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THE COMPACTIFICATION OF THE MODULI SPACE
OF CONVEX RP

2 SURFACES, I

John C. Loftin

Abstract

There is a canonical identification, due independently to the
author and to F. Labourie, of a convex real projective structure
on an orientable surface of genus g and a pair consisting of a con-
formal structure together with a holomorphic cubic differential on
the surface. The Deligne–Mumford compactification of the mod-
uli space of curves then suggests a partial compactification of the
moduli space of convex real projective structures: Allow the Rie-
mann surface to degenerate to a stable nodal curve on which there
is a regular cubic differential. We construct convex real projective
structures on open surfaces corresponding to this singular data
and relate their holonomy to earlier work of Goldman. Also, we
have results for families degenerating toward the boundary of the
moduli space. The techniques involve affine differential geometry
results of Cheng–Yau and C.P. Wang and a result of Dunkel on
the asymptotics of systems of ODEs.

1. Introduction

In [17], Goldman proves that the deformation space Gg of convex
RP

2 structures on an oriented closed surface of genus g ≥ 2 is a cell of
16g−16 real dimensions. He constructs explicit coordinates of the space
based on a Fenchel–Nielsen type pants decomposition of the surface.
In particular, for each boundary geodesic loop in this decomposition,
there is a holonomy map in PGL(3,R), unique up to conjugacy, which
measures how a choice of RP

2 coordinates develops around the loop.
In [26, 28], there is another proof of Goldman’s theorem which in-

troduces new coordinates on G. Using a developing map due to C.P.
Wang [31] and deep results in affine differential geometry of Cheng–Yau
[5, 6], there is a natural correspondence between a convex RP

2 structure
on a surface of genus g ≥ 2 and a pair (Σ, U) of a conformal structure
Σ and a holomorphic cubic differential U on Σ. This shows that Gg
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is the total space of a 5g − 5 complex dimensional vector bundle over
Teichmüller space, and so by Riemann–Roch, Gg is a cell of complex
dimension 8g − 8.

Wang’s formulation does give a way to calculate the holonomy by a
first-order linear system of PDEs, but unfortunately, the data depends
on the solution to a separate non-linear PDE (13) below, and thus it
seems we cannot hope to use this to relate the two coordinate systems.
However, on a non-compact Riemann surface of finite type, we can force
solutions of (13) to behave well near the punctures, and in fact calculate
the holonomy around a loop at each puncture.

Theorem 1. Given a Riemann surface Σ of finite type, and a holo-
morphic cubic differential U on Σ with poles of order 3 allowed at each
puncture. Let Ri be the residue at each puncture. Then, there is an RP

2

structure corresponding to (Σ, U). The RP
2 holonomy type around each

puncture is determined by the Ri.

A more explicit version of this theorem is given below as Theorem
5. The space of all residues R ∈ C maps two-to-one onto the space
of holonomy types if ReR �= 0. These two cases are distinguished by
another of Goldman’s coordinates, the vertical twist parameter, which in
part corresponds to the twist parameter in Fenchel–Nielsen theory. The
vertical twist parameter approaching ∞ roughly corresponds stretching
the RP

2 structure along a neck.

Theorem 2. Given a pair (Σ, U) as above, at a puncture with residue
Ri with ReRi �= 0, the vertical twist parameter of the RP

2 structure at
that puncture is ±∞, the sign being equal to the sign of ReRi.

This theorem combines Propositions 12 and 14 below.
There are natural examples of such pairs (Σ, U) at the boundary of

the total space of the space of cubic differentials over the moduli space of
Riemann surfaces Mg. In particular, at a nodal curve at the boundary
of Mg, regular cubic differentials have poles of order at most 3 at the
nodes, with opposite residues across each side of the node.

Theorem 3. On the total space of the (V-manifold) vector bundle
of regular cubic differentials over Mg, the holonomy type and vertical
twist parameters vary continuously, as long as none on the regular cubic
differentials at a singular curve has residue 0.

This theorem is made more precise below in Theorem 6. In particular,
a mild technical assumption allows us also to handle families of cubic
differentials which approach regular cubic differentials with residue 0.

The proof of these results relies on a fundamental correspondence
due to Cheng–Yau [5, 6], that each convex bounded domain Ω ⊂ RP

n
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may be canonically identified with a hypersurface, the hyperbolic affine
sphere H ⊂ R

n+1 which is asymptotic to the boundary of the cone C(Ω)
over Ω. Any projective group Γ ⊂ PGL(n+ 1,R) which acts on Ω lifts
to a linear group which acts on R

n+1 and takes H to itself, and natural
differential geometric structure descends to any manifold Ω/Γ ≡ H/Γ.
This theory is reviewed in Section 3 below. See also [26, 28].

