vector fields is purely vertical, we
also obtain

〈∇XY , Z〉 = 〈∇Y X, Z〉 + g([X, Y ], Z)

= 〈∇Y X, Z〉 + 〈[X, Y ]0, Z〉.
The remainder of the proof is identical to the standard treatment of the
Levi-Cevita connection on a Riemannian manifold given in [5]. q.e.d.

As a consequence, the following corollary follows immediately:

Corollary 2.12. For distinct VR structures on a subRiemannian

manifold that share a vertical complement V and any connections ∇1,

∇2 adapted to these VR structures,

〈∇1
XY, Z〉 = 〈∇2

XY, Z〉
for any horizontal vector fields X, Y and Z.

In other words, up to a choice of vertical complement, any adapted
connection agrees with any other adapted connection when restricted
to horizontal vector fields.

Remark 2.13. We note that the definition of adapted connection
leaves some flexibility in its definition. In particular, we have some free-
dom in defining Christoffel symbols related to ∇Ti

X when X is a section
of V0. While we could make choices that would fix a unique adapted con-
nection, we will not do so in order to preserve the maximum flexibility
for applications. For instance, when working with strictly pseudocon-
vex pseudohermitian manifolds, it is natural to specify these Christoffel
symbols to obtain the Webster-Tanaka connection. When working in
general VR spaces, there are no preexisting adapted connections in the
literature, so it is natural to choose the Christoffel symbols to elimi-
nate horizontal components of torsion, i.e., take ∇Ti

X = [Ti, X]0 so
that Tor (Ti, X)0 = 0. However, we shall not include this as part of
our definition as it does not (in general) agree with the Webster-Tanaka
connection on strictly pseudoconvex pseudohermitian manifolds.

To study these connections and sub-Riemannian geometry it is useful
to introduce the idea of the graded frame bundle.
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Definition 2.14. An orthonormal frame (e, t) = e0, . . . , ek, t1, . . . ,
tn−k is graded if e0, . . . , ek span V0, t1, . . . , tn−k span V and each tj is
in the span of {Ti : i ∼ j}.

The bundle of graded orthonormal frames GF(M)
π−−−−→ M is then

a O(k + 1) × Πv
j=1O(lj)-principle bundle.

On GF(M) we can introduce the canonical 1-forms ωj , ηj defined at
a point f = (p, e, t) by

ωj(X)f = gp(π∗X, ej), ηj(X)f = gp(π∗X, tj).

An adapted connection can be viewed as a affine connection on GF(M).
The structure equations are then determined by the following lemma.

Lemma 2.15. On GF(M) there exist connection 1-forms ωi
j 0 ≤

i, j ≤ k and ηi
j, 1 ≤ i, j ≤ n − k together with torsion 2-forms τ i

0 ≤ i ≤ k and τ̃ i 1 ≤ i ≤ n − k such that

dωi =
∑

0≤j≤k

ωj ∧ ωi
j + τ i,

dηi =
∑

i∼j

ηj ∧ ηi
j + τ̃ i.

(1)

Proof. The content of the lemma is in the terms that do not show up
from the standard structure equations of an affine connection. However,
since V0 is parallel, we can immediately deduce that there exist forms

ωj
k such that ∇ek = ωj

k ⊗ ej . Furthermore, since each tj is in the
span of {Ti : i ∼ j} and all the Ti are also parallel, we must have
∇tj =

∑
i∼j ηi

j ⊗ ti for some collections of forms ηi
j . q.e.d.

Lemma 2.16. The torsion forms for an adapted connection have the

following properties:

• τ j(ea, eb) = 0,
• τ̃ j(ti, eb) = 0 if j ∼ i

for any lifts of the vector fields.

Proof. The first of these is a direct rewrite of the defining torsion
condition for an adapted connection. For the second, we observe that

Tor(Ti, eb) = ∇Ti
eb −∇eb

Ti − [Ti, eb]

is orthogonal to Tj if i ∼ j by the bracket conditions of a vertically rigid
structure. The result then follows from noting that torsion is tensorial.

q.e.d.

3. Exterior differential systems and variational problems

In this section, we briefly review the basic elements of the formalism
of Bryant, Griffiths and Grossman which can be found in more detail in
chapter one of [3]. Their formalism requires the following data:
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(a) A contact manifold (M, θ) of dimension 2n + 1.
(b) An n-form, called the Lagrangian, Λ and the associated area func-

tional

FΛ(N) =

∫

N

Λ,

where N is a smooth compact Legendre submanifold of M , pos-
sibly with boundary. In this setting, a Legendre manifold is a
manifold i : N → M so that i∗θ = 0.

From this data, they compute the Poincaré-Cartan form Π from the
form dΛ. They show that dΛ can be locally expressed as

dΛ = θ ∧ (α + dβ) + d(θ ∧ β)

for appropriate forms α, β. Then,

Π = θ ∧ (α + dβ)

and they denote α + dβ by Ψ. With this setup, Bryant, Griffiths and
Grossman prove the following characterization of Euler-Lagrange sys-
tems ([3], Section 1.2):

Theorem 3.1. Let N be a Legendre surface with boundary ∂N in M
given by i : N → M as above. Then N is a stationary point under all

fixed boundary variations, measured with respect to FΛ, if and only if

i∗Ψ = 0.

