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Abstract

We prove the existence of a solution to the Monge–Ampère
equation detHess(φ) = 1 on a cone over a thrice-punctured two-
sphere. The total space of the tangent bundle is thereby a Calabi–
Yau manifold with flat special Lagrangian fibers. (Each fiber can
be quotiented to three-torus if the affine monodromy can be shown
to lie in SL(3, Z)�R3.) Our method is through Baues and Cortés’s
result that a metric cone over an elliptic affine sphere has a para-
bolic affine sphere structure (i.e., has a Monge–Ampère solution).
The elliptic affine sphere structure is determined by a semilinear
PDE on CP

1 minus three points, and we prove existence of a so-
lution using the direct method in the calculus of variations.

1. Introduction

The basic question we would like to understand is, What does the
geometry of a Calabi–Yau manifold look like near (or “at”) the large
complex structure limit point? In order to answer this question, one first
fixes the ambiguity of rescaling the metric by an overall constant. Gro-
mov proved that Ricci-flat manifolds with fixed diameter have a limit
under the Gromov–Hausdorff metric (on the space of metric spaces).

Now by the conjecture of [30], one expects that near the limit, the
Calabi–Yau has a fibration by special Lagrangian submanifolds which
are getting smaller and smaller (than the base). The reason can be
found by looking at the mirror large radius limit. Fibers are mirror to
the zero brane, and the base is mirror to the 2n brane, which becomes
large at large radius. Metrically, the Calabi–Yau geometry should be
roughly a fibration over the moduli space of special Lagrangian tori (T ).
The dual fibration is by dual tori, Hom (π1(T ), R)/Hom (π1(T ), Z). The
flat fiber geometry of the dual torus fibration has a flat fiber dual, which
is not the same as the original geometry, but should be the same after
corrections by disk instantons. These should get small in the limit
of small tori, though. Namely, we expect that the Gromov–Hausdorff
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limit of a fixed-diameter Calabi–Yau manifold approaching a maximal-
degeneration point carries the same geometry as the moduli space of
special Lagrangian tori. That is, it is a manifold (and an affine manifold
at that) of half the dimension.

Further, the Calabi–Yau near the limit should be “asymptotically
close” to the standard flat torus fibration over special Lagrangian tori
moduli space, whose fibers are the flat tori (we get this from dual torus
considerations applied to the mirror manifold). This space is a quo-
tient of the tangent space of the moduli space (which is Hessian), and
the Calabi–Yau condition means that the limiting affine manifold met-
ric should be Monge–Ampère (detHess Φ = 1). Global considerations
require that the lattice defining the torus (generated by the vectors as-
sociated to the Hessian coordinates) is well-defined, meaning that the
Monge–Ampère manifold has affine transition functions in the semi-
direct product of SL(n, Z) with R

n translations.

This well-known conjecture (see e.g., [14] [19] [10]) was proved by
Gross–Wilson for the special case of K3 surfaces [14]. Their proof uses
the Ooguri–Vafa [26] metric in the neighborhood of a torus degeneration
to build an approximate Ricci-flat metric on the entirety of an elliptic K3
with 24 singular fibers (with an elliptic-fibration/stringy-cosmic-string
metric outside the patches containing the degenerations).

Another aspect of this conjecture is that the limiting manifold should
have singularities in codimension two, with monodromy transforma-
tions defined for each loop about the singular set. Gross has shown
the existence of a limiting singular set of codimension two for (non-
Lagrangian) torus fibrations on toric three-fold Calabi–Yau’s, and fur-
ther has shown that the limiting singular set has the structure of a triva-
lent graph [12]. Also, Ruan has constructed Lagrangian torus fibrations
with codimension-two singular locus on quintic Calabi–Yau hypersur-
faces [27]. Taking our cue from these works, then in three dimensions, a
point on the limiting manifold may be a smooth point, a point near an
interval singularity, or the trivalent vertex of a “Y”-shaped singularity
locus (these vertices have a subclassification based on the monodromies
near the vertex). Examples of explicit Monge–Ampère metrics for points
of the first two types are known, the interval singularity reducing to an
interval times the two-fold point singularity. The absence of a local
metric model of a trivalent vertex singularity limits our ability to prove
this conjecture in three dimensions. Even if we had such a model, it
might not suffice to prove the conjectures about the limiting metric,
just as the non-Ooguri–Vafa elliptic fibration metric does not suffice in
the two-dimensional case. Still, we regard the existence of a semi-flat
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Calabi–Yau metric near the “Y” vertex as an important first step in
addressing these conjectures in three dimensions.1

We should also remark that on other fronts, there has been much
progress recently in describing the proposed limit space. There are com-
binatorial constructions of integral affine manifolds with singularities in
the works of Haase–Zharkov [15] and Gross–Siebert [13], who discuss
mirror symmetry from combinatorial and algebro-geometric points of
view. Haase–Zharkov [16] also construct affine Kähler metrics on their
examples, but these do not satisfy the Monge–Ampère equation. Re-
cently Zharkov has put forward a detailed conjectural picture of the
degeneration of Calabi–Yau metrics in toric hypersurfaces [33].

We therefore concern ourselves with studying Monge–Ampère man-
ifolds in low dimensions, with the goal of finding a local model for a
trivalent degeneration of special Lagrangian tori. Taking our model to
be a metric cone over a thrice-punctured two-sphere, we have, by an
argument of Baues and Cortés, that the sphere metric should be an el-
liptic affine sphere on S2 with three singularities. The singularity type
of the metric at the three points is fixed by the pole behavior of a holo-
morphic cubic form. Our main result is a proof of the existence of such
an elliptic affine sphere, hence its cone, which solves the Monge–Ampère
equation with the desired singular locus.

The plan of attack is as follows. We study the Monge–Ampère equa-
tion and affine Kähler manifolds in Section 2, exhibiting a few new
solutions in three dimensions. In Section 3, we review some basic no-
tions in affine differential geometry, and recall Baues and Cortés’s re-
sult relating n-dimensional elliptic affine spheres to (n+1)-dimensional
parabolic affine spheres. In Section 4, we study the relation between el-
liptic fibrations (“stringy cosmic string”) and affine Kähler coordinates
in two dimensions. In Section 5, we recall Simon and Wang’s theory
of two-dimensional affine spheres, focusing on the elliptic case. In Sec-
tion 6, we first study the local structure near a singularity of the elliptic
affine sphere equation, and finally show the existence of an elliptic affine
sphere structure on CP

1 minus 3 points. This is our main result. The
Monge–Ampère metric near the “Y” vertex is then constructed as a
cone.

Remark. The key to finding an elliptic affine sphere metric on CP
1

minus 3 points is the PDE

ψzz̄ + |U |2e−2ψ + 1
2eψ = 0,

1This vertex is not the same as the topological vertex of [1], which appears at a
corner of the toric polyhedron describing the Calabi–Yau. The relation between the
toric description of the Calabi–Yau and the singularities of the special Lagrangian
torus fibration has been discussed in [13].
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where U dz3 is a holomorphic cubic differential and eψ|dz|2 is the natural
affine metric on an elliptic affine sphere. It is interesting to note that a
similar equation,

ψzz̄ = e−2ψ − eψ,

has also come up in the construction of special Lagrangian cones in C
3—

see McIntosh [24]. In McIntosh’s construction, the equation comes from
the geometry of SU(3), while in the present case, the notion of an elliptic
affine sphere is invariant under SL(3, R). Such equations involving e−2ψ

and eψ go back to Ţiţeica [31], and are naturally associated to the
geometry of real forms of SL(3, C).

Correction: The first author would like to take this opportunity to
correct an erroneous attribution in [23]. The notion that parabolic affine
spheres may be represented by holomorphic data does not go back to
Blaschke, but seems to be originally due to Calabi [4]. There is also
a useful Weierstrass type representation due to Ferrer–Mart́ınez–Milán
[9]. The first author would like to thank Professor Mart́ınez for pointing
this out to him.

Acknowledgements. We would like to thank Rafe Mazzeo for stimu-
lating discussions, and the referees for very useful comments and clar-
ifications, in particular the link to the work of McIntosh. The work
of S.-T. Yau was supported in part by the National Science Founda-
tion (DMS-0244464, DMS-0074328, DMS-0306600, DMS-9803347). The
work of E. Z. was supported in part by the National Science Foundation
(DMS-0072504) and by the Alfred P. Sloan Foundation.

