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ON THE HOMOTOPY TYPES OF KÄHLER

MANIFOLDS AND THE BIRATIONAL KODAIRA

PROBLEM

Claire Voisin

Abstract

In the paper [8], we constructed examples of compact Kähler
manifolds which do not have the homotopy type of a projective
complex manifold. They were, however, obtained by blowing-up
certain complex tori, which are themselves deformation equiva-
lent to complex projective manifolds. Thus it remained possible
that in higher dimension, a birational version of Kodaira’s theo-
rem, saying that a compact Kähler surface deforms to a projective
surface, still holds.

We construct in this paper compact Kähler manifolds, no
smooth birational model of which, however, has the homotopy
type of a projective manifold. Thus the possibility mentioned
above is excluded, even at the topological level.

0. Introduction

In small dimensions, it is known that compact Kähler manifolds are
deformation equivalent to smooth projective complex varieties. In di-
mension 2, this follows from the following theorem:

Theorem 1 (Kodaira [6]). Any compact Kähler surface admits small

deformations which are projective.

The so-called Kodaira problem left open by this result asked whether
more generally any compact Kähker manifold can be deformed to a
projective complex manifold.

Recently, we solved this question negatively by constructing, in any
dimension n ≥ 4, examples of compact Kähler manifolds, which do
not deform to projective complex manifolds, as a consequence of the
following stronger statement concerning the topology of Kähler compact
manifolds:

Theorem 2 (Voisin, [8]). In any dimension n ≥ 4, there are exam-

ples of compact Kähler manifolds which do not have the homotopy type

of projective complex manifolds.

Received 10/19/2004.

43



44 C. VOISIN

Let us give a simple idea of the starting point of the construction
of [8], leading quickly to the construction of a rigid Kähler compact
manifold which is not projective, and thus is a counterexample to the
Kodaira problem. We consider a complex torus T which admits an
endomorphism φT such that:

1) The pair (T, φT ) is rigid,
2) T is not projective (in fact, the presence of φT will prevent T from

being projective, see section 1).

In order to construct from this a rigid Kähler compact manifold which
is not projective, we first consider the product T × T . Of course it has
many deformations, those which kill the product structure, those which
preserve the product structure but where the two factors become dif-
ferent, and finally those which keep the structure of a self-product, but
loosing the existence of φT . In order to construct from it a Kähler
manifold whose deformations will identify to those deformations of T
preserving φT , we use Kodaira’s Theorem [7] saying that the excep-
tional divisor of the blow-up of a subvariety V ⊂ W is stable under
small deformations, so that deformations of the blow-up of W along V
correspond to deformations of W preserving the subvariety V . Thus we
blow-up the subvarieties of T ×T which provide all the structures above:
namely, the T × 0 and 0 × T which guarantee that we have a product,
the diagonal, which guarantees that the two factors in the product are
isomorphic, and the graph of φT which guarantees the presence of the
endomorphism φT , once one knows that our torus is of the form T × T .
The resulting Kähler compact manifold X is then rigid, as its only de-
formations must come from a deformation of T × T preserving all the
structures above, that is to deformations of T preserving φT .

The construction above may seem rather artificial, as it uses blow-ups
to make rigid a Kähler manifold which was not rigid at all, and indeed
admits arbitrarily small projective deformations.

The following question, which was asked of me by N. Buchdahl, F.
Campana, S.-T. Yau, and can be considered as a birational version of
the Kodaira problem, is thus quite natural:

Question. Let X be a compact Kähler manifold. Does there exist
a smooth bimeromorphic model X ′ of X which deforms to a projective
complex manifold?

There are two reasons to believe that this statement could be the
higher dimensional generalization of Kodaira’s theorem 1. The first is
that our construction described above shows that in higher dimension,
there are compact Kähler manifolds which do not deform to a projective
complex manifold, while a birational model of them does. This is not
possible in dimension 2 by Kodaira’s Theorem.
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A deeper reason is the fact that birational geometry in higher di-
mension is much more complicated than in dimension 2. In fact, bi-
rational transformations do not affect deeply the cohomology ring of a
surface, while in higher dimensions, the cohomology of a codimension
≥ 2 subvariety Z ⊂ V might be non trivial and thus strongly affect the
cohomology ring of the variety V under blowing-up along Z.

The reason why we mention this effect on the cohomology ring, is
that this is the study of the cohomology ring of the variety X described
above, together with arguments from Hodge theory, which allowed us
to prove that this X satisfies the much stronger conclusion of Theorem
2, as explained below.

In this paper, we not only show that the answer to the birational
Kodaira problem is again no, but also prove the following much stronger
topological result:

Theorem 3. In any even dimension ≥ 10, there exist compact Kähler

manifolds X, such that no smooth compact bimeromorphic model X ′ of

X has the homotopy type of a projective complex manifold.

In this statement, we can in fact replace “homotopy type” with “ra-
tional homotopy type”, or “rational cohomology ring” (see Theorem 5).
Indeed, the whole discussion deals with the Hodge structure on rational
cohomology and the (non)-existence of polarizations on them.

Let us give a sketch of the main ideas leading to the proof of Theorem
3. As in [8], we want to show that a certain Kähler compact manifold X ′

(which will be any birational model of the X constructed in section 1)
does not have the rational cohomology algebra of a projective manifold,
and this is done by showing that, for any Kähler compact manifold Y
with rational cohomology algebra H∗(Y, Q) isomorphic to the one of X ′,
the Hodge structure on the rational cohomology group H2(Y, Q) cannot
be polarized, namely, there does not exist a rational Hodge classe c of
degree 2 on Y such that the form

qc(α, β) :=

∫

Y

cn−2αβ

polarizes the Hodge structure on H2(Y, Q) (cf. [9] I, chapter 7). To get
this, the key point is to show that the rational cohomology ring of Y ,
which has to be compatible with the Hodge decomposition, forces the
existence of an endomorphism of Hodge structures

ψ : H2(Y, Q) → H2(Y, Q)

which acts in an irreducible way. (In application, we will actually work
with a certain sub-Hodge structure, rather than with the whole of H2.)
The endomorphism ψ will be deduced from the cup-product with certain
rational cohomology classes, which will be proved to be Hodge classes
on Y (cf. Lemma 11).
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Finally, if one knows that the Hodge structure on H2(Y, Q) cannot be
trivial, for example by the Hodge index theorem, one concludes from the
existence of ψ that H2(Y, Q) carries no Hodge class, and thus cannot be
polarized. (Actually, this argument will lead to the conclusion that no
Hodge class of degree 2 on Y can polarize a certain sub-Hodge structure
of H2(Y, Q) constructed in Proposition 3.)

A key ingredient to get the existence of ψ is Deligne’s Lemma 9,
which allows to construct certain rational sub-Hodge structures of a
rational Hodge structure Ak, which is the degree k piece of an algebra A∗

endowed with weight l rational Hodge structures on each Al, compatible
with the product. This argument will be used in several places, to
exhibit certain sub-Hodge structures of H2(Y, Q); one of them will be
shown to be made of Hodge classes, thus leading to the construction of
the endomorphism ψ above.

Up to this point, the shape of the argument described above is the
same as the one used in the last section of [8], where we constructed
simply connected examples of Kähler compact manifolds satisfying the
conclusion of Theorem 2.

There are two new geometric ingredients here. First of all, we replace
the blow-up construction (which allowed us to get a complicated coho-
mology ring) by the construction of a certain P1×P1-bundle q : X → B
on a Kähler compact basis B. This P1 × P1-bundle carries interesting
classes, namely the classes c1(Li) where Li := pr∗i (OP(1)), and they will
play an essential role in the construction of the endomorphism ψ above.
Our strategy will be to apply Deligne’s Lemma to show first that for
any birational model X ′ of X and any compact Kähler manifold Y with
rational cohomology algebra isomorphic to that of X ′, q∗H2(B) is a
sub-Hodge structure of H2(Y ) (see Proposition 1 and its consequence
Proposition 3). The classes c1(Li) will then be shown to provide the en-
domorphism ψ of q∗H2(B) needeed to deduce that the Hodge structure
on H2(Y ) cannot be polarized.

