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LOWER BOUNDS ON THE CALABI FUNCTIONAL

S.K. Donaldson

Dedicated to Raoul Bott

1. Introduction

A cornerstone of Atiyah and Bott’s treatment [1] of Yang–Mills theory
over Riemann surfaces is a relation they discovered between the Yang–
Mills functional and filtrations of a holomorphic bundle. The relation
can be stated as follows. Let Σ be a compact Riemann surface with
a fixed compatible metric, normalised to have area 4π2. Let E be a
holomorphic vector bundle over Σ and consider a flag F of sub-bundles

0 = E0 ⊂ E1 · · · ⊂ Eq = E.

Recall that for any bundle V over Σ, the slope µ(V ) of V is defined
to be the quotient of the degree of V by the rank. We say the flag
F is slope-decreasing if µ(E1) > µ(E2) · · · > µ(E). Equivalently, the
quotients Qi = Ei/Ei−1 have µ(Q1) > · · · > µ(Qq). Define

(1) Φ(F) =

(
q∑

i=1

µ(Qi)2rank(Qi)

)1/2

.

Atiyah and Bott relate this algebro-geometric quantity to the Yang–
Mills functional—the L2 norm of the curvature FA—restricted to com-
patible unitary connections A on E. Their result is

(2) infA‖FA‖ = supF ,decΦ(F)

where on the right-hand side the supremum runs over the slope-de-
creasing flags. In fact, this supremum is attained by the canonical
Harder–Narasimhan filtration of E. The infimum on the left-hand
side is not in general attained: this happens if and only if E is a di-
rect sum of stable bundles. Notice that there is an easy lower bound
‖FA‖ ≥ µ(E)

√
rank(E) deriving from the fact that i

2πTr(FA) represents
c1(E). This trivial lower bound is just Φ(F0) where F0 is the trivial
flag (with q = 1). So supF ,decΦ(F) ≥ µ(E)

√
rank E, and it is easy to

see that equality holds if and only if the bundle E is semi-stable, i.e., if
there is no non-trivial slope-decreasing flag.

The Atiyah-Bott result can be viewed as two statements: infA ≥ supF
and infA ≤ supF . The proof of the first of these involves a simple
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differential-geometric argument, turning on the principle that “curva-
ture decreases in holomorphic sub-bundles and increases in holomorphic
quotients”([1], Proposition 8.13 and the remark in the second paragraph
of p. 575). The proof of the second relies on the theorem of Narasamihan
and Seshadri on the existence of projectively flat unitary connections
on stable bundles.

In [3], Calabi began the study of the L2 norm of the scalar curva-
ture of Kahler metrics, running over a fixed Kahler class on a compact
Kahler manifold. This functional is equivalent to the L2-norm of the
full curvature tensor, in that the two differ by topological terms. The
purpose of this paper is to establish an analogue of (one half of) the
Atiyah–Bott result for this Calabi functional (and some variants for Lp

norms). Our result bears on the algebraic case, so we suppose that X
is a smooth complex projective variety, that L → X is a fixed ample
line bundle and we consider Kahler metrics ω in the class c1(L). We
use the notion, introduced in [8], of a test configuration X for X. The
detailed definition will be reviewed below, but in essence this comprises
a C∗-equivariant family π : X → C with generic fibre Xt = π−1(t) iso-
morphic to X, for t �= 0. The central fibre X0 need not be isomorphic
to X, it may be a highly singular variety or even a scheme, but it has a
C∗-action and the definition requires a lift of this action to a line bun-
dle L. We will define a numerical invariant Ψ(X ) using the C∗ action
on the vector spaces H0(X0,Lk), related to the generalised Futaki in-
variant. In stating our results, it is convenient to work with a quantity
S(ω) defined to be 1

4π times the usual scalar curvature of the metric ω.
(Thus, S(ω)ωn

n! = 1
2ρ ∧ ωn−1

(n−1)! , where ρ is the Ricci form representing
c1(X).) Then, our result takes the form

(3) inf
ω

‖S(ω)‖L2 ≥ sup
X

Ψ(X ).

There is a rather trivial lower bound on the Calabi functional, de-
riving from the fact that the integral of S(ω) yields 〈 1

2(n−1)!c1(X) ∪
ωn−1, [X]〉, so the average value Ŝ is a topological invariant of the Kahler
class. Thus

(4) ‖S(ω)‖2
L2 = ‖S − Ŝ‖2

L2 + Ŝ2 Vol(X) ≥ Ŝ2 Vol(X).

The essential feature of our definition of Ψ(X ) is that we get a better
bound than this precisely when X is not “K-semistable” in the sense
of [8], just as in the Atiyah–Bott case. (There is also an extension
of this discussion to extremal metrics, see Section 2 below.) Thus, one
immediate consequence of our Theorem (as Richard Thomas pointed out
to the author) is a new and simpler proof of the fact that the existence of
a constant scalar curvature Kahler metric implies K-semistability. This
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argument does not need any special constructions (as in [14]), in the
case when the manifold has holomorphic vector fields.

It is natural to conjecture that in fact

inf
ω

‖S(ω)‖L2 = sup
X

Ψ(X ).