2. Affine Kähler Metrics and the Monge–Ampère Equation

We recall that a metric is of Hessian type if in coordinates {xi} it has
the form ds2 = Φijdxi ⊗ dxj , where Φij = ∂2Φ/∂xi∂xj. Hitchin proved
[17] that natural metric (“McLean” or “Weil–Petersson”) on moduli
space of special Lagrangian submanifolds naturally has this structure,
and the semi-flat metric on the complexification (by flat bundles) defined
by the Kähler potential Φ is Ricci flat if

(1) det (Φij) = 1.

A manifold whose coordinate gluing maps are all affine maps is called
an affine manifold. A Hessian metric on an affine manifold is called
affine Kähler. Note that our definition of a Hessian metric is more
general than that of an affine Kähler metric; this distinction is not
often made in the literature.

In local Hessian coordinates, we can compute the Christoffel symbols
Γi

jk = 1
2ΦilΦjkl (where ∇j∂k = Γi

jk∂i), and defining the curvature
tensor Rij

k
l = ∂iΓk

jl + Γk
imΓm

jl − (i ↔ j) by [∇i,∇j]∂k = Rij
k
l∂l, we
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find

(2) Rijkl = −1
4
Φab[ΦikaΦjlb − ΦjkaΦilb].

2.1. Hessian Coordinate Transformations. One asks, what coor-
dinate transformations preserve the Hessian form of the metric? In par-
ticular, are there non-affine coordinate changes which preserve the Hes-
sian character of a given metric? If we try to write ds2 = Φijdxidxj =
Ψabdyadyb = Ψaby

a
iy

b
jdxidxj, then the consistency equations Φijk =

Φkji yield conditions on the coordinate transformation y(x). Specifi-
cally, we have ∂k(Ψaby

a
iy

b
j) = ∂i(Ψaby

a
ky

b
j), which is equivalent to

Ψab(ya
iy

b
jk − ya

ky
b
ij) = 0.

In two dimensions, for example, there can be many solutions to these
equations. In Euclidean space Ψab = δab with coordinates ya, if we
put y1 = f(x1 + x2) + g(x1 − x2) and y2 = f(x1 + x2) − g(x1 − x2),
then the equations are solved and we can find Φ(x). For example, if
f(s) = g(s) = s2/2, we find Φ(x) = [(x1)4 + 6x1x2 + (x2)4]/12.

Note that this transformation is not affine. Thus, Hessian metrics
may exist on non-affine manifolds, and our notion of Hessian metric is
strictly broader than our notion of affine Kähler metric. Affine Kähler
manifolds can be characterized as locally having an abelian Lie algebra
of gradient vector fields acting simply transitively [28]. Though Hes-
sian manifolds are not the same as affine manifolds, a Hessian manifold
appearing as a moduli space of special Lagrangian tori must have an
affine structure. We therefore focus on affine Kähler manifolds in this
paper.

2.2. An Example of a Monge–Ampère Metric. As we will see in
Section 4, there are many Monge–Ampère metrics in two dimensions,
but a paucity of examples in three or more dimensions. Here, we provide
one detailed example and remark how a few others may be found.

Example 1. In dimension d, consider the ansatz Φ = Φ(r), where
r =

√∑
i(xi)2. As shown by Calabi, the equation (1) is solved if

(3) Φ(r) =
∫

(1 + rd)1/d.

The rescalings r → cr and Φ → cΦ also have constant det(HessΦ). For
example, in two dimensions (d = 2), Φ(r) = sinh−1(r) + r

√
1 + r2 is a

solution.

Remark. It is also possible to find solutions in a few other cases in
dimension 3 by imposing symmetry. In particular, we let Φ take the
special forms for coordinates x, y, z of R3.

• Φ = A(ρ)B(z) for ρ =
√

x2 + y2.
• Φ = Φ(xyz).
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• Φ = Φ(xy + yz + xz).
Solutions follow from straightforward ODE techniques.

3. Affine Spheres

Convex functions Φ satisfying the Monge–Ampère equation det Φij =
1 have a particularly useful interpretation in terms of affine differential
geometry. The graph of such a Φ in R

n+1 is a parabolic affine sphere.
In this subsection, we introduce the basic notions of affine differential
geometry and recall a recent result of Baues and Cortés which allows
us to find 3-dimensional solutions to the Monge–Ampère equation by
constructing a 2-dimensional elliptic affine sphere.

Affine differential geometry is the study of those properties of hyper-
surfaces H ⊂ R

n+1 which are invariant under volume-preserving affine
transformations. For basic background on affine differential geometry,
see Calabi [5], Cheng–Yau [7] and Nomizu–Sasaki [25]. We assume that
H is a smooth locally strictly convex hypersurface. The affine normal
ξ to H is a transverse vector field on H which is invariant under the
action of volume-preserving affine transformations on R

n+1 in the sense
that if Ψ: R

n+1 → R
n+1 is such a transformation, then at all p ∈ H,

Ψ∗(ξH(p)) = ξΨ(H)(Ψ(p)).

We assume ξ points inward (i.e., at p, ξ(p) is on the same side of any
tangent plane of H as H is itself). Given such a transverse vector field
ξ, we have the following equations. Let X, Y be tangent vector fields
on H and let D denote the standard flat connection on R

n+1.

DXY = ∇XY + h(X, Y )ξ,(4)
DXξ = −S(X).(5)

Here, ∇ is a torsion-free connection on H, h is a Riemannian metric on
H (since H is convex and ξ points inward), and S is an endomorphism
of the tangent space. ∇ is called the affine connection, h is the affine
metric, and S is the affine shape operator. The trace of S divided by
the dimension n is called the affine mean curvature. Note that there is
no part of equation (5) in the span of ξ; if DXξ ∈ TpH, then ξ is said
to be equiaffine.

The affine normal ξ can be uniquely characterized as follows:
• ξ points inward on H.
• ξ is equiaffine.
• For any basis X1, . . . , Xn of the tangent space of H,

(6) det(X1, . . . , Xn, ξ)2 = deth(Xi, Xj),

where the determinant on the left is that on R
n+1, and the deter-

minant on the right is that of an n × n matrix.
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Another important invariant is the Pick form, which may be defined
as the tensor which is the difference C = ∇̂ − ∇ for ∇̂ the Levi–Civita
connection of the affine metric. The Pick form satisfies the following
apolarity condition:

n∑
i=1

Ci
ij = 0, j = 1, . . . , n.

When the upper index is lowered by the affine metric, the Pick form is
totally symmetric on all three indices.

A parabolic affine sphere is hypersurface for which ξ is a constant
vector. If ξ = (0, . . . , 0, 1), then a parabolic affine sphere can locally be
written as a graph (x, Φ(x)) for a convex function Φ which satisfies the
Monge–Ampère equation detΦij = 1. This condition may be checked
by using the conditions above for the affine normal.

A hypersurface H is an elliptic affine sphere if all the affine normals
point toward a given point in R

n+1, called the center of H. In this case,
the affine shape operator S = λI for λ > 0 and I the identity operator
on the tangent space. By translation, we may assume the center is the
origin, and by scaling, we may assume that λ = 1. In this case, the
affine normal ξ is minus the position vector.

Example 2. The unit sphere in R
n+1 is an elliptic affine sphere

centered at the origin. In this case, we may compute for ξ equal to
minus the position vector that the affine metric h is the restriction of the
Euclidean inner product. It is straightforward to check (6) is satisfied,
and that ξ is the affine normal.

Baues and Cortés establish a relationship between n-dimensional el-
liptic affine spheres and (n + 1)-dimensional parabolic affine spheres
[3]. We use this result to reduce the problem of finding 3-dimensional
parabolic affine spheres to the problem of finding 2-dimensional elliptic
affine spheres.

Theorem 1 (Baues–Cortés). Let H be an elliptic affine sphere in
R

n+1 centered at the origin with affine mean curvature 1. Shrink H if
necessary so that each ray through the origin hits H only once. Let

C =
⋃
r>0

rH

be the cone over H. Then, Φ = 1
2r2 is convex and solves det Φij = 1

on C. Using the diffeomorphism C ∼= H × R
+, the affine Kähler metric

satisfies
∂2Φ

∂xi∂xj
dxi dxj = r2h + dr2

for h the affine metric on H.



136 J. LOFTIN, S.-T. YAU & E. ZASLOW

For the reader’s convenience, we provide a proof of Baues and Cortés’s
result, along the lines of [21].

Remark. A similar proof shows that

Φ =
∫

(Krn+1 + A)
1

n+1

solves det Φij = const. for constants K and A. In the case where H is
the standard Euclidean sphere in R

n+1, we recover Calabi’s Example 1
above.