Of course, if we were in algebraic geometry, these Hodge classes c1(Li)
would not survive birational transformations, and would not give inter-
esting information on the cohomology of all birational models of X,
as a P1 × P1-bundle is always birationally trivial. The very important
point here is that, as the basis and total space of our P1×P1-bundle are
Kähler manifolds which contain very few closed complex analytic sub-
sets, there are few birational transformations allowed, so that the classes
c1(Li) above are essentially preserved under birational transformations
(cf. Proposition 2).

Acknowledgements. This work was started at Harvard University; I
thank S.-T. Yau for his invitation there and for his interest in the work
[8]. I also thank N. Buchdahl, F. Campana, and S.-T. Yau for asking
the question above.
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1. Construction of examples

We start as in [8], namely, we consider n-dimensional complex tori T
admitting an endomorphism

φT : T → T

satisfying the following property (∗). We can write T as ΓC/(Γ ⊕ Γ′),
where Γ is a rank 2n lattice, ΓC = Γ ⊗ C and Γ′ is a complex subspace
of ΓC of rank n such that

Γ′ ⊕ Γ
′
= ΓC.

Let φ be the endomorphism φT∗ of H1(T, Z) = Γ. Clearly Γ′ has to
be stable under φC, so an eigenvalue of φ cannot be real, unless it has
multiplicity > 1. The condition (∗) is the following:

(∗) The characteristic polynomial of φ (which has integer coefficients),
has 2n distinct roots (the eigenvalues of φ) and its Galois group over Q

acts as the symmetric group of 2n letters on them.

In the sequel, we will need to assume that the dimension n of T is

at least 4. We make now the following construction. Let T̂ be the dual
torus of T , namely

T̂ = Γ∗
C/(Γ∗ ⊕ Γ′⊥).

Geometrically, T̂ is the torus

Pic0(T ) = H1(T, C)/(H1,0(T ) ⊕ H1(T, Z))

which is the group of topologically trivial holomorphic line bundles on
T up to isomorphism.

There exists on T × T̂ the so-called Poincaré line bundle P which is
uniquely characterized by the following properties:

- For any t ∈ T̂ parameterizing a line bundle Lt on T , we have

Lt
∼= P|T×t.

- The restriction P
|0× bT

is trivial.

In fact P is constructed as follows : first of all, its first Chern class

c1(P) ∈ NS(T × T̂ ) := H1,1(T × T̂ ) ∩ H2(T × T̂ , Z)

is the identity

id
H1( bT )

∈ Hom (H1(T̂ , Z), H1(T̂ , Z))

= H1(T, Z) ⊗ H1(T̂ , Z) ⊂ H2(T × T̂ , Z),

which is easily seen to be of Hodge type (1, 1). Next the uniqueness of
P is forced by the conditions

P
|0× bT

∼= ObT
, P|T×0

∼= OT .
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Next, because T admits the endomorphism φT , we also have the line
bundle

Pφ := (φ, Id )∗P.

We now make the following construction: Over T × T̂ , consider the
rank 2 vector bundles

E = P ⊕ P−1, Eφ = Pφ ⊕ P−1
φ

and the corresponding associated projective bundles P(E), P(Eφ). The

two commuting involutions (−Id , Id ) and (Id ,−Id ) of T × T̂ lift to

commuting involutions i, î, resp. iφ, îφ acting on E resp. Eφ, since we
have isomorphisms

(−Id , Id )∗P ∼= P−1, (Id ,−Id )∗P ∼= P−1,

(−Id , Id )∗Pφ
∼= P−1

φ , (Id ,−Id )∗Pφ
∼= P−1

φ ,

which can be made canonical by a choice of trivialization

P|(0,0)
∼= C,

(0, 0) being a fixed point of both (Id ,−Id ) and (−Id , Id ).
The compact Kähler manifold we shall consider is the following: We

start with the fibered product

P(E) ×
T×bT

P(Eφ).

It admits the commuting involutions

(i, iφ), (̂i, îφ)

over (−Id , Id ), (Id ,−Id ) respectively. The quotient Q of P(E) ×
T×bT

P(Eφ) by the group Z/2Z × Z/2Z generated by these involutions is
singular along the non free locus of this action, but the quotient admits
a Kähler compact desingularization. For example, one can start by
desingularizing the quotient P(E)×

T×bT
P(Eφ)/(i, iφ) by blowing-up the

fixed locus of (i, iφ) and then taking the quotient of the blown-up variety
by the natural involution which lifts (i, iφ). The result is smooth Kähler

and by naturality (̂i, îφ) acts on it as an involution. Then one can

desingularize in the same way the quotient of this new variety by (̂i, îφ).
Our compact Kähler manifold X will be any Kähler desingularization

of this quotient.
Note that, if K is the Kummer variety of T , namely the desingulariza-

tion of the quotient of T by the −Id involution, obtained by blowing-up

the images of the 2-torsion points of T , and similarly K̂ is the Kummer

variety of T̂ , then over K0 × K̂0, X is a P1 ×P1-bundle, where K0 is the
open set T0/ ± Id of K, with

T0 := T r {2-torsion points},

and similarly for K̂0.
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The next sections will be devoted to the proof of the following The-
orem:

Theorem 4. Let X ′ be any compact complex manifold bimeromor-

phically equivalent to X. Then X ′ does not have the homotopy type of

a complex projective manifold.

2. Some results on the cohomology ring of X ′

We plan to show in fact the following slightly stronger result:

Theorem 5. Let X ′ be any compact complex manifold bimeromorphi-

cally equivalent to X, and let Y be a Kähler compact manifold. Assume

there is an isomorphism of graded algebras:

γ : H∗(Y, Q) ∼= H∗(X ′, Q).

Then Y is not projective.

In other words, Theorem 4 is true for rational homotopy type rather
than homotopy type, since it is known that the rational homotopy type
of a compact simply connected Kähler manifold is determined by its
rational cohomology algebra (see [4]).

This section will be devoted to the study of the cohomology ring of
any compact complex manifold X ′ given as in Theorem 5. The proof of
Theorem 5 will be given in the next section, following the same line as
[8], section 3.

Recall that X admits a holomorphic map

q : X → (T/ ± Id ) × (T̂ / ± Id ),

obtained by composing the desingularization map

X → P(E) ×
T×bT

P(Eφ)/〈(i, iφ), (̂i, îφ)〉

with the natural map

P(E) ×
T×bT

P(Eφ)/〈(i, iφ), (̂i, îφ)〉 → T × T̂ /〈(−Id , Id ), (Id ,−Id )〉.

For simplicity of notations, we shall assume in the sequel that our X in
section 1 has been chosen so that q extends to a holomorphic map

q : X → K × K̂,

which can always be achieved by a bimeromorphic transformation.

Lemma 1. Let ψ : X ′
99K X be any bimeromorphic map. Then q ◦ψ

is holomorphic.

Proof. The complex manifold T × T̂ does not contain any closed com-

plex curve. Indeed, it suffices to prove this for T or T̂ . Now, the co-
homology class [C] of such a curve would be a non zero Hodge class of

degree 2n − 2 on T , resp. T̂ , or equivalently, a non-zero Hodge class in
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H2(T̂ , Q), resp. H2(T, Q). But in [8], Remark 3, we proved that the
existence of φT , resp. φbT

satisfying property (∗) of section 1 prevents
the existence of such a Hodge class.

It follows that the quotient (T/ ± Id ) × (T̂ / ± Id ) does not contain
any rational curve, and by desingularization of meromorphic maps with
value in compact complex manifolds, this is enough to conclude that
q ◦ ψ has to be holomorphic. q.e.d.

It follows from Lemma 1 that H∗(X ′, Q) contains a subalgebra

A∗ := (q ◦ ψ)∗H∗((T/ ± Id ) × (T̂ / ± Id ), Q)

which is isomorphic to H∗((T/ ± Id ) × (T̂ / ± Id ), Q). Note that this
last algebra is isomorphic to

H∗(T/ ± Id , Q) ⊗ H∗(T̂ / ± Id , Q),

and that H∗(T/ ± Id , Q) = Heven(T, Q) (and similarly for T̂ ).
We shall denote by A∗

1, resp. A∗
2, the subalgebra (q◦ψ)∗H∗((T/±Id )

×0, Q), resp. (q ◦ ψ)∗H∗(0 × (T̂ / ± Id ), Q).
Next, we note that the cohomology of X ′ in degree 2 is generated

over Q by A2 and by degree 2 Hodge classes. Indeed, this is true for X,
because X contains a Zariski open set which is a P1 × P1-bundle over

K0 × K̂0, and this implies easily that H2,0(X) = H0(X, Ω2
X) is equal to

q∗H2,0(K × K̂) = q∗H2,0((T/ ± Id ) × (T̂ / ± Id )).