This would be a variant of the conjectures in [23], [21], [8] relating
K-stability to the existence of constant scalar curvature metrics (and
the extension of that discussion to extremal metrics in [19]). However,
neither conjecture immediately implies the other.

We will explain the analogy with the Atiyah–Bott result in somewhat
more detail in Section 2. Both set-ups fit, formally, into the more general
framework of “moment maps and stability” discussed in [7] for example.
The results can be seen as infinite-dimensional versions of part of the
theory developed by Kirwan [12] in finite dimensions. The method
of proof, we use here is that of finite-dimensional approximation, in
the mould of [9], [10]. That is, we derive our inequalities by studying
the asymptotics of finite-dimensional problems, essentially of the kind
considered by Kirwan. However, the proof of the result in this paper is
substantially simpler than that in [9]. In particular, we do not need to
make use of the notion of “balanced” metrics. The essential ingredient in
our proof is the asymptotic expansion for the “density of states” function
due to Yau, Tian, Zelditch, Liu, Catlin and Ruan [20], [24], [13], [4],
[18]. We also need some discussion of singular varieties and schemes
to allow us to apply the general moment map theory. The author first
saw that this could be done using the point of view developed in the
work of Zhang [25], Phong and Sturm [15], [16] involving the “Chow
norm” and an action on Chow vectors. However, it turns out that one
can avoid appealing to these concepts explicitly and we only need some
comparatively straightforward technical facts to handle these issues of
singularities (notably a result related to the equivariant Riemann–Roch
Theorem, Proposition 3 below).

In 1997, and intermittently since, the author has discussed with X-X.
Chen the possibility of obtaining lower bounds on the Calabi functional
using a similar pattern of argument, but replacing the finite-dimensional
approximations by the use of “geodesic rays” in the space of Kahler
potentials, in the manner of [5], [6]. This would have independent
interest and Chen and the author hope to discuss this work in a future
article.

The author is grateful to Richard Thomas and Xiu-Xiong Chen for
discussions of these topics.
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2. Test configurations

We begin by recalling the definition of a test configuration from [7].
Given an ample line bundle L → X, a test configuration for the pair
(X, L) consists of:

• a scheme X with a C∗ action;
• a flat C∗-equivariant map π : X → C, with fibres Xt;
• an equivariant line bundle L → X , ample on all fibres;
• for some r > 0, an isomorphism of the pair (X1,L|X1) with the

original pair (X, Lr).
Thus, we have a sequence of vector spaces Uk = H0(X0,L|kX0

) with
C∗-actions. Let Ak : Uk → Uk be the endomorphisms generating these
actions (so et ∈ C∗ acts as etAk on Uk). We are interested in the
asymptotic behaviour, with respect to k, of the dimension of Uk and
the total weight of the action, i.e., the trace of the Ak. These are given
by Hilbert polynomials:

(5) dim Uk = a0k
n + a1k

n−1 + · · · ,

(6) TrAk = b0k
n+1 + b1k

n + · · · ,

for large k, as discussed in [7], [17]. We go one step further and define
a positive number Q by the leading term in the polynomial defining the
trace of the squares:

(7) TrA2
k ∼ Q kn+2.

It is clear that Q ≥ 0, one way of seeing that Q is strictly positive is to
use (20) in Section 5 below. Notice that, from general theory, the ai, bi

and Q are rational numbers.
Now, we define

(8) Ψ(X ) = − 1
r(n−2)/2

b1√
Q

.

The normalisation by 1/r(n−2)/2 means that we do not change Ψ(X )
if we replace L by a positive power Ls. Also this scaling weight is the
same as that of the Calabi functional

r(n−2)/2‖S(rω)‖L2(rω) = ‖S(ω)‖L2(ω).

The upshot of this is that in proving our theorem, we can always suppose
r = 1, which we do from now on. By the flatness of the family and the
Riemann–Roch Theorem for X, we can identify the co-efficient a0 with
the volume of X and a1 with the integral of S(ω) for any metric ω

representing c1(L). Thus, Ŝ = a1/a0 and the trivial lower bound (4) is
‖S‖ ≥ |a1|/√a0.

There are two ways in which we can modify a test configuration.
First, we can pull back X by a d-fold covering of the base. This changes
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Ak to dAk and plainly does not affect Ψ. Second, we can change the C∗-
action on the line bundle L by a character λ �→ λν of C∗. This changes
Ak to Ak +kν1 and so bi to b̃i = bi +νai, and Q to Q̃ = Q+2b0ν +a0ν

2.
Thus, for the new configuration X̃ , we have

(9) Ψ(X̃ ) = − b1 + νa1√
Q + 2b0ν + a0ν2

.

We consider the supremum of this expression over ν, initially regarded
as a real variable. The analysis of this supremum brings in the Futaki
invariant FX of the test configuration. This is defined to be

FX = b1 − b0a1

a0
.

(This terminology differs by a factor of a0 from that in [8], where only
the sign of FX was relevant.) Then, as the reader will easily verify, if
FX < 0 the expression in (9) above is maximised when

ν =
a1Q − b0b1

a0b1 − a1b0
.