In the next two sections, we will use this formalism and the previous
theorem to investigate the minimal and isoperimetric surface problems.

4. Minimal Surfaces

For a C2 hypersurface Σ of a vertically rigid sub-Riemannian manifold
we define the horizontal perimeter of Σ to be

(2) P (Σ) =

∫

Σ

|(νg)0| νgydVg

where νg is the unit normal to Σ with respect to the Riemannian metric
g. At noncharacteristic points of Σ, i.e., where TΣ * V0, this can be
re-written as

(3) P (Σ) =

∫

Σ

νydVg,

where ν is the horizontal unit normal vector, i.e., the projection of
the Riemannian normal to V0. We note that, when restricting to the
class of C2 submanifolds, this definition is equivalent to the perimeter
measure introduced independently by Capogna, Danielli and Garofalo
[4], Franchi, Gallot and Wheeden [13] and Biroli and Mosco [1]. These
definitions are sub-Riemannian generalizations of the perimeter measure
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of De Giorgi introduced in [12]. Our primary goal for this section is to
answer the following question.

Question 1. In a vertically rigid sub-Riemannian manifold, given a
fixed boundary, can the hypersurfaces spanning the boundary with least
perimeter measure be geometrically characterized?

In analogue with classical results in Euclidean space and Riemann-
ian manifolds we introduce a second fundamental form adapted to the
subRiemannian structure.

Definition 4.1. Consider a noncharacteristic point of a hypersurface
Σ of a VR space M and fix a horizontal orthonormal frame e0, . . . ek as
before with ν = e0. Then the horizontal second fundamental form
is the k × k matrix,
(4)

II0 =



〈∇e1

ν, e1〉 . . . 〈∇e1
ν, ek〉

...
. . .

...
〈∇ek

ν, e1〉 . . . 〈∇ek
ν, ek〉


 =




ω1
0(e1) . . . ωk

0 (e1)
...

. . .
...

ω1
0(ek) . . . ωk

0 (ek)


 .

Further, we define the horizontal mean curvature, H, to be the
trace of II0.

A standard formula in Riemannian geometry (see for example [18])
states that for any connection for which the volume form is parallel, the
divergence of a vector field can be computed by

divgX = Trace(∇X + Tor(X, ·)).
The adapted connection is symmetric for g, and so we can apply this
result while noting that by the defining conditions Trace (Tor(ν, ·)) = 0.
Thus,

(5) divgν =
∑

〈∇ej
ν, ej〉 +

∑
g(∇tjν, tj) =

∑
〈∇ej

ν, ej〉.

We note that several authors have proposed other candidates for cer-
tain types of analogues of the second fundamental form and horizontal
mean curvature. In particular, Danielli, Garofalo and Nhieu use a sim-
ilar second fundamental form to analyze minimal and CMC surfaces in
Carnot groups (in [9, 10]) and the symmetrized horizontal Hessian to
analyze convex sets (in [11]). We emphasize that, in constrast to the
Riemannian setting, the definition above (as well as the one in [9]) is
explicitly a priori non-symmetric.

This definition of mean curvature coincides (up to a constant multi-
ple) with the various definitions of mean curvature in the Carnot group
setting (see, for example, [9, 10, 16, 7, 25]). Moreover, our version of
the minimal surface equation as Trace II0 = 0 matches with others in
the literature. For example, suppose Σ is described as ϕ = 0 for a C2
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defining function ϕ. Then for any orthonormal frame {Xj} for V0 we
can write

ν =
∑ Xiϕ√∑

(Xiϕ)2
Xi,

and so

H = divgν =
∑

Xi

(
Xiϕ√∑
(Xiϕ)2

)
.

To answer Question 1, we shall employ the techniques of Bryant,
Griffiths and Grossman [3] by exhibiting the minimizing hypersurfaces

as integrable Legendre submanifolds of a contact covering manifold M̃ .

More specifically, we define M̃ to be the bundle of horizontally normal-
ized contact elements,

M̃ = {p̃ = (p, ν, T ) ∈ M × (V0)p × Vp : ‖ν‖ = 1}.
Thus M̃

π1−−−−→ M has the structure of an Sk+1×Rn−k-bundle over M .

Next we define a contact form θ on M̃ by

θp̃(X) = gp((π1)∗X, ν + T ).

To compute with θ it is useful to work on the graded frame bundle.

However, as there is no normalization on the T component of M̃ , we
shall need to augment GF(M) to the fiber bundle GF0(M) defined as
follows: over each point the fibre is O(k + 1) × Πv

j=1O(lj) × Rl1+···+lv .

The left group action is extended as follows. If h = (h1, h2) ∈ O(k +
1) × Πv

j=1O(lj),

h · (p, e, t, a) = (p, (h1 · e, h2 · t), ah−1
2 ).

The natural projection π from GF0(M) to M now filters through M̃ as

GF0(M)
π2−−−−→ M̃

π1−−−−→ M

where under π2, (p, e, t, a) 7→ (p, e0,
∑

ajtj). In particular, this means
π2 ◦ (id, h2) = π2. This formulation now allows us to pull θ back to
GF0(M) by

π∗
2θ = ω0 + ajη

j .

We shall denote this pullback by θ also.