Next, this property is invariant under meromorphic transformations;
hence if it is true for X, it is true for X ′.

Now let D ⊂ H2(X ′, Q) be the subspace generated by degree 2 Hodge
classes. So we have

H2(X ′, Q) = D ⊕ A2,(2.1)

because, by [8], Remark 3, we know that the presence of the endomor-
phism φT of T satisfying property (∗) of section 1 implies that H2(T, Q)

has no non-zero Hodge class, and similarly for T̂ . Furthermore, we have
by definition

A2 = A2
1 ⊕ A2

2.(2.2)

For α ∈ H2(X ′, C), let

α = αD + α′, α′ = α1 + α2,

be its decompositions given by (2.1), (2.2).
A key role will be played by the following Proposition 1:
We consider the algebraic subset Z ⊂ H2(X ′, C) defined as

Z = {α ∈ H2(X ′, C), α2 = 0 in H4(X ′, C)}.

Z contains the algebraic subsets Z1, Z2 defined as

Z1 = {α ∈ H2(X ′, C), α2 = 0, α2
1 = α1αD = α2

D = 0 in H4(X ′, C)},
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resp.

Z2 =
{

α ∈ H2(X ′, C), α1 = 0, α2
2 = α2αD = α2

D = 0 in H4(X ′, C)
}

.

Proposition 1. Any irreducible component of Z1 (resp. Z2) contain-

ing

Z1,0 := Z1 ∩ {α, αD = 0}

(resp. Z2,0 := Z2 ∩ {α, αD = 0}) is an irreducible component of Z.

Proof. The condition α2 = 0 writes as

α′2 + 2αDα′ + α2
D = 0.(2.3)

Now we observe that α2
D belongs to Hdg4(X ′) ⊗ C, where

Hdg4(X ′) := H4(X ′, Q) ∩ H2,2(X ′).

Similarly, because the Hodge structure on D is trivial, that is purely
of type (1, 1), αDα′ belongs to N2H

4(X ′) ⊗ C, where N2H
4(X ′) is the

maximal rational sub-Hodge structure of H4(X ′, Q) which is of Hodge
level 2.

(Here we recall that the level of a weight k Hodge structure H, HC =
⊕p+q=kH

p,q, is the integer

Max {p − q, Hp,q 6= 0}.

Thus a level 2 sub-Hodge structure of a weight 4 Hodge structure is a
sub-Hodge structure which has no (4, 0)-term.)

Equation (2.3) thus implies that α′2 belongs to N2A
4
Q⊗C, where again

N2 means that we consider the maximal rational sub-Hodge structure
of level 2.

Next we have the Künneth decomposition:

A4
Q = A4

1Q ⊕ A2
1Q ⊗ A2

2Q ⊕ A4
2Q,(2.4)

which is a decomposition into sub-Hodge structures of weight 4. We
have the following:

Lemma 2. A4
1Q and A4

2Q do not contain non trivial sub-Hodge struc-

ture of Hodge level 2.

Proof. We use the fact that n ≥ 4, so that A4
1Q and A4

2Q are of Hodge

level 4. Next we use the assumption (*) satisfied by φ to conclude that

φ∗
T acts in an irreducible way on

∧4 H1(T, Q) = A4
1Q, and since the

action is via morphisms of Hodge structures, it must preserve N2A
4
1Q.

Hence, because N2A
4
1Q 6= A4

1Q, we conclude that N2A
4
1Q = 0 and simi-

larly N2A
4
2Q = 0. q.e.d.
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From the fact that α′2 = α2
1 + 2α1α2 + α2

2 ∈ N2A
4
Q ⊗ C, from the

decomposition (2.4) into sub-Hodge structures and from Lemma 2, we
conclude that

α2
1 = 0, α2

2 = 0.

Thus our initial equation (2.3) becomes

2α1α2 + 2αDα′ + α2
D = 0.(2.5)

This equation implies as already noticed that α1α2 belongs to the
space

N2(A
2
1Q ⊗ A2

2Q) ⊗ C.

In fact one can say more: indeed, note that the Hodge structure on

D · A2
Q + D2 ⊂ H4(X ′, Q)

is the quotient of a direct sum of Hodge structures of level 2 isomorphic
either to A2

1Q or to A2
2Q or to a trivial Hodge structure.

Thus condition (2.5) implies that α1α2 has in fact to belong to the
space

N ′
2(A

2
1Q ⊗ A2

2Q) ⊗ C,

where N ′
2 means the maximal sub-Hodge structure of level 2, which is a

subquotient of a sum of copies of A2
1Q or A2

2Q or a trivial Hodge structure.

On the other hand, the Hodge structures on A2
1Q or A2

2Q are simple,
that is they do not contain any non-trivial sub-Hodge structure. To see
this last point, assume that there is a proper non-zero simple sub-Hodge
structure

H ⊂ H2(T, Q).

As the endomorphism of Hodge structure φ∗
T acts transitively on

H2(T, Q), it follows that H2(T, Q) must then be isomorphic to a sum
of copies of H,

∃k > 1, H2(T, Q) ∼= Hk.

But then H2(T, Q) admits a projector which is an endomorphism of
Hodge structure. This contradicts the fact, noted at the end of the
proof of Lemma 4 below, that the algebra End H2(T, Q) is generated
by φ∗

T , and thus does not contain projectors by condition (∗).
Note also that the Hodge structures on A2

1Q and A2
2Q are not isomor-

phic, as shown by Lemma 3 below.
Thus it follows that N ′

2(A
2
1Q ⊗ A2

2Q) is in fact equal to the maximal

sub-Hodge structure of level 2 of A2
1Q ⊗ A2

2Q, which is a sum of copies

of A2
1Q or A2

2Q or a trivial Hodge structure.
We have the following Lemma:

Lemma 3. There are no non zero morphisms of Hodge structures

(of bidegree (1, 1)) from A2
1Q or A2

2Q to A2
1Q ⊗ A2

2Q.
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Admitting this Lemma, we conclude that in fact α1α2 has to belong
to

Hdg(A2
1Q ⊗ A2

2Q) ⊗ C,

where Hdg means the subspace of rational Hodge classes. We have next
the following Lemma, the proof of which we shall also postpone:

Lemma 4. There are (up to a coefficient) finitely many elements

β ∈ Hdg(A2
1Q ⊗ A2

2Q) ⊗ C

which are of rank 1, that is of the form α1α2 as above.

We then conclude as follows: from the above analysis, we conclude
that for α ∈ Z, we have either α1 6= 0, α2 6= 0 and then α1α2 has to be
proportional to one of the finitely many β of Lemma 4, or one of α1, or
α2 has to be 0.

We claim that in this last case, α belongs to Z2 or Z1 respectively.
Indeed, we know that in any case

α2
1 = 0, α2

2 = 0.

Assume α2 = 0. Equation (2.5) thus becomes:

2αDα1 + α2
D = 0.

But this implies that
α1αD = 0, α2

D = 0.

Indeed, α2
D belongs to Hdg4(X ′) ⊗ C while α1αD belongs to the space

N ′′
2 H4(X ′, Q) ⊗ C,

defined as the maximal sub-Hodge structure of H4(X ′, Q) isomorphic to
a subquotient of some power of A2

1Q. By the same simplicity argument

as before, N ′′
2 H4(X ′, Q)⊗C is also the maximal sub-Hodge structure of

H4(X ′, Q) isomorphic to some power of A2
1Q. But the intersection

Hdg4(X ′) ∩ N ′′
2 H4(X ′, Q)

has to be zero, since there is no non zero Hodge class in A2
1Q. Thus also

Hdg4(X ′) ⊗ C ∩ N ′′
2 H4(X ′, Q) ⊗ C

has to be 0. Hence we proved that 2αDα1 + α2
D = 0 implies that

α1αD = 0, α2
D = 0.

In conclusion, we proved that Z is the set-theoretic union of Z1, Z2,
and of a set which projects to a finite set of lines in A2

1C and A2
2C.