By taking a covering we may suppose that this is an integer, so the
supremum is realised by some test configuration. On the other hand,
if FX ≥ 0, the supremum is not attained for finite ν but occurs in the
limit as ν tends to ∞ or −∞, depending on the sign of a1. In this
second case, the supremum is just |a1|/√a0 which is just the trivial
lower bound on ‖S‖. In the first case, when the supremum is attained,
a little calculation shows that the supremum is( |a1|2

a0
+ Ψ̂2

X

)1/2

where we define

Ψ̂X = − FX√
Q − b2

1/a0

.

The denominator here has a natural interpretation. We write Ak : Uk →
Uk for the trace-free part of Ak, i.e.,

Ak = Ak − TrAk

dim Uk
1.

Then as k → ∞,
TrA2

k ∼ (Q − b2
1/a0)kn+2.

With this discussion in place, we can state our main theorem precisely.

Theorem 1. If X is a test configuration for the pair (X, L), then for
any Kahler metric ω in the class c1(L), we have

‖S(ω)‖L2 ≥ Ψ(X ).
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By the discussion above, it is completely equivalent to prove that for
any test configuration

‖S(ω) − Ŝ‖L2 ≥ − FX
Q − b21

a0

,

and it is in this form that we shall prove the result. Notice that the
inequality is vacuous unless FX < 0, that is, unless (X, L) is not K-
semistable. We will prove a more general result dealing with Lq norms
(loosely analogous to the discussion of other norms in [1]). For an even
integer p, we define Np(X ) > 0 by the leading term

(10) TrAp
k ∼ Np

p kn+p

in the appropriate Hilbert polynomial. Thus, when p = 2,

Q − b2
1

a0
= N2

2 .

Momentarily re-instating the integer r in the definition of a test config-
uration, we define

(11) Ψ̂p(X ) = − 1
r(n/q)−1

FX
Np(X )

.

Again, the power of r is chosen so that this is unchanged if we replace
L by Ls.

Theorem 2. If X is any test configuration for (X, L), then for any
metric ω in the class c1(L), we have

‖S(ω) − Ŝ‖Lq ≥ Ψ̂p(X ),

where p is any even integer and q is the conjugate exponent to p (i.e.,
p−1 + q−1 = 1).

Just as before, one can check that that the scaling weight of the Lq

norm of S(ω) agrees with the power of r in (11), so we can reduce to
the case when r = 1. By the preceding discussion, Theorem 2 (in the
case when p = 2) implies Theorem 1, and in the body of the paper
below we prove Theorem 2. (We remark that, when p �= 2, there is no
simple exact relation between the Lq norms of S and S − Ŝ. One can
derive slightly different lower bounds for the Lq norms of S using the
techniques of this paper, but we find it simpler to work with S − Ŝ.)

If the automomorphism group of the pair (X, L) contains a non-trivial
compact connected subgroup G, then there is another relatively elemen-
tary lower bound on the Calabi functional, obtained from the Futaki
invariant in its original, differential geometric, form. We consider a G-
invariant metric on X. Then, we get a Lie algebra homomorphism from
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Lie(G) to the functions on X, under Poisson bracket. Let ξ be an ele-
ment of Lie(G) and let H be the corresponding Hamiltonian. Then, the
integrals ∫

X
S Hdµ

∫
X

Hpdµ,

are topological invariants of the data: they do not change as we vary
ω among G-invariant metrics in the same Kahler class. By Holder’s
inequality, we have

(12) ‖S − Ŝ‖Lq ≥ 1
‖H − Ĥ‖Lp

∫
X

(S − Ŝ)Hdµ

where Ĥ is the average value of H, and the right-hand side is a topo-
logical invariant of the data.

We will now explain how to derive this as a special case of our Theo-
rem 2. By a density argument, we can suppose that ξ generates a circle
action on (X, L) which we extend to a holomorphic C∗ action. Then,
we define a test configuration by taking the product X = X × C but
using this non-trivial C∗ action. Thus, in this case, the central fibre
(X0,L) is just the original pair (X, L), with the given C∗ action. The
key point now is that

b0 =
∫

X
Hdµ , b1 =

∫
X

SHdµ,

so that

FX =
∫

X
(S − Ŝ)Hdµ.

Thus, the algebro-geometric definition of the Futaki invariant reduces
to the differential geometric one. This is explained in Prop. 2.2.2 of [8]
and we will obtain a generalisation of the fact in Proposition 3 below.
Moreover, the same discussion shows that, for even integers p,

Np = ‖H − Ĥ‖Lp .

Changing the sign of ξ, if necessary, we can suppose that the Futaki
invariant is negative. Then, (12) follows as a special case of our Theorem
2. In fact, our Theorem gives rather more even in this case, since the
lower bound is obtained for arbitrary metrics in the Kahler class, not
just the G-invariant ones.