Proof. Assume H is an elliptic affine sphere centered at 0 with affine
mean curvature 1, and form C and Φ from H as above. Denote the
affine Kähler metric

gij =
∂2Φ

∂xi∂xj
.

Consider the position vector field

X = xi ∂

∂xi
= r

∂

∂r
.

Let Φ = r2/2. Note that

XΦ = xi ∂Φ
∂xi

= r
∂

∂r

(
1
2
r2

)
= r2 = 2Φ.

Then, take ∂/∂xj to find

(7) xi ∂2Φ
∂xi∂xj

=
∂Φ
∂xj

.

Consider a vector Y tangent to the hypersurface H =
{
Φ = 1

2

}
, so

that Y Φ = 0. Then (7) shows that

(8) g(X, Y ) = xi ∂2Φ
∂xi∂xj

yj =
∂Φ
∂xj

yj = Y Φ = 0,

and also

g(X, X) = xi ∂2Φ
∂xi∂xj

xj = XΦ = r2.

Now, we will show that the g restricts to a multiple of the affine
metric on H.

Let D be the canonical flat connection on R
n+1. Then our affine

Kähler metric g is given by

(9) g(A, B) = (DAdΦ, B)

where A, B are vectors and (· , ·) is the pairing between one forms and
vectors. X is transverse to H. So at x ∈ H, Rn+1 = Tx(Rn+1) splits
into Tx(H) ⊕ 〈X〉. Then, since −X is the affine normal,

(10) DY Z = ∇Y Z + h(Y, Z)(−X)

where Y, Z are tangent vectors to H, ∇ is a torsion-free connection on
T (H), and h is the affine metric.
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Now, consider

0 = Y (dΦ, Z)
= (dΦ, DY Z) + (DY dΦ, Z)
= −r2 h(Y, Z) + g(Y, Z)

by (8), (9) and (10). Therefore, g(Y, Z) = r2 h(Y, Z) for Y, Z tangent
to H.

So far, all calculations have been at a point in H ⊂ C. A simple
scaling argument shows:

Proposition 1. Under the metric g, each level set of the potential Φ
is perpendicular to the radial direction X. Under the diffeomorphism

C ∼= H × R
+,

we have

g(X, X) = r2, g(Y, Z) = r2h(Y, Z),

where Y and Z are in the tangent space to H and h is the affine metric
of H.

Now, since H is an elliptic affine sphere, we know that if Y1, . . . , Yn

is a basis of the tangent space of H at a point, then

det(Y1, . . . , Yn,−X)2 = det h(Yi, Yj).

Denote −X by Yn+1, and let a, b be indices from 1 to n + 1, while i, j
are indices from 1 to n. Compute using Proposition 1 for the standard
frame on R

n+1:

det gab =
det g(Ya, Yb)

det(Y1, . . . , Yn+1)2

=
g(−X,−X) · det g(Yi, Yj)

deth(Yi, Yj)
= r2 · r2n = r2n+2.

Since on H, r = 1, we have that for each point on H,

det gab = det
∂2Φ

∂xa∂xb
= 1.

For points not on H, the Monge–Ampère equation follows since Φ scales
quadratically in r. q.e.d.

Example 3. If H is the unit sphere in R
n+1, then the corresponding

potential function Φ = 1
2‖x‖2 clearly satisfies det Φij = 1 and the metric

Φij dxi dxj is the standard flat metric on R
n+1.
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4. Two-Dimensional Monge–Ampère Metrics and the
Stringy-Cosmic-String

Using a hyper-Kähler rotation, we can treat any elliptic surface as
a special Lagrangian fibration and try to find its associated affine co-
ordinates and—if the fibers are flat—the corresponding solution to the
Monge–Ampère equation.

In the case of the stringy-cosmic-string, we begin with a semi-flat
fibration with torus fiber coordinates t ∼ t + 1 and x ∼ x + 1. As
a holomorphic fibration, the stringy-cosmic-string is defined by a holo-
morphic modulus τ(z). One can derive the Kähler potential through the
Gibbons–Hawking ansatz (with ∂/∂t as Killing vector) using connection
one-form A = −τ1dx and potential V = τ2 (so ∗dA = dV ), then solving
for the holomorphic coordinate. One finds ξ = t+τ(z)x = t+τ1x+iτ2x.
The hyper-Kähler structure is specified by the forms

ω1 = dt ∧ dx + (
i

2
)τ2dz ∧ dz

ω2 + iω3 = dz ∧ dξ.

The stringy-cosmic-string solution starts directly from the Kähler po-
tential K(z, ξ) = ξ2/τ2 + k(z, z), where ∂z∂zk = τ2.

We seek the affine coordinates for the base of the semi-flat special
Lagranian torus fibration. In coordinates (x, t, z1, z2), the metric has
the block diagonal form

(11) Q ⊕ R ≡ 1
τ2

( |τ |2 τ1

τ1 1

)
⊕

(
τ2 0
0 τ2

)
.

For a semi-flat fibration over an affine Kähler manifold in affine co-
ordinates, the base-dependent metric on the fiber looks the same as
the metric on the base. Therefore, we would need to find coordi-
nates u1(z, z), u2(z, z) so that the metric in u-space looks like Q in
(11). This is accomplished if the change of basis matrix Mij = ∂zi/∂uj

obeys MT M = Q/τ2. A calculation reveals the general solution to be

M = OM̃, where M̃ = 1
τ2

(
τ2 0
τ1 1

)
, and O is an orthogonal matrix.

The same result can be obtained using Hitchin’s method, which we now
review.

Hitchin [17] obtains affine coordinates on the moduli space of spe-
cial Lagrangian submanifolds from period integrals. In order to apply
this technique here, we first make a hyper-Kähler rotation, so that the
fibration is special Lagrangian, by putting ω = ω2, ImΩ = ω3. (ω and
Ω are the symplectic and holomorphic forms of the Calabi–Yau met-
ric, respectively.) Explicitly, for each base coordinate zi, we construct
closed one forms on the Lagrangian L, defined by ι∂/∂zi

ω = θi and com-
pute the periods λij =

∫
Ai

θj , where {Ai} is a basis for H1(L, Z). In our
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case, we readily find θ1 = dt + τ1dx, θ2 = −τ2dx, and, using the basis
A1 = {t → t + 1}, A2 = −{x → x + 1}, we get

λij =
(

1 0
−τ1 τ2

)
.

The forms λijdzj are closed on the base and we set them equal to dui.
This defines the coordinates dui up to constants, and we find u1 = z1,
u2 = −Reφ, where ∂zφ = τ. To connect with the solution above, one
easily inverts the matrix λij = ∂ui/∂zj to find the matrix ∂zi/∂uj = M̃.

Legendre dual coordinates vi are defined as follows. Define (d −
1)-forms ψi (here d = 2, so the ψ’s are also one-forms) by putting
ι∂/∂zi

ImΩ = ψi and compute the periods µij =
∫
Bi

ψj , where Bj ∈
Hd−1(L, Z) are Poincaré dual to the Ai. In our example, ψ1 = τ2dx,
ψ2 = dt + τ1dx, B1 = {x → x + 1}, B2 = {t → t + 1}, and

µij =
(

τ2 τ1

0 1

)
.

(Note λT µ is symmetric, as required.) Setting dvi = µijdzj , we find
v1 = Imφ and v2 = z2.

Hitchin showed that the coordinates ui and vi are related by the
Legendre transformation defined by the function Φ whose Hessian gives
the metric. Namely, vi = ∂Φ/∂ui. We can think of Φ as a function of
the zi(uj) and differentiate with respect to uj using the chain rule. (We
find ∂zi/∂uj by inverting the matrix of derivatives ∂ui/∂zj.) One finds

Φz1 = Im φ − τ1z2, Φz2 = τ2z2.

(For the transformed potential Ψ, we have Ψz1 = τ2z1 and Ψz2 =
τ1z1 − Reφ.) The solution can be given in terms of another holomor-
phic antiderivative,2 χ, such that ∂zχ = φ.

Φ = −z2Reφ + Imχ.

Note, then, that being able to write down the explicit affine Kähler
potential depends only on our ability to integrate τ and invert the func-
tions ui(zj). The Legendre-transformed potential is Ψ = z1Imφ − Imχ.