In dimension n = 2, there is a natural system of first-order PDEs
which develop any hyperbolic affine sphere in R

3 [31, Wang]. (Wang’s
theory is analogous to the more familiar case of minimal surfaces in R

3.)
We give a version of this formulation in Section 4 below. In particular,
given a Riemann surface Σ with conformal metric h, a cubic differential
U over Σ, and a function u so that

(1) ∆u = −4e−2u‖U‖2 + 2eu + 2κ,

there is a system of first-order PDEs (9–10) below which integrate the
structure equations for a hyperbolic affine sphere to give a map from
the universal cover of Σ to a hyperbolic affine sphere H. Moreover,
Cheng–Yau [6] guarantees that if the metric euh is complete, then H is
asymptotic to the boundary of a convex cone C(Ω) for a domain Ω as in
the previous paragraph. So, given (Σ, U) and a function u satisfying (1),
there is a convex RP

2 structure on Σ. Moreover, the first-order PDE
system (9–10) naturally calculates the holonomy of the RP

2 structure
around any loop. This relates the affine differential geometry of Wang
and Cheng–Yau to Goldman’s coordinates on the deformation space G
of convex RP

2 structures. Goldman’s coordinates on the deformation
space of convex RP

2 structures are discussed in Section 2 below.
Wang solved his PDE (1) to find a unique solution on any compact

Riemann surface of genus g ≥ 2. In Section 5, we extend this to a com-
plete hyperbolic Riemann surface Σ of finite type with cubic differential
U which has poles of order 3 at each puncture. We find an Ansatz
metric h on Σ in order to find a solution u to (1) which behaves well
near each puncture. In particular, we construct a barrier to bound u
near each puncture. Then, calculating the holonomy around each punc-
ture involves solving a linear systems of ODEs which is asymptotic to
a constant coefficient system as we approach the puncture. This allows
us to determine the eigenvalues of the holonomy matrix in terms of the
residue R of U (R is the leading coefficient of the Laurent series of U at
the puncture). The actual conjugacy type is more subtle if the eigen-
values are repeated. In particular, a geometric result of Choi [8] rules
out certain holonomy types. See Section 6.

In Section 7, we use Wang’s developing map (9–10) to provide more
information about the structure of the RP

2 structure near the punctures.
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In particular (if the residue R �= 0), along certain paths which approach
the puncture, equations (9–10) restrict to a system of ODEs of the form

∂yX = [B + E(x, y)]X,

where B is a constant matrix and the error term E(x, y) decays expo-
nentially as y → ∞. These equations have been extensively studied,
originally by Dunkel [13]. In Appendix A, we extend estimates on so-
lutions of such systems to the case of a parameter x. In particular, we
can determine that the vertical twist parameter at each such end is ±∞,
the sign agreeing with that of ReR.

Finally, in Section 8, we extend these results to families of pairs
(Σt, Ut), in which Σt tends to a nodal curve at the boundary of the
Deligne–Mumford compactification Mg of the moduli space of Riemann
surfaces, and the cubic differential Ut over Σt tends to a regular cubic
differential over the nodal curve. A regular cubic differential allows poles
of order 3 at either side of the node, and the residues R,R′ at either
side of the node satisfy R = −R′. We first review the analytic theory
of Mg in terms of plumbing coordinates which replace each node by a
thin neck. Our barriers extend across the neck to control a solution ut
to (1). Thereby, the holonomy and vertical twist parameters along this
end behave well in families. (Controlling the vertical twist parameters
in families involves some fairly subtle analysis to fix a natural gauge.
Here the extension of Dunkel’s theorem to systems with parameters in
Appendix A is essential.)

As mentioned above, Goldman worked out the analog of Fenchel–
Nielsen coordinates on Gg [17]. In general, one would like to extend
the rich theory of Teichmüller space to Gg. The symplectic theory is
worked out rather well: There is a natural symplectic form on Gg due
to Goldman [16, 18] which extends the Weil–Petersson symplectic form
on Teichmüller space. Kim [25] has used Goldman’s coordinates to
show that Gg is naturally symplectomorphic to R

16g−16, which extends
a result of Wolpert [34] about Teichmüller space.

Another example of this is provided by Hitchin [24], who finds a
connected component, the Teichmüller component, of the space of rep-
resentations of π1(Σg) into PGL(n,R) for all n. In the case n = 3, the
Teichmüller component is given by the space H0(Σ,K2)⊕H0(Σ,K3) for
a fixed complex structure on Σ. This space may be identified by Gg by
the holonomy representation of the RP

2 structure [10, Choi–Goldman].
In particular, Hitchin extends the theory of Higgs bundles he earlier
used to study Teichmüller space itself in [23] to study representation
spaces into Lie groups. We should remark that François Labourie has
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shown in unpublished work that if the H0(Σ,K2) part of Hitchin’s cor-
respondence is zero, then Hitchin’s cubic differential may be identified
Wang’s cubic differential.

We should also mention that Darvishzadeh–Goldman [12] have con-
structed an analog of the Weil–Petersson metric on Gg which interacts
with the symplectic form to form an almost complex, and indeed, an
almost Kähler structure. It is not clear whether this almost complex
structure is integrable or how it might relate to the complex structure
provided by the pairs (Σ, U).