Let now Z ′
1 be an irreducible component of Z1 which contains Z1,0 ⊂

A2
1C. Suppose it is not an irreducible component of Z. This means

that there exists an irreducible component Z ′ of Z containing Z ′
1, not

contained in Z1, such that Z ′ r Z ′
1 is dense in Z ′. So Z ′ r Z ′

1 has
to project, via the projection to A2

1C, to a locally closed subvariety of
A2

1C whose closure contains Z1,0. As dimZ1,0 ≥ 4n − 3, because A∗
1 is
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isomorphic to
∧even Γ∗, this contradicts the fact that Z ′ r Z ′

1 has to be
contained in the union of Z2, which projects to 0 in A2

1C, and of a set
which projects to a finite union of lines in A2

1C. Thus Proposition 1 is
proved, assuming Lemmas 3 and 4. q.e.d.

Proof of Lemma 3. Recall that

A2
1Q =

2∧
H1(T, Q) ∼=

2∧
Γ∗

Q,

A2
2Q =

2∧
H1(T̂ , Q) ∼=

2∧
ΓQ.

We have the endomorphisms φT , φbT
acting respectively on the com-

plex tori T and T̂ , and the induced action φ∗
T , φ∗

bT
on H2(T, Q), resp.

H2(T̂ , Q), identify to ∧2tφ, ∧2φ respectively.
Let λ1, . . . , λ2n be the 2n-eigenvalues of φ on ΓC. Let e1, . . . , e2n be

a corresponding basis of eigenvectors of ΓC, and let e∗i be the dual basis
of Γ∗

C. We choose the ordering in such a way that Γ′ (see section 1) is

generated by e1, . . . , en. In other words, ei ∈ H1(T̂ , C) have Hodge type
(1, 0) for i ≤ n and e∗i ∈ H1(T, C) have Hodge type (1, 0) for i > n.

We want to study the Hodge classes in

A2∗
1,Q ⊗ A2

1,Q ⊗ A2
2,Q

=
2∧

ΓQ ⊗
2∧

Γ∗
Q ⊗

2∧
ΓQ,

which we consider as a weight 6 Hodge structure, so the classes we
search are the rational classes of Hodge type (3, 3).

This space

S := Hdg(
2∧

ΓQ ⊗
2∧

Γ∗
Q ⊗

2∧
ΓQ)

is stable under the action of the three commuting morphisms of Hodge
structures

∧2φ ⊗ Id ⊗ Id , Id ⊗ ∧2tφ ⊗ Id , Id ⊗ Id ⊗ ∧2φ.

It follows that the complexified space SC is generated by eigenvectors
for these actions, namely elements of the form

ei ∧ ej ⊗ e∗k ∧ e∗l ⊗ er ∧ es.(2.6)

For a, b, c ∈ Z, consider the endomorphism

Φabc := (∧2φ)a ⊗ (∧2tφ)b ⊗ (∧2φ)c

of
∧2 ΓQ ⊗

∧2 Γ∗
Q ⊗

∧2 ΓQ. Φabc is diagonal in the basis given by the

elements (2.6), with corresponding eigenvalues

(λiλj)
a(λkλl)

b(λrλs)
c.
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The Galois group of the field K = Q[λ1, . . . , λ2n] over Q acts on the λi

and has to leave stable the set Eabc of eigenvalues of Φabc on S, since S
is defined over Q. On the other hand, we know that this Galois group
is the symmetric group S2n on 2n letters acting on the λi’s. Thus we
conclude that if

(λiλj)
a(λkλl)

b(λrλs)
c ∈ Eabc,

and σ ∈ S2n, then also

(λσ(i)λσ(j))
a(λσ(k)λσ(l))

b(λσ(r)λσ(s))
c ∈ Eabc.

But for an adequate choice of a, b, c, the map

({i, j}, {k, l}, {r, s}) 7→ (λiλj)
a(λkλl)

b(λrλs)
c

is injective. Thus we conclude that if (2.6) belongs to SC, so does

eσ(i) ∧ eσ(j) ⊗ e∗σ(k) ∧ e∗σ(l) ⊗ eσ(r) ∧ eσ(s).(2.7)

As SC is contained in the (3, 3)-part of

A2∗
1,C ⊗ A2

1,C ⊗ A2
2,C

we see that (2.7) has to be of Hodge type (3, 3) for any permutation
σ ∈ S2n.

But as n ≥ 4, it is immediate that we can always find σ in such a
way that (2.7) has Hodge type (4, 2) (eg choose i, j, r, s in {1, . . . , n}).

Thus an element (2.6) in

Hdg

(
2∧

ΓQ ⊗
2∧

Γ∗
Q ⊗

2∧
ΓQ

)
⊗ C

does not exist, which proves the lemma. q.e.d.

Proof of Lemma 4. We study the space

Hdg
(
A2

1Q ⊗ A2
2Q

)
⊗ C

exactly as in the previous proof. The space A2
1Q ⊗ A2

2Q identifies to

2∧
Γ∗

Q ⊗
2∧

ΓQ

as Hodge structures, where the e∗i ∈ Γ∗
C have Hodge type (1, 0) for i > n,

while the ei ∈ ΓC have Hodge type (1, 0) for i ≤ n.
Again, the space S := Hdg(A2

1Q ⊗ A2
2Q) ⊗ C, being stable under

∧2tφ ⊗ Id and Id ⊗ ∧2φ, has to be generated by eigenvectors for both
of these commuting endomorphisms, that is elements of the form :

e∗i ∧ e∗j ⊗ ek ∧ el.
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Because this space is defined over Q, we conclude as in the previous
proof that it has to be stable under the action of S2n, which means
that for any permutation σ of 1, . . . , 2n,

e∗σ(i) ∧ e∗σ(j) ⊗ eσ(k) ∧ eσ(l)

has to be of type (2, 2). Now this implies that up to permuting i and
j, one must have i = k, j = l. Indeed, if the four indices are distinct,
by changing them by some σ ∈ S2n, we may arrange that e∗

σ(i) ∧ e∗
σ(j) ⊗

eσ(k)∧eσ(l) has Hodge type (4, 0), and if eg i = k but j 6= l, by changing
them by some σ ∈ S2n, we may arrange that e∗

σ(i) ∧ e∗
σ(j) ⊗ eσ(i) ∧ eσ(l)

has Hodge type (3, 1). Hence we have proved that Hdg(A2
1Q⊗A2

2Q)⊗C

is contained in the space generated by the elements e∗i ∧ e∗j ⊗ ei ∧ ej .

(In fact it has to be equal to the space generated by these elements,
which is nothing but the algebra generated over C by φ∗

bT
, and is indeed

generated by Hodge classes.)
As φ∗

bT
is diagonalizable with distinct eigenvalues, it is then clear that

this C-algebra contains (up to a scalar) only finitely elements of rank 1,
namely the elements above. q.e.d.

Proposition 1 is now fully proved. Our next technical Lemma will be
the following:

Lemma 5. Let D1 ⊂ D be defined as

D1 = {αD ∈ D, αDα1 = 0 in H4(X ′, Q), ∀α1 ∈ A2
1Q}.

Then, if αD ∈ D ⊗ C satisfies αDα1 = 0 for one non zero α1 ∈ A2
1C,

one has αD ∈ D1 ⊗ C.

Proof. First of all, note that if

ψ′ : X ′′ → X ′

is a proper surjective holomorphic map, with X ′′ smooth, and the result
is true for X ′′, with D replaced by the space Hdg2(X ′′) and A2

1Q by

ψ′∗A2
1Q, then it is also true for X ′.

Indeed, such a map ψ′ induces an injective morphism ψ′∗ of cohomol-
ogy algebras, which sends D in the space of Hodge classes of degree 2
on X ′′.