Example 4. τ = 1/z. If we put z = reiθ and take τ = 1/z, then
φ = log z, so u1 = z1 and u2 = −Reφ = − log r. Thus, Φ(u1, u2) =
− z2 log

√
z2
1 + z2

2 +
∫

log
√

z2
1 + z2

2 dz2, where z1 = u1 and z2 =

2Cortés has found a generalization of this potential as the defining function of spe-
cial Kähler manifolds, which are locally special examples of parabolic affine spheres
in even dimensions, described by holomorphic data [8]. In the present case of dimen-
sion 2, Monge–Ampère metrics were described using holomorphic data by Calabi [4]
and Ferrer–Mart́ınez–Milán [9]. Of course, all these descriptions of two-dimensional
parabolic affine spheres using holomorphic data are equivalent.
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e−2u2 − u2

1. Since v1 = ImΦ = tan−1(z2/z1) and v2 = z2, we may
solve the equations ∂Φ/∂ui = vi to find

Φ = u1

[
tan−1

(√
(e−u2/u1)2 − 1

)
−

√
(e−u2/u1)2 − 1

]
.

One easily checks that det(Φij) = 1.

To summarize, let z be a holomorphic coordinate on the base of a
semi-flat elliptic fibration. Let τ = τ(z) be the holomorphically vary-
ing modulus of the elliptic curve on the fiber. Then, we define φ, χ
holomorphic so that

φz = τ, χz = φ.

Let z = z1+iz2 represent real and imaginary parts, with similar notation
for the real and imaginary parts of τ, φ, χ. Then affine flat coordinates
u1, u2 may be chosen as

u1 = z1, u2 = −φ1.

The metric on the base is given by

τ2|dz|2 =
∂2Φ

∂ui∂uj
duiduj .

For the affine Kähler potential Φ, which satisfies

Φ = −z2φ1 + χ2.

The Legendre dual coordinates vi = ∂Φ/∂ui are given by

v1 = φ2, v2 = z2.

The potential Ψ in the v coordinates is the Legendre transform of Φ:

Ψ = u1v1 + u2v2 − Φ = z1φ2 − χ2.

Φ and Ψ satisfy the Monge–Ampère equation

det
(

∂2Φ
∂ui∂uj

)
= 1, det

(
∂2Ψ

∂vi∂vj

)
= 1.

The metric satisfies

τ2|dz|2 =
∂2Φ

∂ui∂uj
duiduj =

∂2Ψ
∂vi∂vj

dvidvj .

5. Simon and Wang’s Developing Map

Simon and Wang [29] formulate the condition for a two-dimensional
surface to be an affine sphere in terms of the conformal geometry given
by the affine metric. Since we rely heavily on this work, we give a version
of the arguments here for the reader’s convenience. We are primarily
interested in constructing three-dimensional parabolic affine spheres by
writing them as cones over elliptic affine spheres in dimension two by
using Baues and Cortés’s Theorem 1. Therefore, we focus our discussion
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to the case of elliptic affine spheres in dimension two, and conclude
with some remarks about two-dimensional parabolic affine spheres from
this point of view. (In Section 6, it will be useful to compare elliptic
and parabolic affine spheres in dimension two, particularly since two-
dimensional parabolic affine spheres admit exact solutions.)

5.1. Elliptic Affine Spheres. Before we get into the construction, a
few remarks are in order. We consider a parametrization f : D → R

3

where D ⊂ C is simply connected and f is conformal with respect to
the affine metric. Simon and Wang’s procedure involves writing the
structure equations of the affine sphere as a first-order system of PDEs
(an initial-value problem) in the frame {f, fz, fz̄}—equations (19–20)
below. By the Frobenius Theorem, this initial-value problem can be
solved as long as certain integrability conditions are satisfied. One of
these integrability conditions is a semilinear elliptic PDE in the confor-
mal factor of the affine metric—equation (21) below. Solving this PDE
on a Riemann surface Σ then provides an immersion from the universal
cover Σ̃ to R

3, the image being an (immersed) elliptic affine sphere. We
call this immersion Simon and Wang’s developing map.

In the case of elliptic affine spheres, we take Σ = CP
1 minus 3 points.

Integrating the initial value problem along a path in π1Σ computes
the monodromy of an RP

2-structure on Σ, which upon applying Baues
and Cortés’s cone construction, provides the monodromy of the affine
flat structure on the cone over Σ, which is R

3 minus a “Y” vertex
topologically.

We have not yet completed the ODE computation of the monodromy
in the present case of an elliptic affine sphere, but note that this ap-
proach has been used to compute monodromy for convex RP

2 structures
(using hyperbolic affine spheres) [22], and also for a global existence re-
sult for parabolic affine spheres on S2 minus singular points [23].

Consider a 2-dimensional elliptic affine sphere in R
3. Then, the affine

metric gives a conformal structure, and we choose a local conformal
coordinate z = x+ iy on the hypersurface. The affine metric is given by
h = eψ|dz|2 for some function ψ. Parametrize the surface by f : D →
R

3, with D a domain in C. Since {e− 1
2
ψfx, e−

1
2
ψfy} is an orthonormal

basis for the tangent space, the affine normal ξ must satisfy this volume
condition (6)

(12) det(e−
1
2
ψfx, e−

1
2
ψfy, ξ) = 1,

which implies

(13) det(fz, fz̄, ξ) = 1
2 ieψ.

Now, only consider elliptic affine spheres centered at the origin and
with affine mean curvature scaled to be 1. In this case, the affine normal
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is −f (minus the position vector) and we have

(14)
{

DXY = ∇XY + h(X, Y )(−f)
DX(−f) = −X

Here, D is the canonical flat connection on R
3, ∇ is a torsion-free con-

nection on the affine sphere, and h is the affine metric.
It is convenient to work with complexified tangent vectors, and we

extend ∇, h and D by complex linearity. Consider the frame for the
tangent bundle to the surface {e1 = fz = f∗( ∂

∂z ), e1̄ = fz̄ = f∗( ∂
∂z̄ )}.

Then, we have

(15) h(fz, fz) = h(fz̄, fz̄) = 0, h(fz, fz̄) = 1
2eψ.

Consider θ the matrix of connection one-forms

∇ei = θj
i ej , i, j ∈ {1, 1̄},

and θ̂ the matrix of connection one-forms for the Levi–Civita connection.
By (15)

(16) θ̂1
1̄ = θ̂1̄

1 = 0, θ̂1
1 = ∂ψ, θ̂1̄

1̄ = ∂̄ψ.

The difference θ̂ − θ is given by the Pick form. We have

θ̂j
i − θj

i = Cj
ikρ

k,

where {ρ1 = dz, ρ1̄ = dz̄} is the dual frame of one-forms. Now, we
differentiate (13) and use the structure equations (14) to conclude

θ1
1 + θ1̄

1̄ = dψ.

This implies, together with (16), the apolarity condition

C1
1k + C 1̄

1̄k = 0, k ∈ {1, 1̄}.
Then, when we lower the indices, the expression for the metric (15)
implies that

C1̄1k + C11̄k = 0.

Now, Cijk is totally symmetric on three indices [7, 25]. Therefore, the
previous equation implies that all the components of C must vanish
except C111 and C1̄1̄1̄ = C111.

This discussion completely determines θ:

(17)

(
θ1
1 θ1

1̄

θ1̄
1 θ1̄

1̄

)
=

(
∂ψ C1

1̄1̄
dz̄

C 1̄
11dz ∂̄ψ

)
=

(
∂ψ Ūe−ψdz̄

Ue−ψdz ∂̄ψ

)
,

where we define U = C 1̄
11e

ψ.
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Recall that D is the canonical flat connection induced from R
3. (Thus,

for example, Dfzfz = D ∂
∂z

fz = fzz.) Using this statement, together
with (15) and (17), the structure equations (14) become

(18)

⎧⎨⎩
fzz = ψzfz + Ue−ψfz̄

fz̄z̄ = Ūe−ψfz + ψz̄fz̄

fzz̄ = −1
2eψf

Then, together with the equations (f)z = fz, (f)z̄ = fz̄, these form a
linear first-order system of PDEs in f , fz and fz̄:

∂

∂z

⎛⎝ f
fz

fz̄

⎞⎠ =

⎛⎝ 0 1 0
0 ψz Ue−ψ

−1
2eψ 0 0

⎞⎠⎛⎝ f
fz

fz̄

⎞⎠ ,(19)

∂

∂z̄

⎛⎝ f
fz

fz̄

⎞⎠ =

⎛⎝ 0 0 1
−1

2eψ 0 0
0 Ūe−ψ ψz̄

⎞⎠⎛⎝ f
fz

fz̄

⎞⎠ .(20)

In order to have a solution of the system (18), the only condition is that
the mixed partials must commute (by the Frobenius theorem). Thus,
we require

ψzz̄ + |U |2e−2ψ + 1
2eψ = 0,(21)
Uz̄ = 0.