We return now to a situation considered by Atiyah and Bott and
explain how their result can be cast in a similar form as ours. Let F
be a flag of sub-bundles in E → Σ, as before. Let W = (w1, . . . , wq)
be a vector of strictly increasing integers. Then, one can construct a
degeneration E = E(F , W ) from this data. This is a C∗-equivariant
bundle over C∗ × Σ which is isomorphic to E on each slice {t} × Σ for
t �= 0 and to E0 = Q1 ⊕Q2 · · · ⊕Qq when t = 0, with the property that
the C∗-action on E0 has weight wi on the summand Qi. We fix a square
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root K
1/2
Σ of the canonical bundle and any line bundle L → Σ of degree

1. Now, we consider the C∗ action on the vector spaces

Uk = H0(E0 ⊗ K
1/2
Σ ⊗ Lk),

with generators Ak : Uk → Uk. Following just the same pattern as
before, we look at the large k behaviour,

dim Uk = α0k + α1,

TrAk = β0k + β1,

TrA2
k ∼ Qk,

and we define
Ψ(F , W ) = − β1√

Q
.

Lemma 1. For any bundle E → Σ we have

sup
F ,W

Ψ(F , W ) = sup
F ,dec

Φ(F),

where on the left-hand side, the supremum is taken over arbitrary flags
F and increasing weight vectors W and on the right-hand side the supre-
mum is taken over slope-decreasing flags F .

Given a flag F and weight vector W , we have

Uk =
⊕

H0(Qi ⊗ K
1/2
Σ ⊗ Lk),

with the action of weight wi on the the ith summand. It follows that

α0 =
∑

ri, α1 =
∑

di, β0 =
∑

riwi, β1 =
∑

diwi, Q =
∑

riw
2
i ,

where Qi has rank ri and degree di. So, we obtain

(13) Ψ(F , W ) = −
∑

diwi√∑
riw2

i

.

Now, suppose that F is slope-decreasing. We maximise Ψ(F , W ) over
weights wi, initially regarded as arbitrary real numbers. The maximum
occurs at wmax

i = −Cdi/ri for any constant C. Taking a suitable C, we
can suppose that wmax

i are integers, but more crucially, the condition
that F was a slope-decreasing flag means that the wmax

i are increasing.
Then, we have

Ψ(F , Wmax) = Φ(F),
so we have established one half of the Proposition, i.e., supΨ ≥ supΦ.
We prove the other half by induction on the length q of the flag. We
take as inductive proposition the statement that for any flag F of length
q and any weakly increasing weight vector W (i.e., with w1 ≤ · · · ≤ wq)
we have Ψ(F , W ) ≤ supF ,dec Φ, where Ψ(F , W ) is defined by (13). This
is clearly true for q = 1. Suppose that F is any flag and W 0 is a weakly-
increasing weight vector. We maximise the expression for Ψ(F , W ) over
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all weakly-increasing weight vectors. If F is slope-decreasing, then we
are in the same position as above and the maximum realises Φ(F); so
in this case

Ψ(F , W 0) ≤ Ψ(F , Wmax) ≤ supΦ

as desired. If F is not slope increasing, then the maximum occurs at
a vector Wmax with wmax

i = wmax
i+1 for some i. Then, let F ′ be the

flag obtained from F by deleting Ei and let W ′ be the weight vector
for F ′ obtained from Wmax in the obvious way. In the associated sum
of quotients, we are replacing the original pair Qi ⊕ Qi+1 by a bundle
Q′

i = Ei+1/Ei−1. The rank of Q′
i is the sum ri + ri−1 and the degree of

Q′
i is di + di−1. Thus, Ψ(F ′, W ′) = Ψ(F , Wmax). So, we have

Ψ(F , W 0) ≤ Ψ(F , Wmax) = Ψ(F ′, W ′) ≤ supΦ,

where in the last inequality, we use the inductive hypothesis. This
completes the proof.

In sum, the version of the Atiyah–Bott result which is closer to our
Theorem is the statement that

inf
A

‖F (A)‖ = sup
F ,W

Ψ(F , W ),

which is completely equivalent to the previous formulation by the ele-
mentary Lemma above. One could probably prove one direction here
(i.e., that infA ≥ supF ,W ) by using a finite-dimensional approximation
argument in the manner of Wang [22], just as we will do for the Calabi
functional. However, there would not be much point to this, in view of
the simple and direct differential geometric proof.

3. Differential Geometric asymptotics

In this section we relate the Calabi functional (and its Lq variants)
to the norm of a matrix M associated to a projective variety. Let zα be
standard homogeneous coordinates on CPN and let hαβ be the function

hαβ =
zαzβ

‖z‖2

on CPN . For a smooth projective variety V ⊂ CPN of dimension n,
we define a self-adjoint matrix M = M(V ) with entries

Mαβ =
∫

V
hαβdµFS,

where dµFS is the standard volume form induced from the Fubini–Study
metric (normalised so that the volume of V is equal to its degree divided
by n!). Let M be the trace-free part of M . Since the sum of the hαα is
1 we have M = M − Vol(V )

N+1 1. We recall that for any q > 1, the q-norm
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of a self-adjoint matrix T is defined by

‖T‖q
q =

∑
|λα|q,

where λα are the eigenvalues, repeated according to multiplicity.
Now, let (X, L) be an abstract polarised variety, as before. For large

k, the sections of Lk define a projective embedding of X, i.e., a choice
of basis of H0(Lk) yields a specific projective variety V .