Remark 4.2. The augmented frame bundle GF0(M) is not a prin-
ciple bundle, and so we cannot impose an affine connection on it in the
usual sense. However, since it has the smooth structure of GF(M) ×
Rl1+···+lv we can naturally include the canonical forms and the connec-
tion structure equations of GF(M) into the augmented bundle. Thus,
the results of Lemma 2.15 and Lemma 2.16 hold on GF0(M) also.

Lemma 4.3. The contact manifold (M̃, θ) is maximally non-degen-

erate, i.e., θ ∧ dθn 6= 0.
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Proof. We shall work on the augmented graded frame bundle where

dθ = ωj ∧ ω0
j + τ0 + daj ∧ ηj + aj(η

i ∧ ηj
i + τ̃ j).

We pick out one particular term of the expansion of θ ∧ dθn, namely

µ = ω0 ∧ ω1 ∧ · · · ∧ ωk ∧ ω1
0 ∧ . . . ωk

0 ∧ η1 ∧ . . . ηn−k ∧ da1 ∧ . . . dan−k.

The connection forms are vertical (in the principle bundle sense) and
the canonical forms are horizontal (again in the bundle sense). Thus µ
is the wedge of n−k da terms, n+k +1 horizontal forms and k vertical
forms. Since each torsion form is purely (bundle) horizontal, µ is clearly
the only term of this form in θ ∧ dθn. All the forms are independent so
µ does not vanish. Thus we deduce that θ ∧ dθn 6= 0 on GF0(M) and

so cannot vanish on M̃ . q.e.d.

The transverse Legendre submanifolds of (M̃, θ) are the immersion

ι : Σ →֒ M̃ such that ι∗θ = 0 and π2 ◦ ι is also an immersion. These
are noncharacteristic oriented hypersurface patches in M with normal

directions defined by the contact element in M̃ .
Define

(6) Λ = ω1 ∧ · · · ∧ ωk ∧ η1 ∧ · · · ∧ ηn−k

on GF0(M). Then Λ = π∗
2(νyπ∗

1dV ) and so Λ is basic over M̃ . Further-
more, due to (3) we see that

(7) P (Σ) =

∫

Σ
ι∗Λ.

Now on GF0(M), Lemma 2.16 implies that τ j has no component of
the form ω0 ∧ ωj and τ̃ j none of form ω0 ∧ ηj . Thus, we see from (1)
that

dΛ =
∑

j

(−1)j−1ω1 ∧ · · · ∧ (ω0 ∧ ωj
0) ∧ · · · ∧ ωk ∧ η1 ∧ · · · ∧ ηn−k

+
∑

j

(−1)j−1ω1 ∧ · · · ∧ (ωj ∧ ωj
j ) ∧ · · · ∧ ωk ∧ η1 ∧ · · · ∧ ηn−k

+
∑

j

(−1)k+j−1ω1 ∧ . . . ωk ∧ η1 ∧ · · · ∧ (ηj ∧ ηj
j ) ∧ · · · ∧ ηn−k.

The connection is metric compatible so ωj
j = 0 and ηj

j = 0. Thus the
second and third sums vanish identically. This implies dΛ = θ ∧ Ψ
where

(8) Ψ =
∑

j

ω1 ∧ · · · ∧ (ωj
0) ∧ · · · ∧ ωk ∧ η1 ∧ · · · ∧ ηn−k.

If Σ ⊂ M̃ is a transverse Legendre submanifold, then we can construct
a graded frame adapted to Σ, i.e., with e0 = ν. Choosing any section
immersing Σ into GF0(M) we can then pull Ψ back to Σ. Switching the
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ω’s and η’s to represent the coframe and connection form for this fixed
frame, we get

(9) Ψ|Σ =




k∑

j=1

ωj
0(ej)


 ω1 ∧ · · · ∧ ωk ∧ η1 ∧ · · · ∧ ηn−k.

Theorem 4.4. Suppose Σ is a C2 hypersurface in the vertically rigid

manifold M . Then Σ is a critical point for perimeter measure in a

noncharacteristic neighborhood U ⊂ Σ if and only if the unit horizontal

normal ν satisfies the minimal surface equation

(10) H = 0

in U . Equivalently, the horizontal normal must satisfy

(11) divgν = 0

everywhere on U , where the divergence is taken with respect to the Rie-

mannian metric g.

Proof. From the Bryant-Griffiths-Grossman method [3] we see that

ι : Σ →֒ M̃ is a stationary Legendre submanifold for Λ in a small neigh-

borhood if and only if ι∗Ψ = 0. This condition is just
∑k

j=1 ωj
0(ν) = 0

for any local orthonormal frame (ν, e1, . . . ek) for V0. This can be re-
written as

(12) H =
∑

〈∇ej
ν, ej〉 = 0.

q.e.d.

Corollary 4.5. For a given a sub-Riemannian manifold, there may

be many choices of vertically rigid complement and adapted connection.

The minimal surface equation (11) may depend on the choice of orthog-

onal complement V , but not on the remainder of the vertically rigid

structure or choice of adapted connection.

Proof. After we write divgν =
∑〈∇ej

ν, ej〉, the result follows imme-
diately from Corollary 2.12. q.e.d.

Corollary 4.6. Any minimal C2 noncharacteristic patch of a verti-

cally rigid sub-Riemannian manifold (M, V0, 〈·, ·〉) with

dim V0 = 2

is ruled by horizontal ∇-geodesics.