Recall now that X ′ is bimeromorphic to a quotient of the P1 × P1-
bundle

W := P(E) ×
T×bT

P(Eφ)
q̃
→ T × T̂

over T × T̂ . Hence there is a dominant meromorphic map from W to
X ′. Note that this map is invariant under the two involutions (i, iφ)

and (̂i, îφ) acting on W .
Using Hironaka’s desingularization theorem and the previous obser-

vation, we can thus reduce to the case where X ′ is deduced from W
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by a sequence of blow-ups, and where the D is replaced with the set of
Hodge classes generated by exceptional divisors and by Hodge classes
on W invariant under (i, iφ) and (̂i, îφ). We first prove that the result
is true for W , with D the space of Hodge classes on W invariant under
(i, iφ) and (̂i, îφ), and A1 replaced with q̃∗pr∗1H

2(T ). The cohomology

of degree 2 of W is a free module over the cohomology of T × T̂ gener-
ated by H∗(P1 × P1, Q). The space of degree 2 Hodge classes D on W

invariant under (i, iφ) and (̂i, îφ) is the sum of two spaces, namely D0

which has rank 2 and is isomorphic by restriction to H2(P1×P1, Q) and
D1 which is isomorphic via q̃∗ to the set of degree 2 Hodge classes in

H2(T × T̂ , Q) invariant under (Id ,−Id ) and (−Id , Id ). We saw already
that D1 = 0. We conclude from this that the product map

D ⊗ q̃∗pr∗1(H
2(T, Q) → H4(W, Q)

is injective, so that there is in fact nothing to prove for W .
It remains now only to prove that if the statement is true for W ,

it is true for any complex manifold obtained by successive blow-ups of
W along smooth centers. This is proved by induction on the number
of blow-ups. Assume it is true for Wi and let τ : Wi+1 → Wi be the
blow-up of a smooth irreducible center Z ⊂ Wi. Then the set of degree
2 Hodge classes Di+1 on Wi+1 is generated by τ∗Di and the class eZ of
the exceptional divisor EZ . Now, the study of the cohomology ring of
Wi+1 (see [9] I, 7.3.3) shows that if there is an equality

eZτ∗α = 0, modulo τ∗H∗(Wi, C)

then in fact eZτ∗α = 0 in H∗(Wi+1, C).
Now suppose there is a relation αDα = 0 in H∗(Wi+1, C), where

αD ∈ Di+1 ⊗ C and α ∈ q̃∗pr∗1H
2(T, C). Writing

αD = µeZ + α′
D,

where µ ∈ C and α′
D ∈ τ∗Di⊗C, we conclude using the previous remark

that
µeZα = 0 in H∗(Wi+1, C),

that is, either µ = 0, in which case we can apply the result for Wi, or

eZα = 0 in H∗(Wi+1, C).

Since multiplication by the Hodge class eZ is a morphism of Hodge
structures from H2(T, Q) to H4(Wi+1, Q), its kernel is a sub-Hodge
structure of H2(T, Q). So this map is either injective or 0, since the
Hodge structure on H2(T, Q) is simple, as already noticed before.

The conclusion is that, if there is one non-zero α satisfying αDα = 0
in H∗(Wi+1, C) with a coefficient µ 6= 0, we find that eZα′ = 0 in
H∗(Wi+1, C), for any α′ ∈ q̃∗pr∗1H

2(T ×0, Q), and that furthermore the
equality αDα = 0 reduces to the equality α′

Dα = 0, which holds already
in H∗(Wi, C). Hence the result is proved by induction. q.e.d.
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We will need also the following result.

Lemma 6.

a) For any d ∈ D ⊗ C, β ∈ A4n−2
C ⊂ H4n−2(X ′, C), one has

d3β = 0 in H4n+4(X ′, C) = C.

b) The complex subspace D ⊗ C ⊂ H2(X ′, C) is an irreducible com-

ponent of the algebraic set

Z ′ = {d ∈ H2(X ′, C), d3β = 0, ∀β ∈ A4n−2
C }.(2.8)

Proof. D is made of Hodge classes. So for any d ∈ D, the map

α 7→ d3α ∈ H4n+4(X ′, Q) = Q

is a Hodge class in (A4n−2
Q )∗ = A2

Q. But we already know that A2
Q has

no non zero Hodge classes. This proves a).
Let Z ′

1 ⊂ H2(X ′, C) be an irreducible component of the algebraic
subset Z ′ of (2.8) containing strictly D⊗C. Choose any point d ∈ D⊗C

and let
D′

C := TZ′,d ⊂ H2(X ′, C).

Since
D ⊕ A2

Q = H2(X ′, Q),

and D⊗C ⊂ D′
C, where the inclusion is strict, there must be a non-zero

element depending on d

αd ∈ D′
C ∩ A2

C.(2.9)

As αd ∈ TZ′,d, it has to satisfy the property that for any β ∈ A4n−2
C ,

one has

d2αdβ = 0 in H4n+4(X ′, C).(2.10)

We get a contradiction as follows: since X ′ is in the class C, that is
bimeromorphically equivalent to a Kähler compact manifold, and the
map

q ◦ ψ : X ′ → (T/ ± Id ) × (T̂ / ± Id )

is dominating with 4-dimensional fiber, there is a µ ∈ H2(X ′, C) such
that

(q ◦ ψ)∗µ
2 6= 0 in H0((T/ ± Id ) × (T̂ / ± Id ), C) ∼= C.

(Here we should work with K × K̂ and desingularize the map

q ◦ ψ : X ′
99K K × K̂

to be more rigorous on the definition of (q ◦ ψ)∗.)
Now, write µ = d1 + µ′, with d1 ∈ D ⊗ C and µ′ ∈ A2

C. Then

µ2 = µ′2 + 2d1µ
′ + d2

1,

so that for any α ∈ A2, β ∈ A4n−2,

µ2αβ = (µ′2 + 2d1µ
′ + d2

1)αβ = d2
1αβ.
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Choose for d the element d1 above, and introduce αd1
as in (2.9). Now,

because H2((T/±Id )×(T̂ /±Id ), C) and H4n−2((T/±Id )×(T̂ /±Id ), C)
are dual via the cup-product and the isomorphism

H4n((T/ ± Id ) × (T̂ / ± Id ), C) = C,

there exists a β ∈ H4n−2((T/ ± Id ) × (T̂ / ± Id ), C) such that

αd1
β 6= 0 in H4n((T/ ± Id ) × (T̂ / ± Id ), C).

Thus, as (q ◦ ψ)∗µ
2 = 1, we have:

µ2αd1
β 6= 0 in H4n+4(X ′, C).

But we have just seen that

µ2αd1
β = d2

1αd1
β.

The left hand side is non zero, while the right hand side vanishes by
(2.10), which proves b) by contradiction. q.e.d.

We conclude this section with the proof of a proposition concerning
the geometry of the bimeromorphic map ψ : X ′

99K X, which will be
essential in the sequel. Recall that we proved that the meromorphic
map

q ◦ ψ : X ′
99K (T/ ± Id ) × (T̂ / ± Id )

is in fact holomorphic. Let X ′
0 := (q ◦ ψ)−1(K0 × K̂0).

Proposition 2. There exists a dense Zariski open set U ⊂ K0 × K̂0

such that denoting

X ′
U := (q ◦ ψ)−1(U), XU := q−1(U),

the induced meromorphic map

ψ : X ′
U 99K XU

is holomorphic.

In order to prove this proposition, we need to establish a few lemmas

saying that T ×T̂ and P(E)×
T×bT

P(Eφ) contain very few closed analytic
subsets. They will be needed also later on in section 3.

Lemma 7. The only closed irreducible positive dimensional proper

analytic subsets of T × T̂ are of the form x× T̂ , x ∈ T , or T ×y, y ∈ T̂ .

Proof. Indeed, note first that T and T̂ do not contain positive dimen-
sional proper analytic subsets. This is because they both are simple tori
which are not projective (see [8]), as guaranteed by the existence of φT

and φbT
.

It follows that if Z ⊂ T × T̂ is positive dimensional proper irreducible

and not of the above form, then it must be étale over both T and T̂ which

implies that the rational Hodge structures on H1(T, Q) and H1(T̂ , Q)
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are isomorphic. But this is not the case, as a consequence of Lemma 3.
q.e.d.

Lemma 8. The only irreducible proper closed analytic subsets of

P(E) which dominate T × T̂ are the images Σ1, Σ2 of the two natu-

ral sections σ1, σ2 of P(E) corresponding to the splitting

E = P ⊕ P−1,

and similarly for P(Eφ).

Proof. Indeed, let Z ⊂ P(E) be an hypersurface dominating T × T̂ .

Let us denote by e : Z → T × T̂ the generically finite map. Note that

because of the description above of the proper analytic subsets of T × T̂ ,
Z has to contain a dense Zariski open set Z0 which is an étale cover of

a Zariski open set U ⊂ T × T̂ , where the complementary set of U is an

union of analytic subsets of the form x × T̂ or T × y.
Next Z induces a section of the induced P1-bundle P(E)Z := e∗P(E).

Such a section is given by a line bundle L over Z and a surjective map

E∗ = e∗P ⊕ e∗P−1 → L.