Proposition 1. Let ω0 be a Kahler metric on X in the class c1(L).
Then, for large enough k, there is a basis of H0(Lk) yielding a projective
embedding X → Vk ⊂ CPNk with for, any q ≥ 1,

‖M(Vk)‖q ≤ k(n/q)−1‖S(ω0) − Ŝ‖Lq + O(k(n/q)−2).

The proof is a straightforward application of the asymptotic expan-
sion for the density of states function (see references in Section 1) which
we now recall. Let | |0 be a Hermitian metric on L whose associated
curvature form is −2πiω0. We write | |0 also for the induced metric on
Lk. Then, endow H0(Lk) with the standard L2-norm defined by the
volume form dµ0 of the fixed metric ω0 and the fibre metric | |0 on Lk.
Define a function ρk on X by

ρk =
∑

|sα|2,
for any orthonormal basis sα of H0(Lk). Then the statement we need
is that

ρk = kn(1 + k−1ηk)

where the functions ηk converge (in C∞) to S(ω0) as k → ∞; in fact
ηk = S + O(k−1).

The construction of the projective embedding we need is the most
obvious one. For each k, we take any orthonormal basis sα of H0(X, Lk)
and define a new fibre metric on the line bundle L by

| |2∗ =
1

ρ
1/k
k

.

Then, denoting the induced metric on Lk also by | |∗,∑
|sα|2∗ = 1.

The pull-back of the Fubini–Study metric under the embedding is kω
where

ω = ω0 + k−1 i

2π
∂∂(log(1 + k−1ηk)).

Write the volume form of ω as

(1 + k−2νk)dµ0.
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It is clear, from the fact that the sequence ηk is bounded, that the
νk are bounded. The functions hαβ pull back to under the projective
embedding to (sα, sβ)∗. So, we have∫

Vk

hαβdµFS =
∫

X
(sα, sβ)0

(
1 + k−2νk

1 + k−1ηk

)
dµ0.

We do not change the norm of M(Vk) if we apply a unitary trans-
formation to CN+1. In other words, if we make a different choice of
orthonormal basis sα. Thus, we can choose the basis so that M is a
diagonal matrix with diagonal entries mα where

mα =
∫

X
|sα|20

(
1 + k−2νk

1 + k−1ηk

)
dµ0.

Now, the dimension N + 1 is the integral of ρk over X, and it follows
that the trace-free part M of M is the diagonal matrix with diagonal
entries

mα = mα − 1
1 + η̂kk−1

,

where η̂k is the average value of ηk. Then, we obtain mα = k−1(bα + εα)
where

bα =
∫

X
|sα|20(η̂k − ηk)dµ0,

and εα is O(k−1). Now write

|sα|20 |ηk − η̂k| = |sα|2/p
0 |sα|2/q

0 |ηk − η̂k|,
where p is the index conjugate to q. Apply Holder’s inequality to get

|bα| ≤
(∫

X
|sα|20dµ0

)1/p(∫
X
|sα|20|ηk − η̂k|qdµ0

)1/q

.

But since the sα are orthonormal, this gives

|bα|q ≤
∫

X
|sα|20|ηk − η̂k|qdµ0.

Summing over α and using the asymptotic statement again in the weak
form ∑

|sα|20 = kn + O(kn−1),

we obtain ∑
α

|bα|q ≤ (kn + Ckn−1)
∫

X
|ηk − η̂k|qdµ0.

Now,
‖M‖q ≤ k−1(‖B‖q + ‖E‖q)

where B, E are the diagonal matrices with entries bα, εα respectively.
We have

‖B‖q ≤ kn/q(1 + Ck−1)1/q‖ηk − η̂k‖Lq ≤ kn/q(1 +
C

q
k−1)‖ηk − η̂k‖Lq ,
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and ‖E‖ = O(k(n/q)−1) since the dimension N + 1 is O(kn). This gives

‖M‖q ≤ k(n/q)−1‖ηk − η̂k‖Lq + O(k(n/q)−2),

and our result follows from the fact that ηk− η̂k = (S(ω0)−Ŝ)+O(k−1).

4. The finite-dimensional argument

Consider a C∗ action on CPN induced by a 1-parameter subgroup
ρ : C∗ → GL(N + 1). Let V be a smooth n dimensional projective
variety and set V t = ρ(t)(V ). Then, it follows from standard theory
that the V t converge as t → 0 to some algebraic cycle V 0. Thus, V 0 is
a formal sum

V 0 =
∑

miWi

where the mulptiplicities mi are positive integers and Wi are irreducible
n-dimensional projective varieties. This convergence can be understood
at various levels, but the crucial point for us is that the V t converge to
V 0 in the sense of currents. So for any smooth test form φ∫

V t

φ →
∫

V 0

φ =
∑

mi

∫
Wi

φ.