Proof. Extend ν off Σ to any unit horizontal vector field. Define ν⊥

to be any horizontal unit vector field that is orthogonal to ν. By the
torsion properties of the connection and the arguments of Theorem 4.4,
the minimal surface equation (11) can be written

0 = 〈∇ν⊥ν, ν⊥〉 = −〈ν,∇ν⊥ν⊥〉.
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Since ν⊥ has no covariant derivatives in vertical directions, this implies
that

∇ν⊥ν⊥ = 0.

In other words the integral curves of ν⊥ are ∇-geodesics. Since we
are assuming C2 regularity of the surface and no characteristic points,
the vector field ν⊥ is C1 and non-vanishing. Therefore, every point
in the surface is contained in a unique integral curve of ν⊥. As ν⊥ is
everywhere tangent to the surface, these integral curves must foliate the
surface. q.e.d.

Remark 4.7. We note that the last corollary is a generalization of
the results of Garofalo and the second author [16] in the Heisenberg
group, those of Cheng, Hwang, Malchiodi and Yang [7] in three dimen-
sional pseudohermitian manifolds, and those of Cole [8] in Martinet-type
spaces. In those cases, the authors proved the minimal surfaces in those
settings were ruled by appropriate families of horizontal curves.

5. CMC surfaces and the isoperimetric problem

We now investigate the following question

Question 2. Given a fixed volume, what are the closed surfaces
bounding this volume of minimal perimeter?

Using the results of the previous section, we can now define a hy-
persurface of locally constant mean curvature (CMC) by requiring that
H = constant on each connected component of Σ′ = Σ − char(Σ). If
we wish to specify the constant, we will call Σ a CMC(ρ) surface. By
comparing to the Riemannian case, these are our prime candidates for
solutions to Question 2. Throughout this section, we shall make the
standing assumption that the volume form dVg is globally exact, i.e.,
there exists a form µ such that dµ = dVg on M . Since this is always
locally true, the results of this section will hold for sufficiently small
domains.

For a closed codimension 2 surface γ in M we define
(13)

Span(γ, a) =

{
C2 noncharacteristic surface Σ : ∂Σ = γ,

∫

Σ
µ = a

}
.

Lemma 5.1. If Span(γ, a) is non-empty, then any element of mini-

mal perimeter Σ0 must have constant mean curvature.

Proof. As the boundary of the surfaces are fixed, we can again employ
the formalism of [3]. We permit variations that alter the integral

∫
Σ µ

and apply a Lagrange multiplier method to establish a condition for
critical points of perimeter. Indeed, the minimizer Σ0 must be a critical



128 R.K. HLADKY & S.D. PAULS

point of the functional

Σ 7→
∫

Σ
Λ − c

∫

Σ
µ

for some constant c. Now pulled-back to the contact manifold,

d(Λ − cµ) = θ ∧ Ψ − cπ∗
1dVg

= θ ∧
(
(H − c)ω1 ∧ · · · ∧ ωk ∧ η1 ∧ · · · ∧ ηn−k

)

:= θ ∧ Ψ̃.

The same methods as Theorem 4.4 then imply that Ψ̃|Σ0
= 0, and hence

Σ0 has constant mean curvature. q.e.d.

Theorem 5.2. If a C2 domain Ω minimizes surface perimeter over

all domains with the same volume, then Σ = ∂Ω is locally CMC.

Proof. Let p ∈ ∂Σ be a noncharacteristic point. As Σ is C2 there
exists a noncharacteristic neighbourhood U of p in Σ with at least C2

boundary. Now by Stokes’ theorem, Vol(Ω) =
∫
Σ µ and so U must min-

imize perimeter over all noncharacteristic surfaces in Span(∂U,
∫
U

µ).
Therefore U has constant mean curvature by Lemma 5.1. q.e.d.

Under certain geometric conditions we can provide a more intuitive
description of µ.

Definition 5.3. A dilating flow for a vertically rigid structure is a
global flow F : M × R −→ M

• (Fλ)∗Ej = eλEj for some fixed horizontal orthonormal frame

{E1, . . . , Ek+1}
• (Fλ)∗Tj = eγjλTj for some constant γj .

Associated to a dilating flow are the dilation operators defined by

δλ = Flog λ

and the generating vector field X defined by

Xp =
d

dλ |λ=0
F (λ, p).

The homogeneous dimension of M is given by

Q = k + 1 +
n−k∑

j=1

γj .

The dilating flow is said to have an origin O if for all p, δλ(p) → O as
λ → 0.

In the sequel, a vertically rigid sub-Riemannian manifold that admits
a dilating flow with origin will be referred to as a VRD-manifold.
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Example 5.4. All Carnot groups admit a dilation with origin. On
the Lie algebra level, the dilation is defined merely by defining a lin-
ear map with eigenspaces the various levels of the grading, i.e., δλX =
λj+1X for X ∈ Vj . The group dilations are then constructed by expo-
nentiating.

Example 5.5. The jointly homogeneous Martinet spaces, i.e., those
of Example 2.7 with the functions f and g bihomogeneous of degree m.
Then the dilations are defined by

δλ(x, y, z) = (λx, λy, λm+1z).