If one of the two induced maps

e∗P → L, e∗P−1 → L

is zero, then Z has to be contained in Σ1 or Σ2. Otherwise, we find that
both e∗P−1⊗L and e∗P⊗L have non-zero sections. Note that, because

Z0 is an étale cover of an open set of T × T̂ whose complementary set
has codimension ≥ 2, some power L⊗k, k > 0 is equal to e∗(K) on Z0,

for some line bundle K on T × T̂ . Furthermore, both line bundles

e∗P−k ⊗ L⊗k = e∗(P−k ⊗K)

and

e∗P⊗k ⊗ L⊗k = e∗(P⊗k ⊗K)

have non-zero sections on Z0. It then follows that for some m > 0, there
are non-zero sections of

P−km ⊗K⊗m, P⊗km ⊗K⊗m

on the open set U , hence on T×T̂ itself. But since T×T̂ does not contain
hypersurfaces, these sections do not vanish anywhere, from which one
concludes that P−km is isomorphic to Pkm, which is not true since there
cohomology classes are different. This proves the Lemma for P(E) and
the result for P(Eφ) follows. q.e.d.
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Corollary 1.

a) The only irreducible codimension 1 analytic subsets Z of

P(E) ×
T×bT

P(Eφ)

which dominate T × T̂ are of the form pr−1
1 Σi, i = 1, 2 or pr−1

2 Σφ
i ,

i = 1, 2.
b) The only irreducible codimension 2 analytic subsets of

P(E) ×
T×bT

P(Eφ)

which dominate T × T̂ are complete intersections

pr−1
1 Σi ∩ pr−1

2 Σφ
j , i = 1, 2, j = 1, 2.

Proof. a) Let L := O(Z), and let H = pr∗1(OP(E)(1)). Then we have

L = H⊗α ⊗ pr∗2K,

for some line bundle K on P(Eφ). Thus we have

R0pr2∗L = Symα(π∗E∗) ⊗K = Symα(π∗P ⊕ π∗P−1) ⊗K,

where π : P(Eφ) → T × T̂ is the structural map. Here α has to be non
negative, as L has a non zero section.

The non zero section of L defining Z thus gives rise to sections σγγ′

of
π∗P⊗γ ⊗ π∗P−γ′

⊗K,

for γ ≥ 0, γ′ ≥ 0, γ + γ′ = α.
Note that only one σγγ′ can be non zero. Indeed, by Lemma 8, the

divisors of σγγ′ have to be combinations of Σ1φ and Σ2φ and the two
line bundles O(Σ1φ), O(Σ2φ) are combinations of π∗Pφ and OP(Eφ)(1).
Thus, if two sections σγγ′ were non zero, then we would get a non-
trivial relation between π∗Pφ, π∗P and OP(Eφ)(1) on P(Eφ), which is
not possible.

Thus there is only one non zero section σγγ′ . There are now two
possibilities: if the divisor Dγγ′ of σγγ′ is non-empty, then as Z is irre-

ducible and contains pr−1
2 Dγγ′ , Z must be a pull-back, and Lemma 8

gives the result.
Next if the divisor Dγγ′ of σγγ′ is empty, one concludes that the line

bundle K is a pull-back:
K = π∗K′

for some line bundle K′ on T × T̂ . But then, L is also a pull-back:

L = pr∗1L
′

for some line bundle L′ on P(E), and thus Z is equal to pr−1
1 (Z ′), for

some Z ′ ⊂ P(E). Lemma 8 gives then the result.
The proof of b) is obtained by projecting codimension 2 subsets of

P(E) ×
T×bT

P(Eφ) to P(E) and P(Eφ). q.e.d.
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The results above give us correspondingly the description of the codi-
mension 1 and codimension 2 analytic subsets of

Q := P(E) ×
T×bT

P(Eφ)/〈(i, iφ), (̂i, îφ)〉

which dominate K × K̂.
Namely they are the image in Q of the subvarieties described above.
One interesting point is that the two hypersurfaces pr−1

1 Σ1, pr−1
1 Σ2

descend to only one irreducible hypersurface

Σ ⊂ Q,(2.11)

because the two factors in the splitting E = P ⊕ P−1 are exchanged
under i, so that pr−1

1 Σ1, pr−1
1 Σ2 are permuted by 〈(i, iφ), (̂i, îφ)〉. For

the same reason, pr−1
2 Σφ

1 , pr−1
2 Σφ

2 give rise to only one hypersurface Σφ.
Similarly the 4 codimension 2 subvarieties

pr−1
1 Σi ∩ pr−1

2 Σφ
j , i = 1, 2, j = 1, 2

descend to only one irreducible subvariety W of Q, because they are
permuted by the group 〈(i, iφ), (̂i, îφ)〉.

Thus Q, and hence X contain only one irreducible codimension 2

subvariety W which dominates K × K̂.

Proof of Proposition 2. The proof is now immediate from the analysis
above. Starting from X, the only modifications which we can do, whose

center dominates K × K̂, is to blow-up W , because in a quadric, there
is no contractible curve. In the blown-up variety, we have as divisors
the exceptional divisors, the proper transforms of the divisors Σ, Σφ

and they are the only one. Furthermore, the only codimension 2 closed

analytic subset dominating K × K̂ is the union of two copies of W ,
indexed by the choice of one of the divisors Σ, Σφ, since W = Σ ∩
Σφ. The same situation happens each time we blow-up one copy of W
appearing in the previous step.

The key point is now the following: If the map ψ : X ′
99K X is not

defined over the generic point of K×K̂, which we can see as a birational

map between surface bundles over the generic point of K × K̂, then
after a finite sequence of blow-ups of X along codimension 2 subsets

dominating K × K̂, some divisor D ⊂ X̃ in the blown-up variety must

be generically contractible over K × K̂, that is be made of a disjoint

union of rational curves of self-intersection −1 in the generic surface X̃t,
while this divisor D projects to a divisor in X. This follows from the
factorization of birational map between surfaces (see [1]).

But as this divisor dominates K×K̂, it must be one of those described
above, that is a proper transform of Σ, Σφ. The contradiction comes
from the fact that after the blow-up of W , the proper transforms of Σ
and Σφ are families of rational curves of self-intersection −2, and this
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self-intersection can only decrease after further blow-ups. One the other
hand, if we do not blow-up anything, these divisors are families of curves
of self-intersection 0, which do not contract. q.e.d.

3. Proof of Theorem 5

In this section, we assume the hypotheses of Theorem 5, namely,
X ′ is bimeromorphically equivalent to X, and Y is a compact Kähler
manifold such that there exists an isomorphism

γ : H∗(Y, Q) ∼= H∗(X ′, Q)

of graded algebras. We want to prove that Y cannot be projective.
Our argumentation will be based on the analysis of the algebra

H∗(X ′, Q) made in the previous section, and on the following Lemma 9
due to Deligne (see [3], [8], section 3) which was already heavily used
in the last section of [8].

Let B∗ be a finite dimensional graded algebra over Q and assume
that each Bk carries a rational Hodge structure, compatible with the
product, i.e. the product map

Bk ⊗ Bl → Bk+l

is a morphism of Hodge structures. Let Z ⊂ Bk
C be an algebraic subset

defined by homogeneous equations which can be formulated using only
the product structure on B∗. We have in mind, e.g.,

Z = {α ∈ Bk
C, α2 = 0}

or, which will be also used in the sequel, Z ′ = Sing Z, for Z as above.

Lemma 9 (Deligne). For Z as above, let Z1 ⊂ Z be an union of

irreducible reduced components of Z. Assume that the C-vector space

〈Z1〉 generated by Z1 is defined over Q, that is 〈Z1〉 = Z1Q⊗C, for some

Q-vector space Z1Q ⊂ Bk
Q. Then Z1Q is a rational sub-Hodge structure

of Bk
Q.

Our first step is the following (notations are as in the previous sec-
tion):

Proposition 3. Let X ′, Y , γ be as above. Then γ−1(A2
1Q) and

γ−1(A2
2Q) are rational sub-Hodge structures of H2(Y, Q).

Proof. We give the proof for γ−1(A2
1Q); the proof for γ−1(A2

2Q) is
identical.