The system (18) is an initial-value problem, in that given (A) a base
point z0, (B) initial values f(z0) ∈ R

3, fz(z0) and fz̄(z0) = fz(z0), and
(C) U holomorphic and ψ which satisfy (21), we have a unique solution
f of (18) as long as the domain of definition D is simply connected. We
then have that the immersion f satisfies the structure equations (14).
In order for −f to be the affine normal of f(D), we must also have the
volume condition (13), i.e., det(fz, fz̄,−f) = 1

2 ieψ. We require this at
the base point z0 of course:

(22) det(fz(z0), fz̄(z0),−f(z0)) = 1
2 ieψ(z0).

Then, use (18) to show that the derivatives with respect to z and z̄
of det(fz, fz̄,−f)e−ψ must vanish. Therefore, the volume condition is
satisfied everywhere, and f(D) is an elliptic affine sphere with affine
normal −f .

Using (18), we compute

(23) det(fz, fzz,−f) = 1
2 iU,

which implies that U transforms as a section of K3, and Uz̄ = 0 means
it is holomorphic.

Note that equation (21) is in local coordinates. In other words, if we
choose a local conformal coordinate z, then the Pick form U = U dz3,
and the metric is h = eψ|dz|2. Then plug U, ψ into (21). In a patch
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with a new holomorphic coordinate w(z), the metric will have the form
e

eψ|dw|2, with cubic form Ũdw3. Then ψ̃(w), Ũ(w) will satisfy (21).

5.2. Parabolic Affine Spheres. Here, we very briefly recall analogues
of some results of the last subsection for two-dimensional parabolic affine
spheres. This is due to Simon–Wang [29], and there is a derivation
similar to the one above in [23].

A smooth, strictly convex hypersurface H is a parabolic affine sphere
if the affine normal ξ is a constant vector. In R

3, we let ξ = (0, 0, 1).
Let f : D → R

3 be an immersion of the parabolic affine sphere which is
conformal with respect to the affine metric. Then, {ξ, fz, fz̄} is a com-
plexified frame of R

3 at each point in H. The affine structure equations
lead to an initial-value problem similar to equations (19–20) above, and
the integrability conditions are Uz̄ = 0 (for the Pick form U) and

(24) ψzz̄ + |U |2e−2ψ = 0

for the affine metric eψ|dz|2. This equation has many easy explicit
solutions, which is an advantage over the corresponding equation (21)
for elliptic affine spheres. In particular, we often treat the extra term
1
2eψ in (21) as a perturbation of equation (24).

It is also possible to find explicit solutions to the initial value prob-
lem for two-dimensional parabolic affine spheres using ODE techniques.
This is not surprising, as we saw in Section 4, that the structure equa-
tions are completely integrable. For example, if U = z2α−3 dz3, z = ρeiθ,
and A, B, ξ ∈ R

3 satisfy det(A, B, ξ) = −8, then the following f is an
immersed parabolic affine sphere in R

3 with affine normal ξ:

f = 1
2αAρα

[
θ cos αθ − 1

α sinαθ + (log ρ) sinαx
]

− 1
2αBρα cosαθ + 1

α2 ξρ2α
[

1
2α cos 2αθ + 1

α − log ρ
]
.

Note this solution has non-trivial monodromy around z = 0.

Remark. In equation (24), the transformation ϕ = log |U | − 1
2ψ

results in the condition that e2ϕ|dz|2 has constant curvature −4. We
thank R. Bryant for pointing this out.

6. Elliptic Affine Spheres and the “Y” Vertex

In this section, we will prove the existence of elliptic affine two-sphere
metrics with singularities—first locally near a singularity (we find a ra-
dially symmetric solution), and then globally on S2 minus three points.
The metric cone yields a parabolic affine sphere metric near the “Y”
vertex.

6.1. Local Analysis. Recall that given a holomorphic cubic differen-
tial U on a domain in C with coordinate z, a solution ψ to

ψzz + |U |2e−2ψ + 1
2eψ = 0
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provides an affine metric eψ|dz|2 for an elliptic affine sphere. The elliptic
affine sphere can be reconstructed by Simon and Wang’s developing
map.

Since Baues and Cortés result gives a parabolic affine sphere on the
cone over an elliptic sphere, a solution to this equation on the thrice-
punctured sphere will lead to a parabolic affine sphere on R

3 minus a
Y-shaped set—whence a semiflat special Lagrangian torus fibration over
this base. In the present subsection, we prove the existence of radially
symmetric solutions to (21), while we discuss the more global setting of
the thrice-punctured sphere in the next subsection.

For definiteness, we consider the case U = z−2 and make the ansatz
ψ = ψ(|z|). We look near z = 0, so we make the change of variables
t = − log |z|, t ∈ (T,∞), T � 0. This leads to the equation

(25) N(ψ) := ∂2
t ψ + 4e−2(ψ−t) + 2eψ−2t = 0.

We put ψ = ψ0 + φ, where ψ0 = t + log(2t) is the solution to the
parabolic equation (24). Note that the last term in (25) is O(te−t) for
this function. We want to solve N(ψ0 + φ) = 0, which we expand as

(26) N(ψ0 + φ) = N(ψ0) + dN(φ)|ψ0 + Q(φ)|ψ0 ,

where Q(φ) contains quadratic and higher terms. Explicitly,

Q(φ) =
1
t2

(
e−2φ − (1 − 2φ)

)
+ 4te−t

(
eφ − (1 + φ)

)
.

Note that Q is not even a differential operator. One calculates

N(ψ0) = 4te−t,

dN(φ)|ψ0 =: Lφ :=
[
∂2

t + V (ψ0)
]
φ,

where
V (ψ0) = −8e−2(ψ0−t) + 2eψ0−2t = − 2

t2
+ 4te−t.

Thus Lφ = (∂2
t − 2

t2
+4te−t)φ = (L0 +4te−t)φ, where L0 = ∂2

t − 2
t2

. The
equation (21) is now

Lφ = f − Q(φ),
with f = −4te−t. The idea will be to find an appropriate Green function
G for L, in terms of which a solution to this equation becomes a fixed
point of the mapping φ → G(f−Q(φ))—then to find a range of φ where
this is a contraction map, whence a solution by the fixed point theorem.

We claim that this map is a contraction for φ ∼ O(te−t). More specif-
ically, consider for a value of T > 2 to be determined later, the Banach
space B of continuous functions on [T,∞) with norm

‖g‖B = sup
t≥T

g(t)
te−t

.

Showing the map φ → G(f − Q(φ)) is a contraction map involves es-
timating Gf and GQφ. In fact, since Q is a quadratic, non-derivative
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operator, it is easy to see that Qφ is order te−t (even smaller). We then
show that G preserves the condition O(te−t) by showing Gf ∈ B (recall
that f ∈ B, too). To find G, we write L = L0 − δL, where δL = −4te−t,
so that G = L−1 = L−1

0 +L−1
0 δLL−1

0 + .... To solve the equation Lu = f,
we first note that the change of variables v = u+1 leads to the equation
Lv = − 2

t2
. Let v0 = L−1

0 (− 2
t2

) = 1. Then define vk+1 = L−1
0 δLvk. Then

v =
∑∞

k=0 vk and Gf = u =
∑∞

k=1 vk.

Lemma 2. |vk(t)| < (16te−t)k pointwise.

Proof. It is true for k = 0. To compute vk+1 one solves the differ-
ential equation by the method of variation of parameters,3 using the
homogeneous solution t2 or t−1. We have

vk+1(t) = t2
∫ ∞

t
t−4
1

∫ ∞

t1

t22(−4t2e
−t2)vk(t2)dt2dt1.

One computes v1(t) = −4(t+2+2/t)e−t, and therefore |v1(t)| < 16te−t

for t > 2. Now, assume |vk(t)| < (16te−t)k for some k ≥ 1. First,
compute for a, b ∈ N, t > a/b and t > 2:∫ ∞

t
sae−bsds = −1

b

[
sa +

a

b
sa−1 +

a(a − 1)
b2

sa−2 + ...

]
e−bs

∣∣∣∣∞
t

≤ 1
b
ta(1 + (a/bt) + (a/bt)2 + ...)e−bt

≤ t

b(t − 1)
tae−bt ≤ 2tae−bt.