Then clearly

(δλ)∗(∂x + f(x, y)∂z) = λ∂x + λm+1f(x, y)∂z = λ(∂x + f(λx, λy)∂z)

and (δλ)∗∂z = λm+1∂z.

Lemma 5.6. In a VRD-manifold, the form µ = Q−1XydVg satisfies

dµ = dVg.

Proof. Let ωj , ηi be the dual basis to Ej , Ti. Then

dVg = ω1 ∧ · · · ∧ ωk+1 ∧ η1 ∧ · · · ∧ ηn−k.

Now F ∗
λωj(Y ) = ωj((Fλ)∗Y ) so F ∗

λωj = λωj . Thus

LXωj =
d

dλ |λ=0
F ∗

λωj = λωj .

By a virtually identical argument we see that LXηj = γjη
j . Therefore

dµ = Q−1d(XydVg) = Q−1LXdVg = dVg.

q.e.d.

Every point p in a VRD-manifold can be connected to the origin by
a curve of type t 7→ δt(p). For any surface Σ we can then construct the
dilation cone over Σ as

(14) cone(Σ) = {δt(p) : 0 ≤ t ≤ 1, p ∈ Σ.}
Lemma 5.7. Suppose Σ is C2 surface patch in a VRD-manifold such

that any dilation curve intersects Σ at most once. If Σ is oriented so

that the normal points away from the origin, then

Vol (cone(Σ)) =

∫

Σ

µ.

Proof. This is just Stokes’ theorem for a manifold with corners, for∫

cone(Σ)
dVg =

∫

∂cone(Σ)
µ =

∫

Σ
µ

as µ vanishes when restricted to any surface foliated by dilation curves.
q.e.d.
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We can now interpret Lemma 5.1 as minimizing surface perimeter
under the constraint of fixed dilation cone volume. Since the volume of
a domain is equal to the signed volume of its boundary dilation cone,
this yields some geometric intuition for the arguments of Theorem 5.2.

Remark 5.8. In [19], the authors characterize cylindrically sym-
metric minimizers in the Heisenberg group as constant mean curvature
surfaces in that setting, while in [10], the authors reach the same char-
acterization within the class of all surfaces which may be written as the
union of two graphs over a disk in the xy-plane. Our treatment allows
for such a characterization in all VR spaces without such restrictions
on the shape of the surfaces. We note, however, that this method re-
quires some regularity (the surfaces must be at least C2 to ensure the
computations work) while the work in [10] and [19] is more general in
this respect, allowing for piecewise C1 defining functions. Moreover, we
emphasize again that in both these papers, the authors go further by
identifying the isoperimetric minimizer in their respective settings.

Remark 5.9. We point out that Theorem 5.2 provides an approach
to understanding the isoperimetric problem in VR or VRD spaces via
a better understanding of their constant mean curvature surfaces. For
a specific example, the reader is referred to Section 6 below.

6. The horizontal second fundamental form

We now present a more classical interpretation of these results by
returning to an analysis of the second fundamental form.

In addition to the horizontal mean curvature, which we defined as
the trace of the horizontal second fundamental form, we would also like
to define other aspects of horizontal curvature.

Definition 6.1. Let II0 be the horizontal second fundamental form
for a C2 noncharacteristic surface, Σ, in a vertically rigid sub-Riemann-
ian manifold M . Let {µ0, . . . , µk} be the eigenvalues (perhaps complex
and with multiplicity) of II0. Then, the horizontal principle curva-
tures are given by

κi = Re (µi)

for 1 ≤ i ≤ k.
Moreover, given x ∈ Σ, we say that Σ is horizontally positively

(non-negatively) curved at x if II0 is either positive (semi-)definite or
negative (semi-) definite at x and is horizontally negatively curved
at x if there is at least one positive and one negative κi. Σ is horizon-
tally flat at x if κi = 0 for 1 ≤ i ≤ k.

This definition coupled with the observation that Trace II0 = κ1 +
· · · + κk yields the following immediate corollary of Theorem 4.4:
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Corollary 6.2. If Σ is a C2 minimal surface in a vertically rigid

sub-Riemannian manifold M , then Σ has no noncharacteristic points of

horizontal positive curvature.

This is reflective of the Euclidean and Riemannian cases where min-
imal surfaces cannot have points of positive curvature.

Remark 6.3. In the definition of the horizontal principle curvatures,
we consider the real parts of the eigenvalues of II0 rather than, for ex-
ample, the (real) eigenvalues of the symmetrized horizontal second fun-
damental form. We choose this definition for two reasons. First, sym-
metrization would break the direct link between the horizontal principle
curvatures and the curvature of the horizontal curves discussed in the
next three results. Second, the imaginary parts of the complex eigen-
values of II0 (if they exist) carry information that would be lost under
symmetrization. Specifically, the imaginary parts indicate the nature of
the Lie bracket structure on the surface. If λ ± iβ is a pair of complex
eigenvalues of II0 associated to an eigenvector pair, u ± iv, then

II0(u + iv) = (λ + iβ)(u + iv) = (λu − βv) + i(λv + βu),

and so

〈∇vu, e0〉 = −〈u, II0v〉
= −〈u, βu + λv〉
= −β〈u, u〉 − λ〈u, v〉

and

〈∇uv, e0〉 = −〈v, II0u〉
= −〈v, λu − βv

= −λ〈u, v〉 + β〈v, v〉.