We have only to explain how to recover the space A2
1C as generated

by a certain algebraic subset of H2(X ′, C) defined using only the alge-
bra structure on H∗(X ′, C), since then, via γ, we will recover similarly
γ−1(A2

1C) ⊂ H2(Y, C) and then by Deligne’s Lemma 9, we will know
that γ−1(A2

1Q) is a sub-Hodge structure of H2(Y, Q).
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We first use Proposition 1. It says that the irreducible components
of the algebraic subset

Z1 = {α1 + d, d ∈ DC, α1 ∈ A2
1C, α2

1 = 0, d2 = 0, α1d = 0}

containing the algebraic subset

Z1,0 := {α ∈ A2
1C, α2 = 0}

are irreducible components of

Z = {α ∈ H2(X ′, C), α2 = 0}.

Next Lemma 5 says us that if we denote by D1 the Q-vector subspace
of H2(X ′, Q) defined as

D1 := {d ∈ D, dα = 0, ∀α ∈ A2
1Q},

the condition
α1d = 0 in H4(X ′, C)

for some
0 6= α1 ∈ A2

1C, d ∈ DC,

implies that d ∈ D1C := D1 ⊗ C.
Using this Lemma, we conclude that the following algebraic subset of

H2(X ′, C),

Z ′
1 = {α1 + d, d ∈ D1C, α1 ∈ A2

1C, α2
1 = 0, d2 = 0},

also satisfies the property that its irreducible components containing
Z1,0 are irreducible components of Z. Note now that the vector space
A2

1C is defined over Q and generated by its algebraic subset Z1,0, because
A∗

1 is the exterior algebra
∧even Γ∗

Q.

Thus, it remains only to show how to recover Z1,0 from Z ′
1. This is

done as follows. Let
D′

1C ⊂ D1C

be the complex vector space generated by the algebraic subset

ZD1
:= {d ∈ D1C, d2 = 0}.

D′
1C is defined over Q, that is

D′
1C = D′

1 ⊗ C

for some rational subspace D′
1 ⊂ H2(X ′, Q), because D1C is, and ZD1

is defined over Q.
If D′

1 = 0, there is nothing to say because then Z ′
1 = Z1,0. In general,

the formula defining Z ′
1 shows that it is the “join” of ZD1

and Z1,0 in
D′

1 ⊕ A2
1.

Assume first that ZD1
6= D′

1C. In this case we recover Z1,0 as a
component of the singular locus of Z ′

1 because the join of two algebraic
sets admits one of these algebraic sets as an union of component of its
singular locus unless the other one is linear. So in this case, we recover
Z1,0 from the algebra structure of H∗(X ′, C) and this is finished.
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It remains only to exclude the possibility that

D′
1 6= 0, ZD1

= D′
1C.(3.12)

This is done by the following argument : assume (3.12) holds. As D′
1 is

a Q-vector space, there would be in particular a non zero real element
d ∈ D ⊂ H1,1

R (X ′) such that

d2 = 0, dα = 0, ∀α ∈ A2
1R.

But there exists also a non-zero

α ∈ A1,1
1R := H1,1

R (X ′) ∩ A2
1R

such that α2 = 0. It follows that the rank 2 real vector space

B := 〈d, α〉 ⊂ H1,1
R (X ′)

satisfies the property:
∀γ ∈ B, γ2 = 0.

But this contradicts the Hodge index theorem (cf. [9] I, 6.3.2) because
X ′ is dominated by a Kähler compact manifold, and it follows that for
some element c ∈ H4n(X ′, R), the intersection form

u 7→ cu2 ∈ H4n+4(X ′, R) = R

has only one positive sign on H1,1
R (X ′), and hence cannot admit a rank

2 real isotropic subspace. Thus (3.12) leads to a contradiction, and the
proposition is proved. q.e.d.

Corollary 2. With the same assumptions and notations, the sub-

space

γ−1(D) ⊂ H2(Y, Q)

is a rational sub-Hodge structure.

Proof. We use Lemma 6, b), which says that D ⊗ C is an irreducible
component of the set

Z ′ = {d ∈ H2(X ′, C), d3β = 0, ∀β ∈ A4n−2
C }.

It follows that γ−1(D) ⊗ C is an irreducible component of the set

γ−1(Z ′) = {d ∈ H2(Y, C), d3β = 0, ∀β ∈ γ−1(A4n−2
C )}.

But we know as a consequence of Proposition 3 that γ−1(A4n−2) is a
rational sub-Hodge structure of H4n−2(Y, Q). Indeed, it is equal to the
degree 4n−2 piece of the subalgebra generated by γ−1(A2) and γ−1(A2)
is a rational sub-Hodge structure of H2(Y, Q).

It follows that its annihilator

γ−1(A4n−2)0 = {δ ∈ H6(Y, Q), δβ = 0, ∀β ∈ γ−1(A4n−2
C )}

is also a rational sub-Hodge structure of H4n−2(Y, Q).
Hence there is an induced rational Hodge structure on the quotient

H6(Y, Q)/γ−1(A4n−2)0
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and we can apply Deligne’s Lemma 9 to the product

H2(Y, Q)⊗3 → H6(Y, Q)/γ−1(A4n−2)0,

which is compatible with the induced Hodge structure: Indeed, for this
product, we have that γ−1(D) ⊗ C is an irreducible component of the
set

Z ′′ = {δ ∈ H2(Y, C), δ3 = 0}.

As γ−1(D) is a rational subspace of H2(Y, Q), Lemma 9 says that it is
a rational sub-Hodge structure of H2(Y, Q). q.e.d.

Proof of Theorem 5. The isomorphism of graded algebras

γ : H∗(Y, Q) ∼= H∗(X ′, Q)

must be compatible up to a coefficient with Poincaré duality, which is
given by the cup-product and isomorphisms

H4n+4(X ′, Q) = Q, H4n+4(Y, Q) = Q.

As γ−1(A2) is a rational sub-Hodge structure of H2(Y, Q), so is

γ−1(A4n−4) ⊂ H4n−4(Y, Q),(3.13)

because it is equal to the degree 4n − 4 piece of the subalgebra of
H∗(Y, Q) generated by γ−1(A2).

Now, the map which is Poincaré dual to the inclusion

A4n−4 ⊂ H4n−4(X ′, Q)

is the map

(q ◦ ψ)∗ : H8(X ′, Q) → H4((T/〈±Id 〉) × (T̂ /〈±Id 〉), Q)

∼= A4
1Q ⊕ A2

1Q ⊗ A2
2Q ⊕ A4

2Q,

where the last isomorphism is given by the Künneth decomposition. We
shall denote by

κ : H4((T/〈±Id 〉 × (T̂ /〈±Id 〉), Q) → A2
1Q ⊗ A2

2Q

the Künneth projector given by the decomposition above.
Applying γ−1, we thus get a projection

H8(Y, Q) → γ−1(A4
1Q) ⊕ γ−1(A2

1Q) ⊗ γ−1(A2
2Q) ⊕ γ−1(A4

2Q)

which must be a morphism of Hodge structures as its transpose (3.13)
is. Composing further with the projection (conjugate via γ to κ)

γ−1(A4
1Q)⊕γ−1(A2

1Q)⊗γ−1(A2
2Q)⊕γ−1(A4

2Q) → γ−1(A2
1Q)⊗γ−1(A2

2Q),

which is also a morphism of Hodge structures because γ−1(A2
1Q) and

γ−1(A2
2Q) are sub-Hodge structures of H2(Y, Q), we get finally a mor-

phism of Hodge structures

H8(Y, Q) → γ−1(A2
1Q) ⊗ γ−1(A2

2Q).
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Restricting it to the sub-Hodge structure γ−1 (D)4 = γ−1 (D4) ⊂
H8(Y, Q) generated by γ−1(D), we finally get a morphism of rational
Hodge structures

πγ : γ−1(D4) → γ−1(A2
1Q) ⊗ γ−1(A2

2Q),

which is conjugate via γ to the restriction of κ ◦ (q ◦ ψ)∗ to D4.
We have now the following two lemmas:

Lemma 10. The image of

κ ◦ (q ◦ ψ)∗ : D4 → A2
1Q ⊗ A2

2Q

contains

Id ∈ Hom (A2
1Q, A2

1Q) ∼= A2
1Q ⊗ A2

2Q

and

φ∗ = ∧2tφ ∈ Hom (A2
1Q, A2

1Q) ∼= A2
1Q ⊗ A2

2Q.

Let now Πγ be the image of πγ .