Therefore,

|vk+1(t)| ≤ 4t2
∫ ∞

t
t−4
1

∫ ∞

t1

t32e
−t2vk(t2)dt2dt1

≤ 4t2
∫ ∞

t
t−4
1

∫ ∞

t1

t32e
−t2(16)ktk2e

−kt2dt2dt1

≤ (16)k · 4 · 2t2
∫ ∞

t
tk+3−4
1 e−(k+1)t1dt1

≤ (16)k+1tk+1e−(k+1)t

and the lemma is proven.
Note that we needed k − 1 ≥ 0 to bound a/b from above. That the

k = 1 term is the proper order follows from some fortuitous cancelation.
q.e.d.

3We can write G0h(t) =
R ∞

T
K0(t, s)h(s)ds, where K0(t, s) = 1

3
( s2

t
− t2

s
) for

s > t and zero otherwise (this form of the kernel is relevant to the condition of
good functional behavior at infinity). One can also use the equivalent G0h(t) =
t2

R ∞
t

t−4
1

R ∞
t1

t22h(t2)dt2dt1, which appears in the text.
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It now follows that u < C(1 − 4te−t)−14te−t ≤ C ′te−t for some con-
stant C ′. The space S = {g(t) : |g(t)| ≤ 2C ′te−t} forms a closed subset
of B on which we apply the contraction mapping theorem.

The proof of the previous lemma also shows the following.

Lemma 3. If |h(t)| ≤ C(te−t)2, then there are positive constants T
and K independent of h so that if t ≥ T , then

|(Gh)(t)| ≤ CK(te−t)2.

Proof. The computations above show that if � ≥ 2 and |w(t)| ≤
C ′′(te−t)�, then |(L−1

0 w)(t)| ≤ 4C ′′(te−t)�. Then for our h(t), compute

|(Gh)(t)| ≤ |(L−1
0 h)(t)| + |(L−1

0 δLL−1
0 h)(t)| + · · ·

≤ 4C(te−t)2 + 4 · 16(te−t)3 + 4 · 162(te−t)4 + · · ·
=

4C(te−t)2

1 − 16te−t
,

and so for T large enough, we can choose K = 4/(1 − 16Te−T ). q.e.d.

Proposition 4. There is a constant T > 0 so that for t ≥ T , the
equation (21) has a solution of the form log(2t) + t + O(te−t).

Proof. We now show the mapping φ → Aφ ≡ Gf −GQφ is a contrac-
tion. First, Gf lies within S and Qφ is small since Q is a quadratic non-
differential operator. More specifically, for some T > 0, the sup norm
of φ on [T,∞) can be made arbitrarily small. Therefore, by Lemma 3,
‖GQφ‖B � ‖φ‖B on [T,∞). As a result, A maps S to S. Further, note
‖Aφ1 − Aφ2‖B = ‖GQφ1 − GQφ2‖B = ‖G(Qφ1 − Qφ2)‖B, since G is
linear.

Since Q is quadratic and φ1, φ2 ∈ S,

|(Qφ1 − Qφ2)(t)| ≤ K ′(te−t)2‖φ1 − φ2‖B,

for K ′ depending on C ′. Then, Lemma 3 shows

|(GQφ1 − GQφ2)(t)| ≤ KK ′(te−t)2‖φ1 − φ2‖B.

Then clearly, by taking T large enough, there is a fixed θ < 1 so that
‖Aφ1−Aφ2‖B ≤ θ‖φ1−φ2‖B for φ1, φ2 ∈ S. By the fixed point theorem,
there exists φ such that Aφ = φ. φ is smooth by standard bootstrapping.
Then log(2t) + t + φ(t) solves (21). q.e.d.

In the next section, we will make an ansatz that the local form of our
global function be consistent with the dominant log | log |z|2| − log |z|
behavior of this local solution. The dominant term is − log |z| which
comes from the form of U and determines the residue at the singularity.
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6.2. Global Existence. The coordinate-independent version of equa-
tion (21) for a general background metric is

(27) ∆u + 4‖U‖2e−2u + 2eu − 2κ = 0

on S2, where norms, the Laplacian, integrals, and the Gauss curvature
κ are taken with respect to the background metric. U is a holomorphic
cubic differential, which we take to have exactly 3 poles of order 2 and
thus no zeroes, and u is taken to have a prescribed singularity structure
such that

∫
∆u = 6π, which follows from our local analysis in Section

6.1.
Near each pole of U , there is a local coordinate z so that the pole

is at z = 0, and U = z−2dz3 exactly. We call this z the canonical
holomorphic coordinate. In a neighborhood of each pole, we take

(28) u0 = log | log |z|2| − log |z|
and the background metric to be |dz|2. This u0 is an explicit solution of
the parabolic affine sphere equation (24). The background metric and
u0 are extended smoothly to the rest of CP

1. Note that
∫

∆u0 = 6π
(each pole contributes 2π). All integrals in this section will be evaluated
with respect to the background metric.

To implement the required singularity structure, we write u = u0 + η
for η in the Sobolev space H1. Note this implies

∫
∆η = 0. We define

the functional

(29)
J(η) =

∫ (
1
2 |∇η|2 + (2κ − ∆u0)η + 1

23 · 4‖U‖2e−2u0e−2η
)

−2π log
∫ (

4‖U‖2e−2u0e−2η + 2eu0eη
)
.

(We note that it is necessary to separate η from u0, as ∇u0 is not
in L2.) J is not defined for all functions η ∈ H1. One problem is that
∆u0 /∈ L2. The term

∫
∆u0η can be taken care of by integrating by parts

(see the proof of Proposition 6 below). A more serious problem is that
4‖U‖2e−2u0 /∈ Lp for any p > 1. This cannot be fixed by integrating
by parts, as the example η = −1

2 log | log |z|2| ∈ H1,loc shows. That
said, there is a uniform lower bound on J among all η ∈ H1 so that∫

4‖U‖2e−2u0e−2η < ∞ (see the remark after Proposition 6). Thus,
we can still talk of taking sequences of η ∈ H1 to minimize J . (The
term

∫
2eu0eη is always finite for η ∈ H1 since eu0 ∈ Lp for p < 2 and

Moser–Trudinger shows that eη ∈ Lq for all q < ∞.)
We wish to show that J(η) has a local minimum. If so, then the

minimizer satisfies the Euler–Lagrange equation

(30) ∆η − (2κ − ∆u0) + 3 · 4‖U‖2e−2u0e−2η

+
−2 · 4‖U‖2e−2u0e−2η + 2eu0eη

1
2π

∫
4‖U‖2e−2u0e−2η + 2eu0eη

= 0.
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One can easily check by integrating this equation that for a solution η0,
the denominator in the last term must be equal to one. Thus, u = η0+u0

satisfies the original equation (27). In this case, the equation η0 satisfies

(31) ∆η − (2κ − ∆u0) + 4‖U‖2e−2u0e−2η + 2eu0eη = 0.

This is equivalent to equation (21), the equation for the metric of an el-
liptic affine sphere: for the background metric h, write eu0+ηh = eψ|dz|2.
Then, η satisfies (31) if and only if ψ satisfies (21).

Definition 1. We call η admissible if η ∈ H1 and
∫

4‖U‖2e−2u0e−2η

< ∞.

In order to analyze the functional J , for an admissible η, consider
J(η + k) for k a constant. J(η + k) has the form

(indep. of k) + 2πk + 3πAe−2k − 2π log[2π(Ae−2k + Bek)],

where

(32) A = A(η) ≡ 1
2π

∫
4‖U‖2e−2u0e−2η, B = B(η) ≡ 1

2π

∫
2eu0eη.

Thus, upon setting (∂/∂k)J(η + k) = 0, we find a critical point only if
Ae−2k + Bek = 1, and this can only happen if

AB2 ≤ 4
27

.

If AB2 > 4/27, then the infimum occurs as k → +∞, and if AB2 <
4/27, there are two finite critical points: a local minimum for which
B(η + k) = Bek < 2/3 and a local maximum for which B(η + k) > 2/3.
With that in mind, we formulate the following variational problem:

Let
Q = {η ∈ H1 : A + B ≤ 1}.