Now, suppose that ρ maps S1 ⊂ C∗ to the unitary group. Thus, the
infinitesimal generator A of ρ is a Hermitian matrix; as usual, we write
A for the trace-free part of A. Let h be the real valued function

h =
∑
αβ

Aαβhαβ

on CPN . This is a Hamiltonian for the action of S1 on the projective
space. Let

(14) I(A, V 0) =
∫

V (0)
h dµFS =

1
n!

∫
V (0)

h ωn
FS ,

where ωFS is the Fubini–Study form, and set

FCh(A, V 0) =
Vol(V 0)
N + 1

Tr(A) − I(A, V 0),

where the volume of V 0 has the obvious meaning.

Proposition 2. Suppose that FCh(A, V 0) < 0. Then for any con-
jugate indices p, q, we have

‖M(V )‖q ≥ −FCh(A, V (0))
‖A‖p

.

To prove this, we consider the function

f(t) = Tr(A M(V t)),

for t ∈ R∗. The crucial point is that this is increasing with t. From
one point of view, this follows from the fact that M is a moment map,
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and from the general theory of such maps, see Section 6.5.2 in [11], for
example. If µ is a moment map for an isometric action of a group G on
a Kahler manifold, we have, for any a ∈ Lie(G),

d

ds
〈µ(exp(sa)X), a〉 =

∣∣∣∣ d

ds
exp(sa)X

∣∣∣∣
2

≥ 0.

Then, our assertion follows (taking t = es) from the fact established in
[9] that M is a moment map for the SU(N + 1) action on the set of
varieties projectively equivalent to V , with a suitable Kahler structure.
An equivalent fact was used in the earlier work of Zhang [25], and the
relation between this and the constructions of [9] is explained in [15],
[16]. This monotonicity property is often stated in the literature as the
convexity of a certain function, and other direct proofs are given in [10],
Prop. 1, and [16], Lemma 3.1, so we will not discuss the matter further
here. Given this monotonicity property, we argue as follows. We have

Tr(AM(V t)) =
∫

V (et)
hAdµFS

and M = M − Vol(V )
N+1 1. So

f(t) = Tr(A M(V t)) = Tr(AM(V t)) =
∫

V t

hAdµFS − Vol
N + 1

TrA.

Hence, the limit of f(t) as t → 0 is −FCh(A, V 0), which is positive by
hypothesis. Since the function f is increasing

|f(t)| = f(t) ≥ −FCh(A, V 0)

for all t. In particular, taking t = 1, we have

Tr(A M(V )) ≥ −FCh(A, V 0).

Now, use the fact that for, any Hermitian matrices S, T

|Tr(ST )| ≤ ‖S‖p‖T‖q,

to obtain the required result.
We remark that all of this dicussion can be placed in the context of

the action of GL(N + 1) on the space of Chow vectors, as explained in
[15], [16], and the criterion FCh(A, V 0) < 0 is the standard Hilbert–
Mumford criterion for a destabilising 1-parameter subgroup. On the
other hand, the criterion can also be placed in a dynamical, Riemannian
geometry context. Let P be a compact Riemannian manifold, S ⊂ P
a submanifold and let h be a real-valued function on P . Let φs be the
flow generated by the (h-decreasing) gradient of h and suppose that the
φs(S) converge to some varifold S′ as s → ∞. Say that S has property
(*) with respect to h if the mean value of h over S′ is less than the mean
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value of h on P . Then, a variety V ⊂ CPN is Chow stable if it has
property (*) with respect to all the functions hA. This is because

−FCh(A, V 0) = Vol(V 0)
(

I

Vol(V 0)
− Tr(A)

N + 1

)
,

and Tr(A)/N + 1 is the mean value of hA on CPN .

5. Algebro-geometric asymptotics

We now go back to a test configuration X for (X, L). We can sup-
pose that the parameter r is 1. The essential point is that for large
enough k, the configuration can be realised by a C∗-action on an am-
bient projective space. That is to say, X can be embedded as a C∗-
invariant subscheme in the product P(U∗

k ) × C, extending the embed-
ding of the central fibre X0 ⊂ X by the complete linear system Uk in
P(U∗

k ) = P(U∗
k )×{0}. This is explained in [17]. In essence, we consider

the C∗-equivariant bundle U = π∗Lk over C and pick an equivariant
trivialisation U ∼= C × Uk. There is no loss of generality in supposing
that Lk is very ample on all fibres for all k ≥ 1; then we obtain the
embedding of X from the fibrewise embeddings of Xt in P(U∗

t ) under
this trivialisation. Let |X0| denote the cycle in P(U∗

k ) associated to the
scheme X0. Then, we are precisely in the situation considered above
with a 1-parameter subgroup acting on PN+1, generated by Ak. If we
write V t for the image of Xt × {t} ⊂ X ⊂ P × C under the projection
map to P, then V t = ρ(t)(V1) and the V t converge to the cycle |X0| as
t → 0.

We need a general fact about the choice of equivariant trivialisation
of the bundle U .

Lemma 2. Let E be C∗-equivariant bundle over C and let H be a
Hermitian metric on the fibre E1. Then, there is an equivariant trivial-
isation E ∼= C×E0 which takes H to a Hermitian metric on the central
fibre E0 which is preserved by the action of S1 ⊂ C∗ on E0.