Recalling that the torsion of ∇is purely vertical, we have that 〈∇uv −
∇vu−[u, v], e0〉 = 0, and we conclude that 〈[u, v], e0〉 = β(〈v, v〉+〈u, u〉).

Remark 6.4. We note that having, for example, only positive (or
only negative) horizontal principle curvatures at a point is necessary
but not sufficient to conclude that the surface is horizontally positively
curved. Recalling that a matrix A is positive definite if and only if A∗

is positive definite and that there are many examples of two by two
matrices with complex eigenvalues of positive real part that, when sym-
metrized, have one positive and one negative eigenvalue (for example,(

1 1
−5 1

)
), we see that for general matrices this observation is true. In

this example, we show that this behavior can also appear in the horizon-
tal second fundamental form. To see this we will consider two surfaces
in H×R (see Example 2.6). The first is φ1 = s− t2 = 0 and the second
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is φ2 = s − x2 + y2 + t2 = 0. For φ1, we can take

e1 =
−xt

(t2(x2 + y2))
1

2

X1 −
yt

(t2(x2 + y2))
1

2

X2

and

e2 =
yt√

t2(x2 + y2) + t4(x2 + y2)2
X1

−xt√
t2(x2 + y2) + t4(x2 + y2)2

X2

− t2(x2 + y2)√
t2(x2 + y2) + t4(x2 + y2)2

T.

Direct computation shows that

II0 =




0 − t
t2(x2+y2)+1

t
t2(x2+y2)+1

− x2+y2

2(t2(x2+y2)+1)
3

2


 .

At the point (x, y, t, s) = (0, 1, 2, 0), we have that the eigenvalues of II0

are {−
√

5
100 ± i

√
1595
100 } but the eigenvalues of II∗0 are {0,−1/5

√
5}. Thus,

even though both of the real parts of the complex eigenvalues of II0 are
negative, II∗0 (and hence II0) is merely negative semi-definite. For the
second surface φ2 = 0, we choose a basis for V0 by {e0, e1, e2} where if
we let p = X1φ2, q = X2φ2, r = X3φ2 = 1, we have

e0 = ν =
p√

p2 + q2 + 1
X1 +

q√
p2 + q2 + 1

X2 +
1√

p2 + q2 + 1
X3.

And, away from points where p = q = 0, we may take

e1 =
q√

p2 + q2
X1 −

p√
p2 + q2

X2

and

e2 =
p√

p2 + q2 + (p2 + q2)2
X1 +

q√
p2 + q2 + (p2 + q2)2

X2

− p2 + q2

√
p2 + q2 + (p2 + q2)2

X3.

A direct, but much more involved computation, shows that at the point
(x, y, t, s) = (−3,−3,−3,−3),

II0 =

(
0 − 1

19
5
19

9
361

√
19

)
,

having eigenvalues 9
√

19
722 ± i

√
19

√
299

722 . However, II∗0 has eigenvalues
9

722

√
19±

√
19

√
295

722 , the first of which is positive and the second of which
is negative. The details of these computations are left to the reader.
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Definition 6.5. Let c be a horizontal curve on Σ a C2 hypersurface in
a vertically rigid sub-Riemannian manifold. Then at a noncharacteristic
point of Σ, the horizontal normal curvature of c is given by

kc = −〈∇ċċ, e0〉.
We note that, analogous to the Euclidean and Riemannian cases,

there is a connection between the horizontal normal curvature of curves
passing through a point on a hypersurface and the horizontal second
fundamental form at that point:

Lemma 6.6. Let c be a horizontal curve on Σ a C2 hypersurface in

a vertically rigid sub-Riemannian manifold. Then at noncharacteristic

points,

kc = 〈II0(ċ), ċ〉.
Proof. Since c is horizontal, we have that ċ = c1 e1 + · · · + ck ek for

appropriate functions ci. Differentiating 〈ċ, e0〉 = 0, we have:

−〈∇ċċ, e0〉 = 〈ċ,∇ċe0〉
kc = 〈II0(ċ), ċ〉.

q.e.d.

This gives, as an immediate corollary, an analogue of Meusnier’s the-
orem:

Corollary 6.7. All horizontal curves lying on a surface Σ in M , a

VR space, which, at a noncharacteristic point x ∈ Σ, have the same

tangent vector also have the same horizontal normal curvature at x.

As in the classical case, Corollary 6.7 allows us to speak of the hori-
zontal normal curvature associated with a direction rather than with a
curve, showing that II0 contains all of the horizontal curvature infor-
mation at a point.

Lemma 6.8. Given Σ and x as above, let l be the number of distinct

principle curvatures at x. Then, there exist curves {c1, . . . , cl} ⊂ Σ so

that

kci
= κi.

Proof. Let {λ1, . . . λj , λj+1 ± iβj+1, , . . . , λl ± iβl} be the eigenvalues
of II0 at x associated with the distinct principle curvatures. Further,
let {u1, . . . , uj , uj+1 ± ivj+1, . . . , uk ± ivk} be the associated eigenvec-
tors. Without loss of generality, we have ordered the eigenvalues so that
the real eigenvalues appear first and the complex eigenvalues are last.
We note that, for each complex conjugate pair of eigenvalues, λj ± βj ,
the associated principle curvatures, κj and κj+1, are equal. Using the
eigenvectors, we may replace {e1, . . . , ek} by a new basis given by

{u1, . . . , uj , uj+1, vj+1, . . . , ul, vl, ẽ2l−j , ẽk}
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where {ẽi} form a basis for the orthogonal complement of the eigenvec-
tors. Rewriting II0 with respect to this new basis, there is a submatrix
of II0 which is a block matrix where the first block is of the form

A =




λ1 . . . 0
...