We will minimize J for η ∈ Q. Note that this will avoid the potential
problem at k → +∞, where B(η + k) → +∞. Also, the inequality
in the definition of Q will be important. It will allow us to use the
Kuhn–Tucker conditions to control the sign of the Lagrange multiplier
in the Euler–Lagrange equations. The discussion above about adding a
constant k can be summarized in

Lemma 5. If η ∈ Q, then the minimizer of

{J(η + k) : k constant, η + k ∈ Q}
occurs for k so that A(η+k)+B(η+k) = 1, B(η+k) ≤ 2/3, and k ≤ 0.
If A(η) + B(η) < 1, then the minimizer k < 0 and B(η + k) < 2/3.
Moreover, if A(η) + B(η) = 1 and B(η) ≤ 2/3, then k = 0.

Proof. Compute (∂/∂k)J(η + k) and use the first derivative test.
q.e.d.
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Proposition 6. There are positive constants γ and R so that for all
η ∈ Q,

J(η) ≥ γ

∫
|∇η|2 − R.

Remark. We can also prove the same result for all admissible η ∈ H1.
In this case, we must also control potential minimizers at k = +∞. For
admissible ρ ∈ H1 so that

∫
ρ = 0, consider the functional

J̃(ρ) = lim
k→∞

J(ρ + k).

We bound J̃ from below much the same as the following argument,
although there also is an extra term in J̃ that must be handled using
the Moser–Trudinger estimate.

Proof. As above, u0 = log | log |z|2| − log |z| in the canonical coordi-
nate z near each pole of U . Since ∆u0 /∈ L2, we should integrate by
parts to handle the − ∫

∆u0 η term in J . Let u′
0 = log | log |z|2| near

each pole of U and smooth elsewhere. Then, ∆u0 = ∆u′
0 near each pole

and the difference ∆u0 − ∆u′
0 is smooth on CP

1. Then, if we let ζ be
the smooth function 2κ − ∆(u0 − u′

0),

J(η) =
∫ [

1
2
|∇η|2 + ζη − ∆u′

0 η

]
+ 3πA − 2π log 2π(A + B)

>

∫ [
1
2
|∇η|2 + ζη + ∇u′

0 · ∇η

]
− 2π log 2π

≥ C +
∫ [

1
2
|∇η|2 − 1

4ε
ζ2 − εη2 − 1

4ε
|∇u′

0|2 − ε|∇η|2
]

≥ Cε +
∫ (

1
2
− δ

)
|∇η|2

Here δ = ( 1
λ1

+ 1)ε, for λ1 the first non-zero eigenvalue of the Laplacian
of the background metric, and we have used the facts that A > 0 and
A + B ≤ 1. q.e.d.

Here is another useful lemma.

Lemma 7. For any η ∈ H1,

AB2 ≥ L = 2π−3

(∫
‖U‖ 2

3

)3

.

If AB2 = L, then there is a constant C such that

η = C + 2
3 log ‖U‖ − u0.

Proof. Let f = (4‖U‖2)
1
3 e−

2
3
(u0+η), g = e

2
3
(u0+η). Apply Hölder’s

inequality
∫

fg ≤ ‖f‖3‖g‖ 3
2
. The last statement follows from the case

of equality in Hölder’s inequality. q.e.d.
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Remark. The bound L in the previous lemma does not depend on
the background metric; it depends only on the conformal structure on
CP

1 and the cubic form U .

An admissible η ∈ H1 is a weak solution of (31) if η is a solution of
(31) in the sense of distributions.

Proposition 8. Assume that U is such that L < 4/27. Then, any
minimizer η of {J(η) : η ∈ Q} is a weak solution of (31).

Proof. Recall Q = {η : A + B ≤ 1}.
Case 1: The minimizer η satisfies A + B < 1. Since the constraint

A + B ≤ 1 is slack, η must satisfy the Euler–Lagrange equation (30).
Then as above, we may integrate to find that the denominator A + B
in (30) must be equal to 1. Thus, this case cannot occur.

Case 2: The minimizer η satisfies A + B = 1. In this case, we have
Lagrange multipliers [µ0, µ1] ∈ RP

1 so that η weakly satisfies

µ0

[
∆η − (2κ − ∆u0) + 3 · 4‖U‖2e−2u0e−2η

+
−2 · 4‖U‖2e−2u0e−2η + 2eu0eη

A + B

]
= µ1(−2 · 4‖U‖2e−2u0e−2η + 2eu0eη),

and A + B = 1. Thus,

(33) µ0[∆η − (2κ − ∆u0) + a + b] = µ1(−2a + b)

for
a = 4‖U‖2e−2u0e−2η, b = 2eu0eη.

Note then that A =
∫

a/2π, B =
∫

b/2π.
Also note the constraint the Kuhn–Tucker conditions place on the

Lagrange multipliers. Recall that if we minimize a function f subject
to the constraint g ≤ 1, and if the minimum occurs on the boundary
g = 1, then we have µ0∇f = µ1∇g for µ0µ1 ≤ 0. This is exactly our
situation for f = J and g = A + B.

Thus, we have three cases: if µ1 = 0, then equation (33) becomes
equation (31) and we have proved the proposition.

In the second case, if µ0 = 0, then the Euler–Lagrange equation (33)
may be solved explicitly for η to find

η = 1
3 log(4‖U‖2) − u0.

Near each pole of U , there is a coordinate z so that ‖U‖ = |z|−2 and
u0 = log | log |z|2| − log |z|. So

η = 1
3 log 4 − 1

3 log |z| − log | log |z|2|
there and so η /∈ H1.
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Finally, we consider where µ = µ1/µ0 < 0. We will analyze the second
variation at any critical point to show that there are no minimizers in
this case.

Integrate (33) to find

−2π + 2πA + 2πB = µ(−2 · 2πA + 2πB).

Then since A + B = 1, we have 2A = B, since we are in the case µ �= 0.
So A = 1/3 and B = 2/3. We analyze the second variation to show
that for L < 4/27, there is no minimizer at A = 1/3, B = 2/3 (unless
possibly if µ1 = 0).

Let η satisfy (33) and A = 1/3, B = 2/3. Consider a variation
η + εα+ ε2

2 β so that η satisfies A+B = 1 to second order when ε = 0.4

We assume α is a constant. Then, the first variation

∂

∂ε
(A + B)

∣∣∣∣
ε=0

= −2αA + αB = 0

for A = 1/3, B = 2/3. So to first order η + α satisfies A + B = 1 and α
is tangent to {A + B = 1}.

Now, we require

0 = 2π
∂2

∂ε2
(A + B)

∣∣∣∣
ε=0

(34)

=
∫

a(4α2 − 2β) + b(α2 + β)

= α22π(4A + B) +
∫

β(−2a + b)

= 2π · 2α2 +
∫

β(−2a + b).

Now for this variation J = J(η + εα + ε2

2 β), compute

∂2J

∂ε2

∣∣∣∣
ε=0

=
∫

∇η · ∇β + |∇α|2 + (2κ − ∆u0)β + 3
2

∫
a(4α2 − 2β)

(35)

− 2π

∫
a(4α2 − 2β) + b(α2 + β)∫

a + b
+ 2π

(∫
a(−2α) + bα

)2(∫
a + b

)2

4This corresponds to an actual variation in Q by standard Implicit Function The-
orem arguments—see [20]. Let X be the Banach space H1∩C0. Then let g : X → R,
g(ν) = A(η + ν)+ B(η + ν). It is straightforward to show that g is C1 in the Banach
space sense. Moreover, for 2a �= b (which holds for any η ∈ H1), we can check that
dg : X → R is non-zero. So, then Y = g−1(1) = {A+B = 1} is a Banach submanifold
of X near ν = 0. So, for any element α ∈ ker dg0, there is a curve in Y tangent to α.
Along such a curve, we compute restrictions on the second-order term β.
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=
∫

[∇η · ∇β + (2κ − ∆u0)β − 3aβ] + 2π · 6α2A

− 2π · α2(4A + B) −
∫

β(−2a + b)

=
∫

[∇η · ∇β + (2κ − ∆u0)β − 3aβ] + 2π · 2α2.

Here, we have used the following facts to get from the first line to the
second: ∇α = 0 since α is constant,

∫
(a + b)/2π = A + B = 1, and

the last term vanishes since α is constant and 2A = B. The third line
follows from the second by the constraint (34) and the fact A = 1/3.

Now, we use the Euler–Lagrange equation (33). Recall µ0 �= 0 and
µ = µ1/µ0. Then∫

∇η · ∇β = −
∫

(∆η)β =
∫

[−(2κ − ∆u0) + a + b − µ(−2a + b)]β.

Plug this into (35) to find

∂2J

∂ε2

∣∣∣∣
ε=0

= (1 − µ)
∫

(−2a + b)β + 2π · 2α2

= 2π · 2µα2.