To see this, consider the weight spaces E0 =
⊕

Vi say, where C∗ acts
with weight wi on Vi and the ordering is chosen so that w1 < w2 < . . . .
Let F be the flag

V1 ⊂ V1 ⊕ V2 ⊂ V1 ⊕ V2 ⊕ V3 . . . ,

in E0 and let α : E0 → E0 be a linear map which preserves the flag F .
Thus, α has a block matrix description αij : Vi → Vj with αij = 0 for i >
j. For any t ∈ C, we define α(t) with blocks twj−wiαij . This defines a C∗

equivariant automorphism of the trivial bundle C×E0 equal to α on the
fibre {1} × E0. Conversely, all equivariant automorphisms arise in this
way. What this means is that in the fibre E1 of our equivariant bundle
E, there is a canonical flag and a choice of equivariant trivialisation is
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equivalent to a choice of compatible direct sum splitting of E1. Thus, the
proof of the Lemma is simply to take the direct sum splitting furnished
by the succesive orthogonal complements in the flag in E1 using the
metric H, and then take the corresponding equivariant trivialisation.

Applying the Lemma to the bundle U , we see that, given any metric
on H0(X, Lk), we may choose our representation of X so that the 1-
parameter subgroup takes the circle to unitary transformations of Uk,
with respect to the metric arising from the identification of Uk with
H0(X, Lk). (Of course, we can choose a basis so that the given metric
is identified with the standard one on CN+1.) Then, we have a numerical
invariant

Ik = I(Ak, |X0|) =
∫
|X0|

hdµFS,

as above.

Proposition 3. The integral Ik is equal to the leading term b1k
n+1

in the Hilbert polynomial for Tr(Ak).

Assuming this for the moment, we go on to complete the proof of our
main result. Observe that it is equivalent to consider a fixed embedding
X → V = V 1 with a variable metric on the underlying vector space
CN+1 (as we are doing here) or to consider a fixed metric on CN+1 and
varying the embedding by projective transformations (as we considered
in Section 3). Set

FChk = FCh(Ak, |X0|) =
Vol(X, kω)

dimUk
TrAk − Ik,

as in the previous section. Thus,

FChk =
(

a0k
n

a0kn + a1kn−1 + · · ·
)

(b0k
n+1 + b1k

n + · · · ) − b0k
n+1.

So

(15) FChk =
(

b1 − a1b0

a0

)
kn + O(kn−1) = FXkn + O(kn−1).

Now, Theorem 2 is vacuous if FX ≥ 0, so suppose that FX < 0. Then,
(15) means that FChk < 0 for large k. Thus, we can apply Proposition
2 to deduce that for the embedding X → V = V (1)

‖M(V )‖q ≥ −FChk

‖Ak‖p
.

If p is an even integer, then ‖Ak‖p
p = TrAp, so

FChk

‖Ak‖p
= k(n/q)−1FX

Np
+ O(kn/q)−2).
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Thus

(16) ‖M(V )‖q ≥ −k(n/q)−1FX
Np

+ O(k(n/q)−2).

Then, Theorem 2 follows from this lower bound combined with Propo-
sition 1, since if there was a Kahler metric ω0 with ‖S − Ŝ‖Lq <

Ψ̂p(X ), we would get, for large k, an embedding V with ‖M(V )‖q <

−k(n/q)−1FX /Np in contradiction to (16).

5.1. Proof of Proposition 3. First observe that if we have proved
that Tr(Ak) ∼ kn+1I1, then replacing L by Ls it will follow that Tr(Ask)
∼ (sk)n+1Is and so that Is = sn+1I1. (This can also be seen directly. If
we assume that the powers of sections in H0(X0,L) generate H0(X0,Ls)
then a choice of metric on the first space yields a natural metric on the
second. With these metrics, the integrand defining Is is sn+1 times that
defining I1, pointwise on |X|.) To sum up, our task is to establish the
asymptotic relation

(17) Tr(Ak) ∼ kn+1I,

where we recall that
• X0 is a C∗-equivariant subscheme of CPN for the action generated

by A = A1 on CN+1 = H0(X0,O(1));
• Ak is the generator of the induced action on H0(X0,O(k));
• We fix an S1-invariant metric on CN+1. Then, I is the integral

of hωn
FS/n! over the cycle |X0| associated to X0, where ωFS is

the Fubini–Study metric on CPN and h is the function on CPN

associated to A.
If X0 is smooth, the relation (17) is rather standard. The key point

is that the function h is a Hamiltonian for the S1 action on CPN . The
desired result is then obtained from the equivariant Riemann–Roch The-
orem and the de Rham model for equivariant cohmology, as explained
by Atiyah and Bott in [2]; see the discussion in Section 2 of [8]. Our
problem is to extend this discussion to the case when X0 is a singular
variety or scheme. What we do take as known is the corresponding non-
equivariant result. That is, if Z ⊂ CPM is an m-dimensional projective
scheme, then

(18) dim H0(Z,O(k)) ∼ D

m!
km,

where D is the degree of Z, which is the integral over the cycle |Z| of
ωm

FS . (The proof of this can be reduced to the case m = 0 by taking
hyperplane sections. Thus, the assertion is essentially that the notions of
multiplicity defined algebraically or by currents agree.) We will explain
how to prove the equivariant result by reducing to (18).