Πγ = γ−1 ⊗ γ−1(Im κ ◦ (q ◦ ψ)∗) ⊂ γ−1(A2
1Q) ⊗ γ−1(A2

2Q).

Lemma 11.

a) The generic element of Πγ is non-degenerate.

(Here we see u ∈ γ−1(A2
1Q) ⊗ γ−1(A2

2Q) as an element of

Hom (γ−1(A2
2Q)∗, γ−1(A2

1Q))

and non-degenerate means invertible.)
b) The Q-vector subspace Π′

γ of End (γ−1(A2∗
2Q)) generated by the

u−1 ⊗ v, u non-degenerate in Πγ, consists of Hodge classes in

End (γ−1(A2∗
1Q)), (relative to the Hodge structures on γ−1(A2

2Q)

induced by the Hodge structure on H2(Y, Q)).

Assuming these Lemmas, the proof is now concluded as follows.
The two Lemmas together imply that the Hodge structure on

γ−1(A2∗
2Q) admits an endomorphism conjugate to φ∗

T = ∧2tφ. Hence

dually the Hodge structure on γ−1(A2
2Q) admits a morphism conjugate

to ∧2φ.
The proof concludes then exactly as in [8], 3.2: As the action of ∧2φ

is irreducible on A2
2Q, the above implies that either the Hodge structure

on γ−1(A2
2Q) is trivial or it does not contain any Hodge class. The first

case is excluded by a Hodge index argument.
Next, working symmetrically with A2

1Q, we conclude similarly that

the Hodge structure on γ−1(A2
2Q) does not contain any Hodge class.

Thus it follows from Corollary 2 that the only degree 2 Hodge classes
on Y are contained in γ−1(D).
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But we look now at the intersection form

qd =

∫

Y

d4nαβ

for d ∈ γ−1(D), and we conclude that it is zero on γ−1(A2
1Q), because

the same is true for D and A2
1Q on X ′. Thus for no degree 2 Hodge class

d on Y , the sub-Hodge structure γ−1(A2
1Q) ⊂ H2(Y, Q) can be polarized

by qd. Thus by [9], I, 6.3.2, Y cannot be projective. q.e.d.

Proof of Lemma 10. We first reduce to the case where X ′ = X: First of
all, using Lemma 7, we conclude that for any non-empty Zariski open

set U of K0 × K̂0, the restriction map

H4(K0 × K̂0, Q) = H4((T/ ± Id ) × (T̂ / ± Id ), Q) → H4(U, Q)

is an isomorphism. Now we have the commutative diagram:

D4 ⊂ H8(X ′, Q)
restU→ H8(X ′

U , Q)
(q ◦ ψ)∗ ↓ ↓ (q ◦ ψ)U

∗

H4((T/ ± Id ) × (T̂ / ± Id ), Q)
restU∼= H4(U, Q).

(3.14)

We use now Proposition 2 which says that the meromorphic map ψ
is well defined on a Zariski open set X ′

U as above. We thus have a
commutative diagram:

D4
X|XU

ψ∗

U→ D4
|X′

U

qU∗ ↓ ↓ (q ◦ ψ)U∗

H4(U, Q) ∼= H4(U, Q),

where qU , (q ◦ ψ)U denote the restrictions of q, q ◦ ψ to XU , X ′
U re-

spectively. We used here the fact that degree 2 Hodge classes on X,
restricted to XU , pull-back via ψU to degree 2 Hodge classes on X ′,
restricted to X ′

U , which follows from the fact that ψ is meromorphic.
Writing for X the same diagram as (3.14), we conclude that it suffices

to prove the result for X.
Next, we look at the following Cartesian diagram:

q̃ : P(E)0 ×T0×cT0

P(Eφ)0 → T0 × T̂0

e ↓ e ↓

q : X0 → K0 × K̂0

,

where the lower indices 0 denote the restrictions of the projective bun-

dles to T0 × T̂0, the vertical maps denoted by e are the quotient maps,
and the induced map

H4(K0 × K̂0, Q) → H4(T0 × T̂0, Q)

is injective. Here X0 is the Zariski open set of X which is the smooth
part of the quotient Q. Arguing as before, we see that we can replace
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X by X0, and then X0 by its étale cover P(E)0 ×
T0×cT0

P(Eφ)0. Thus

the result for X follows from the following formulas (3.15):
Let Σ, Σφ be the two divisors of (2.11), and let s, sφ ∈ Hdg2(X, Q)

be their cohomology classes. Then we have

q̃∗(e
∗(s3sφ)) = 16Id ∈ Hom (H2(T0, Q), H2(T0, Q))(3.15)

= H2(T0, Q) ⊗ H2(T̂0, Q),

q̃∗(e
∗(ss3

φ)) = 16φ∗ ∈ Hom (H2(T0, Q), H2(T0, Q))

= H2(T0, Q) ⊗ H2(T̂0, Q).

This is computed as follows: let s1, s2 be the classes of the divisors
Σ1, Σ2 of P(E) ×

T0×cT0

P(Eφ) given by the decomposition E = P ⊕

P−1 and similarly let sφ
1 , sφ

2 be the classes of the divisors Σφ
1 , Σφ

2 of

P(E) ×
T0×cT0

P(Eφ) given by the decomposition Eφ = Pφ ⊕ P−1
φ . Then

we have

e∗(s) = s1 + s2, e∗(sφ) = sφ
1 + sφ

2 .

Let h, hφ be respectively c1(OP(E)(1)), c1(OP(Eφ)(1)), or rather their

pull-backs to the fibered product P(E) ×
T0×cT0

P(Eφ). Let p, pφ be the

classes c1(P), c1(Pφ). Then we have

s1 = q̃∗p − h, s2 = −q̃∗p − h,

sφ
1 = q̃∗pφ − hφ, sφ

2 = −q̃∗pφ − hφ.

Thus

e∗(s) = −2h, e∗(sφ) = −2hφ,

and

e∗(s3sφ) = 16h3hφ, e∗(s3
φs) = 16h3

φh.

Applying q̃∗ we conclude that

q̃∗(e
∗(s3sφ)) = −16c2(E), q̃∗(e

∗(s3
φs)) = −16c2(Eφ).

As E = P ⊕ P−1, and Eφ = Pφ ⊕ P−1
φ , it follows that

c2(E) = −p2, c2(Eφ) = −p2
φ.

Finally, since p identifies to

Id ∈ Hom (H1(T̂ , Q), H1(T̂ , Q))

= H1(T, Q) ⊗ H1(T̂ , Q) ⊂ H2(T × T̂ , Q),

we get that p2 = 1
16 q̃∗(e

∗(s3sφ)) identifies to

Id ∈ Hom (H2(T, Q), H2(T, Q))

= H2(T, Q) ⊗ H2(T̂ , Q) ⊂ H4(T × T̂ , Q),
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and similarly p2
φ = 1

16 q̃∗(e
∗(ss3

φ)) identifies to

∧2 φ ∈ Hom (H2(T̂ , Q), H2(T̂ , Q))

= H2(T, Q) ⊗ H2(T̂ , Q) ⊂ H4(T × T̂ , Q).

Thus (3.15) is proved, which concludes the proof of the Lemma. q.e.d.

Proof of Lemma 11. The first statement is obvious by Lemma 10.
Next, because we proved that Πγ is a sub-Hodge structure of

γ−1(A2
1Q) ⊗ γ−1(A2

2Q),

it follows that the space Π′
γ is a sub-Hodge structure of End (γ−1(A2∗

2Q)),

and thus, so is the sub-algebra of End (γ−1(A2∗
2Q)) generated by Π′

γ . On

the other hand, Π′
γ is conjugate via tγ to the corresponding subspace of

End (A2∗
2Q), defined similarly starting from Imκ ◦ (q ◦ ψ)∗|D4 . As D4 is

made of degree 8 Hodge classes on X ′, this last subspace is contained
in the space of endomorphisms of Hodge structures of A2∗

2Q, which has

been computed to be equal to the algebra generated by φbT∗
= ∧2φ (see

proof of Lemma 4).
The key point is that because ∧2φ is diagonalizable, this alge-

bra tensored with C has no nilpotent element. It follows that Π′
γ ⊗

C has no nilpotent element. But as Π′
γ is a sub-Hodge structure of

End (γ−1 (A2∗
2Q)), it follows that it is pure of type (0, 0), that is made

of Hodge classes, because elements of type (−k, k), k > 0 are nilpotent.
q.e.d.
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