Here, the last line follows from (34). Thus if we choose α �= 0, then
the second variation along this path is negative since µ < 0. Therefore,
there is no minimizer for our variational problem satisfying µ < 0. q.e.d.

Now, we show that there is a minimizer.

Lemma 9. Assume L < 4/27. Then, there is a constant δ > 0 so
that A, B ∈ (δ, 1/δ) for all η ∈ Q.

Proof. Lemma 7 implies that AB2 ≥ L. Since 0 < L < 4/27, A > 0,
B > 0, and A + B ≤ 1, this proves the lemma. q.e.d.

Lemma 10. There are constants K1, K2 so that for all admissible
η ∈ H1, and for c = (

∫
η)/(

∫
1),

log A ≥ K1 − 2c, log B ≥ K2 + c.

Proof. Since exp is convex, Jensen’s inequality gives

log A = − log 2π + log
∫

4‖U‖2e−2u0e−2η

≥ − log 2π +
∫

log 4‖U‖2 − 2u0 − 2η∫
1

+ log
∫

1.

The case for B is the same. q.e.d.

Lemma 11. Let ηi be a sequence in Q so that limi J(ηi)=infη∈Q J(η).
Then, there is a positive constant C so that ‖ηi‖H1 ≤ C for all i.
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Proof. First, we note that Lemmas 9 and 10 show that the average
value c = (

∫
η)/(

∫
1) is uniformly bounded above and below for all

η ∈ Q.
Proposition 6 shows that J(η) ≥ γ

∫ |∇η|2 − R for γ, R > 0 uni-
form constants. Thus for any minimizing sequence,

∫ |∇η|2 must be
uniformly bounded. Then, write η = ρ + c for

∫
ρ = 0, c constant.

Then,

‖η‖L2 ≤ ‖ρ‖L2 + ‖c‖L2 ≤ λ
− 1

2
1 ‖∇ρ‖L2 + K = λ

− 1
2

1 ‖∇η‖L2 + K

for K a uniform constant and λ1 the first non-zero eigenvalue of the
Laplacian. This shows the H1 norm of η in the minimizing sequence is
uniformly bounded. q.e.d.

Now given a minimizing sequence {ηi} ⊂ Q, Lemma 5 shows that we
can assume A(ηi) + B(ηi) = 1, B(ηi) ≤ 2/3. Then, there is a subse-
quence, which we still refer to as ηi, which is weakly convergent to a
function η∞ ∈ H1 (the weak compactness of the unit ball in a Hilbert
space), strongly convergent to η∞ in Lp for p < ∞ (Sobolev embed-
ding), convergent pointwise almost everywhere to η∞ (Lp convergence
implies subsequential almost-everywhere convergence), and so that eηi is
strongly convergent to eη∞ in Lp for p < ∞ (Moser–Trudinger). Recall

J(η) =
∫

[12 |∇η|2 + (2κ − ∆u0)η] + 3πA − 2π log 2π(A + B).

Then the second term in the integral converges by strong convergence
in L1 and weak convergence in H1 (see the proof of Proposition 6 for
the integration by parts trick). The term

∫
1
2 |∇η|2 is lower semicontin-

uous (the norm in a Hilbert space is lower semicontinuous under weak
convergence). Lower semicontinuity is enough since we are seeking a
minimizer. B converges by Moser–Trudinger: eu0 ∈ Lp for p < 2. Then
since eηi converges in Lq for 1

p + 1
q = 1, B =

∫
2eu0eη converges.

That leaves the term A. Fatou’s lemma and the almost-everywhere
convergence of ηi then show

A(η∞) ≤ lim inf
i→∞

A(ηi).

We want to rule out the case of strict inequality. Note A(η∞)+B(η∞) ≤
limA(ηi) + B(ηi) = 1, and so η∞ ∈ Q. Also, since A(ηi) + B(ηi) = 1
and B(ηi) → B(η∞), limA(ηi) = 1 − B(η∞).

Consider the constant k so that η∞ + k minimizes

{J(η∞ + k) : η∞ + k ∈ Q}.
Note that Lemma 5 shows that e−2kA(η∞) + ekB(η∞) = 1. Now, com-
pute
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lim
i→∞

J(ηi) ≥
∫ [

1
2 |∇η∞|2 + (2κ − ∆u0)η∞

]
+ 3π [1 − B(η∞)] ,

J(η∞ + k) =
∫ [

1
2 |∇η∞|2 + (2κ − ∆u0)(η∞ + k)

]
+ 3πe−2kA(η∞).

Now, substitute e−2kA(η∞) = 1 − ekB(η∞) to show

(36) lim
i→∞

J(ηi) − J(η∞ + k) ≥ −2πk + 3πB(η∞)(ek − 1)

We prove A(η∞) = limA(ηi) by contradiction. If on the contrary,
A(η∞) < limA(ηi), Lemma 5 and the fact A(ηi)+B(ηi) = 1 imply that
k < 0. Then, it is straightforward to check that the right-hand side of
(36) is strictly positive (it is zero if k = 0, and its derivative with respect
to k is negative for k < 0—use the fact B(η∞) = limB(ηi) ≤ 2/3). This
shows limJ(ηi) > J(η∞ + k) and so contradicts the fact that ηi is a
minimizing sequence for J .

The same analysis shows that lim
∫ |∇ηi|2 =

∫ |∇η∞|2. So J(η∞) =
limJ(ηi), and η∞ is a minimizer of {J(η) : η ∈ Q}.

Theorem 2. If L < 4/27 then a weak solution to (31) exists. Con-
versely, if L ≥ 4/27, then there is no weak solution to (31).

Proof. The preceding paragraphs, together with Proposition 8, prove
existence in the case L < 4/27. We address the non-existence in two
cases:

Case L > 4/27. If η solves (31), then we can integrate (31) to find
A + B = 1. On the other hand, A > 0, B > 0, and Lemma 7 shows
that AB2 ≥ L > 4/27. Simple calculus shows that there is no such pair
(A, B) in this case.

Case L = 4/27. As in Case 1, we must have A + B = 1 and AB2 ≥
L = 4/27. The only way this can happen is if A = 1/3, B = 2/3, so
that AB2 = 4/27. In this case, Lemma 7 forces η = C + 2

3 log ‖U‖ − u0

for some constant C. Since u0 = log | log |z|2| − log |z| and ‖U‖ = |z|−2

near each pole of U , η = C − log | log |z|2| − 1
3 log |z| near each pole of

U . Thus, η /∈ H1. q.e.d.

Proposition 12. Any weak solution η to (31) is smooth away from
the poles of U .

Proof. In a neighborhood bounded away from the poles of U , the
quantities ‖U‖2 and u0 are smooth and bounded. Since η ∈ H1, Moser–
Trudinger shows that eη, e−2η ∈ Lp for all p < ∞. Therefore, (31)
implies ∆η ∈ Lp

loc. Since η ∈ Lp by Sobolev embedding, the Lp elliptic
theory [11] shows that η ∈ W 2,p

loc . Sobolev embedding shows η ∈ C0,α
loc ,
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and so ∆η ∈ C0,α
loc . The Schauder theory then shows η ∈ C2,α

loc . Further
bootstrapping implies η is smooth. q.e.d.

Remark. It is not clear whether the solution constructed is unique.
The maximum principle does not work to give uniqueness.

6.3. A metric for the “Y” vertex. Let Σ̃ be the universal cover of
Σ = S2 \ {p1, p2, p3}. Lifting the appropriate objects to the cover, we
find a solution to (27) on Σ̃. Since the equation (27) is the integrability
condition for the developing map, we have a solution f̃ : Σ̃ → R

3,
with monodromies of Σ acting as equiaffine deck transformations fixing
the normal vector ξ and acting by isometry. The quotient by the deck
transformations gives an elliptic affine sphere structure on Σ as well as
the locally defined developing map f. Then, the map F : (Σ×R+) → R

3

defined by F (x, r) = rf(x) =: (y1, y2, y3) maps the cone over Σ to R
3

and is locally invertible (so we may express r = r(y)). The potential
function Φ(y) = r2/2 defines a parabolic affine sphere on a neighborhood
of the “Y” vertex, by Baues and Cortés’s Theorem 1. This is our main
result.

Remark. The monodromy group of this metric determines the affine
flat structure. We have not yet determined this monodromy group, thus
cannot verify that the metric is one predicted by Gross–Siebert [13] and
Haase–Zharkov [16].
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