We consider the following general situation. Let P → B, Q → F be a
pair of principle S1-bundles over manifolds B, F . So, we have S1 actions
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σP , σQ say and vector fields vP , vQ on P, Q. Suppose, in addition, that
Q → F is an S1-equivariant circle bundle, so we have another action
ρ on Q, commuting with σQ, and another vector field, w say, on Q.
We also denote the induced action on F by ρ. Now, we can form the
associated bundle

M = P ×σP ,ρ F.

Thus, M is a bundle over B with fibre F . We can also form

Π = P ×σP ,ρ Q.

Then, Π is a circle bundle over M . Suppose now that we have connec-
tions on the bundles P → B, Q → F and that the connection on Q is
preserved by ρ. Thus, we have 1-forms αP , αQ on P, Q and

αP (vP ) = 1, αQ(vQ) = 1, αQ(w) = −H,

where H is an S1 × S1-invariant function on Q, which can also be
regarded as a function on F or on M . Now, the connection on P defines
a splitting of the tangent bundle of the associated bundle M , which we
express rather loosely as

TM = TF ⊕ TB.

Via this decomposition, the curvature forms ωP , ωQ can naturally be
regarded as 2-forms on M . The key point is that there is a connection
on Π → M with curvature

Ω = ωQ + HωP .

To see this, we pull everything back to P × Q where we consider the
1-form

β = αQ + HαP ,

(making an obvious simplification in notation). Then, β vanishes on the
generator vP + w of the action (σP , ρ) and so descends to a form β on
Π = P ×σP ,ρ Q. Since β(vQ) = 1 the equivariant 1-form β furnishes a
connection on Π. We have (again making various abuses of notation)

dβ = ωQ + HωP + dH ∧ αP .

This gives the lift of the curvature form of the connection on Π to
P × Q. The definition of the horizontal subspace defining the splitting
TM = TF ⊕ TB means that αP vanishes on the vectors representing
TM , so we see that the connection β has curvature Ω.

Now, suppose that B is a compact oriented 2r-manifold and let S be
an S1-invariant oriented 2n-dimensional submanifold of F , not neces-
sarily closed. This defines a corresponding submanifold S̃ in M (so S̃
is a bundle over B with fibre S). Then, it is clear, by integrating over
the fibres, that

(19)
1

(n + r)!

∫
S̃

Ωn+r =
1
r!

∫
B

ωr
P

1
n!

∫
S

Hnωn
Q.
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We apply this to the case when B is the Riemann sphere CP1 and
F is CPN with the bundles P, Q being the Hopf fibrations. We take
the action ρ to be that induced by the given action on Cn+1. Then, the
function H considered above becomes the function h by the standard
discussion of Hamiltonians and equivariant classes, as in [2]. We then
have a manifold M , which is just the projectivization of a vector bundle
over CP1, and a circle bundle Π → M which clearly corresponds to a
holomorphic line bundle say V → M . Notice that, going back to our
original data, we could change the generator A to A+ν1 for any integer
ν. This changes the function h to h + ν and, by applying (18), does
not affect the truth of the result we seek. So, we can suppose that h is
positive and this means that V is a positive line bundle over M . Thus,
we can embed M as a projective variety in some CPµ, with Vs = O(1),
and there will be no loss in generality in supposing that s = 1.

Now, consider our C∗-invariant scheme X0 ⊂ CPN . Clearly, we get
a corresponding scheme Z inside M , fibering as π : Z → CP1 with fibre
X0. For any k, we can identify H0(Z;Vk) with the sections of the vector
bundle π∗(Vk) over CP1. Now, take the eigenspace decomposition

H0(X0,O(k)) =
⊕

Vi,

where Ak acts as wi on Ui. Then

π∗(Vk) =
⊕

Ui ⊗O(wi).

It follows that

dim H0(Z,Vk) =
∑

dim Ui(wi + 1) = TrAk + dimH0(X0,O(k)).

We apply (18) to the projective scheme Z ⊂ M ⊂ CPM . This shows
that

TrAk ∼ Dkn+1

where D is the degree of Z. This degree is given by integrating Ωn+1

over the cycle |Z|, for any smooth form Ω on M representing c1(V).
Taking the form given by our construction above, taking S to be the
smooth points in |Z| and taking due account of multiplicity, we see that
the degree is given by the integral I, and our result follows.

Note that the same argument (taking B to be CPr) shows that for
any positive integer r

(20) TrAr
k ∼ kn+r

∫
|X0|

hrdµFS , TrAr
k ∼ kn+r

∫
|X0|

(h − ĥ)rdµFS .

Thus, the invariant Np is the Lp norm of h−ĥ on |X0|. One consequence
of this is that we can extend Theorem 2 to the case q = 1, p = ∞,
defining N∞(X ) = ‖h − ĥ‖L∞(|X0|). It would be interesting to extend
Theorem 2 to general real exponents p, q with

Np = ‖h − ĥ‖Lp(|X0|).
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