. . .
...

0 . . . λj




and there are k − j remaining blocks of the form

Bi =

(
λi βi

−βi λi

)
.

Now let ci be the integral curve of the ith new basis vector for 1 <
i < 2l − j. Then,

kci
= 〈II0(ċi), ċi〉 = 〈II0(ei), ei〉 = κi.

q.e.d.

Remark 6.9. We note that since II0 is often nonsymmetric, there is
often not a full basis of eigenvectors. For example, in the Carnot group
H × R of Example 2.6, the surface defined by xy

2 − t − s = 0 has unit
horizontal normal given by:

ν =
y√

1 + y2
X1 −

1√
1 + y2

X3

and

II0 =

(
0 y2

(y2+1)
3

2

0 0

)
.

Thus, this is a minimal surface and II0 has a double eigenvalue of 0 and
a single eigenvector (1, 0) in this basis. The presents an entirely different
phenomena than the analogous Riemannian or Euclidean situation.

We note that this phenomena and the existence of complex eigenval-
ues both indicate the existence of a nontrivial bracket structure among
the elements of the tangent space to Σ. Indeed, both of these indicate
that there are vector fields ei, ej ∈ {e1, . . . , ek} with the property that
[ei, ej ] has a component in the e0 direction. In particular, this is an in-
dication that the distribution {e1, . . . , ek} is not integrable, and hence,
Σ cannot be realized as a surface ruled by codimension one horizontal
submanifolds.

We pause to note that we can now state an analogue of Corollary 4.6:

Corollary 6.10. Any CMC(ρ) noncharacteristic patch of a verti-

cally rigid sub-Riemannian manifold (M, H, 〈·, ·〉) with

dim V0 = 2

is ruled by horizontal curves with horizontal constant curvature ρ.
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Proof. We follow precisely the same proof as that of Corollary 4.6 to
get that

〈∇ν⊥ν⊥, ν〉 = ρ.

Thus, the integral curves of ν⊥ have constant horizontal curvature ρ.
q.e.d.

Remark 6.11. We note that in specific cases, these rulings can be
computed exactly. Basically this amounts to explicitly computing the
torsion terms and solving ODEs. For example, it is straightforward
to verify that in the Heisenberg group, such curves are geodesics with
respect to the Carnot-Carathéodory metric and are horizontal lifts of
planar circles of curvature ρ. This particular observation is also con-
tained in [7].

Definition 6.12. Let Σ be a C2 hypersurface in a vertically rigid sub-
Riemannian manifold M . Then, the horizontal exponential surface
at x ∈ Σ is defined to be the union of all the horizontal curves in Σ
passing through x. We denote this subset of Σ by Σ0(x).

Definition 6.13. Let Σ be a C2 hypersurface in a vertically rigid
sub-Riemannian manifold M . Then, the horizontal tangent plane
at a noncharacteristic point x ∈ Σ, is defined as

T h
x Σ = {expx(v)|g(v, e0(x)) = 0, v ∈ TxM}

where exp is the Riemannian exponential map.
We says that a set S ⊂ M , containing x, lies to one side of T h

x Σ if
S∩(M \T h

x Σ) lies entirely in a single connected component of M \T h
x Σ.

We say that S lies strictly to one side of T h
x Σ if, in addition to the

previous condition, S ∩ T h
x Σ = {x}. We say that either of these two

conditions holds locally if there exists ǫ > 0 so that the appropriate
condition holds for S ∩ B(x, ǫ).

This horizontal tangent plane in a Carnot group can also be defined
by blowing up the metric at a given point (see [14]).

This gives us a geometric interpretation of these curvature conditions
analogous to the Riemannian setting:

Theorem 6.14. Let Σ be a C2 hypersurface in M , a Carnot group,

and let {κi} be the set of horizontal principle curvatures of Σ at a non-

characteristic point x. Then, Σ0(x) locally lies strictly to one side of

T h
x Σ if and only if the surface is horizontally positively curved at x.

Similarly, if Σ is horizontally negatively curved at x, then any neighbor-

hood of x in Σ0(x) contains points on both sides of T h
h Σ.

Proof. First assume that Σ0(x) locally lies strictly to one side of the
horizontal tangent plane at x. Then, as any curves in Σ0(x) must also
lie strictly to one side of the tangent plane, we have that 〈∇ċ1 ċ1, e0〉 and
〈∇ċ2 ċ2, e0〉 are either both positive or both negative at x for any c1, c2 ∈
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Σ0(x). Thus, Σ is horizontally positively curved at x. Conversely, if
Σ is horizontally positive definite at x and c ∈ Σ0(x), then 〈∇ċċ, e0〉 =
−〈ċ, II0ċ〉 is either strictly positive or strictly negative. Without loss of
generality, we will assume it to be positive. But, geometrically, this says
that with respect to the connection ∇, each curve c locally changes in
the direction of e0 and cannot move towards −e0. To see this, consider
a curve c ∈ Σ0(x) in a small neighborhood of x. If we let vi be the
left invariant unit vector field on M so that vi(x) = ei(x), we have that
T h

x Σ is the integral submanifold of the distribution perpendicular to v0

(with respect to the Riemannian metric). With respect to these vector
fields, we write

ċ(t) = ċ0(t) v0 + · · · + ċN (t) vN

where ċ0(0) = 0. Then, computing with respect to the Riemannian
metric, we have

〈∇ċċ, v0〉 = c̈0(t) +
∑

i,j

ċi(t)ċj(t)〈∇vi
vj , v0〉

= c̈0(t).

The last equation follows from the Riemannian Kozul formula because,
as a Carnot group is graded, for left invariant horizontal vector fields
v1, v2, v3, 〈[v1, v2], v3〉 = 0. Note that at t = 0, we have

〈∇ċċ(0), e0〉 = 〈∇ċċ(0), v0(c(0))〉 = c̈0(0)

and hence our hypothesis that II0 is positive definite shows that c̈0(0) >
0 and the result follows. A similar argument shows the last statement.

q.e.d.

This leads us to define a notion of convexity in sub-Riemannian man-
ifolds.

Definition 6.15. A subset U of a Carnot group M with C2 boundary
Σ is (strictly) horizontally geometrically convex, or (strictly) hg-
convex, if, at each noncharacteristic point x ∈ Σ, Σ0(x) lies (strictly)
to one side of T h

x Σ. We say that Σ is locally (strictly) hg-convex at a
noncharacteristic point x if there exists an ǫ > 0 so that Σ0(x)∩B(x, ǫ)
lies (strictly) to one side of T h

x Σ.

With this definition, we have yet another analogue of Euclidean min-
imal surface theory:

Corollary 6.16. If Σ is a C2 minimal hypersurface in a Carnot

group then Σ cannot bound a locally strictly hg-convex set.

Proof. As the distribution V0 is non-integrable, every C2 surface must
have at least one noncharacteristic point. The result then follows from
Theorem 6.14 and Corollary 6.2. q.e.d.
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Theorem 1.5 in the introduction is the combination of this corollary
and Corollary 6.2.

We note that this notion of convexity is distinct from some other
notions in the literature. In [11], the authors introduce a variety of no-
tions of convexity, two which we will discuss in relation to hg-convexity.
First, they define a function, φ, to be weakly H-convex if its symmetrized
horizontal Hessian is positive semi-definite (the reader should also see
the work of Lu, Manfredi and Stroffolini [21], which independently pre-
sented a notion of convex functions at the same time). Second, they
define a subset D of a Carnot group to be weakly H-convex if at every
point x ∈ D, the intersection of expx(V0) with D is starlike (in the
Euclidean sense).

We present two illustrative examples. Consider the first Heisenberg
group, H, of Example 2.6. We first point out that the plane t = 0 in
the Heisenberg group is hg-convex and, moreover, it bounds a weakly
H-convex region {(x, y, t)|t ≤ 0} and its defining function is weakly
H-convex. Hence, for this surface, all three notions coincide.

However, letting φ = x2 − y2 − t and S = {(x, y, t)|φ(x, y, t) = 0},
if we let p = X1φ, q = X2φ and p = p/

√
p2 + q2, q = q/

√
p2 + q2, we

then have that e0 = p X1 + q X2 and we may take

e1 = q X1 − p X2

=
1√

17x2 + 16xy + 17y2
((4x + y) X1 + (x + 4y) X2) .

Then, II0 is a one by one matrix:

II0 = (〈∇e1
e0, e1〉) =

(
60(y2 − x2)

(17x2 + 16xy + 17y2)
3

2

)
.

In particular, note that in a sufficiently small neighborhood of the point
(0, 1,−1), II0 is positive and the surface is locally strictly hg-convex.
However, the symmetrized horizontal Hessian of φ is

(
2 0
0 −2

)
.

As this matrix is not positive definite, the function φ is not weakly
H-convex. Moreover, the region D = {(x, y, t)|φ(x, y, t) ≥ 0} is not
weakly H-convex either. To see this, we show explicitly that the in-
tersection of the horizontal plane at (0, 1,−1), P = exp(0,1,−1)V0 =
{(x, y, t)|t = −x/2−1} with D is not starlike. We consider three points
p1 = (0, 1,−1), p2 = (−1, 1,−1/2), p3 = (−1/4, 1,−7/8) on P . Note
that φ(p1) = 0, φ(p2) = 1/2, φ(p3) = −1/16, and so p1, p2 ∈ P ∩ D
and p3 6∈ D. However, all three points lie on a horizontal straight line
connecting p1 to p2 in P . Hence, P ∩ D is not star-shaped. Thus, we
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conclude that the notion of hg-convexity is not equivalent to either weak
H-convexity of the defining function or of the set.

Remark 6.17. We remark that the definitions and proofs in this
section are direct generalizations or adaptations of the Euclidean and/or
Riemannian machinery. While the proofs are quite straightforward, we
point out that this is due to a correct choice of geometric structure, in
this case the adapted connection, that allows for the ease of the proofs.
Without such machinery, the statements about the relation between
horizontal curvature and minimality/isoperimetry above were known
only in more restricted settings.
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