On the compactified moduli space of Riemann surfaces Mg, there
has been extensive work relating the complex structure of Mg as a V-
manifold with the geometry provided by the hyperbolic metric (i.e. the
Fenchel–Nielsen coordinates). See, in particular, Wolf [32] and Wolpert
[35]. The present work is an attempt to extend this theory to the moduli
space of RP

2 structures. In particular, the space of pairs (Σ, U) of a
Riemann surface Σ of genus g ≥ 2 and a cubic differential U over Σ is
naturally partially compactified to be the total space of a (V-manifold)
vector bundle S → Mg, where the fiber of S is the space of regular
cubic differentials over the possibly singular curve Σ. This provides a
natural complex structure on a partial compactification of the moduli
space of convex RP

2 structures on oriented surfaces of genus g. The RP
2

structure on Σ is the analog of the hyperbolic metric, and we relate this
complex structure on S to the coordinates on Gg given by Goldman. In
this work, we only address the holonomy and twist parameters around
a neck which is being pinched to a node. We hope to address the other
coordinates in Goldman’s chart in future work. Also, we only address
the topological relationship between S and Goldman’s coordinates in
this paper. Eventually, one might be able to study relationship between
the two coordinates real-analytically. This point is already complicated
in the case of Mg [33, Wolf–Wolpert].

There are non-convex RP
2 structures on surfaces, which are classified

by Choi [7, 8, 9].
Also, there is recent work of Benoist on compactifying the space of

faithful representations of a finite-type group ρ : Γ → PGL(n + 1,R)
so that there is a properly convex Γ-invariant domain Ω ⊂ RP

n so that
Ω/ρ(Γ) is compact [2]. This extends the theorem of Choi–Goldman [10]
to higher dimensions.

2. Goldman’s coordinates

An RP
n structure on a manifold M consists of a maximal atlas of

charts in RP
n with transition maps in PGL(n + 1,R). We may also
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call M an RP
n manifold. Note that the straight lines in any coordinate

chart in RP
n are preserved by the transition maps. A path in M which

in any such coordinate chart is a straight line is called an RP
n geodesic.

Also, given an RP
n manifold M and a coordinate chart in RP

n around
a point p, analytic continuation induces a map, the developing map dev
extending the coordinate chart map from the universal cover M̃ of M
(with basepoint p) to RP

n. Also, there is a holonomy homomorphism
hol from π1M to PGL(n+ 1,R) so that ∀γ ∈ π1M ,

dev ◦ γ = hol(γ) ◦ dev.
For any other choice of basepoint and/or coordinate chart, there is a
map g ∈ PGL(n+ 1,R) so that

dev′ = g ◦ dev and hol′(γ) = g ◦ hol(γ) ◦ g−1.

For more details, see e.g. Goldman [17]. In particular, the holonomy
map is unique up to conjugation in PGL(n+ 1,R).
M is a convex RP

n manifold if dev: M̃ �→ RP
n is a diffeomorphism

onto a domain Ω so that Ω is a convex subset of some R
n ⊂ RP

n. M
is called properly convex if in addition Ω is properly contained in some
R
n ⊂ RP

n. In this case, there is a representation hol of Γ = π1M into
PGL(n+1,R) so that Γ acts discretely and properly discontinuously on
Ω. The quotient Ω/Γ is our RP

n manifold M . See e.g., [17] for details.
In [17], Goldman introduced coordinates on the deformation space

of convex real projective structures on a given closed oriented surface
S of genus g ≥ 2. These coordinates are analogous to Fenchel–Nielsen
coordinates on Teichmüller space. We may cut S into 2g − 2 pairs of
pants so that the boundary of each pair of pants is an RP

2 geodesic,
i.e. a straight line in a projective coordinate chart. Around each of
these geodesic loops is a holonomy action, which may be represented
as a matrix H in SL(3,R) once we choose an appropriate frame. The
conjugacy class of this matrix is invariant of our choice and constitutes
the analog of Fenchel–Nielsen’s length parameter. The eigenvalues of
the holonomy matrixH are real, positive, and distinct. So the holonomy
type may be described by the set of eigenvalues

{α1, α2, α3}, αi ∈ R
+, α1α2α3 = 1, αi �= αj for i �= j.

Matrices in SL(3,R) whose eigenvalues satisfy these conditions are
called hyperbolic. Order the eigenvalues αi so that the standard form of
a hyperbolic holonomy matrix is

(2) D(α1, α2, α3) α1 > α2 > α3 > 0
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(Here, D denotes the diagonal matrix.)
There are three fix points of this hyperbolic holonomy matrix: Fix+ =

[1, 0, 0] is attracting, Fix− = [0, 0, 1] is repelling, and Fix0 = [0, 1, 0] is a
saddle fixed point. The holonomy acts on each coordinate line in RP

2,
and these lines split RP

2 into four triangles. Fix one open triangle T
to be the projection of the first octant in R

3 to RP
2. The boundary of

T is formed by three line segments: G+0 connects Fix+ to Fix0, G0−
connects Fix0 to Fix−, and G+− connected Fix+ to Fix−. G+− is called
the principal geodesic segment for the holonomy action. See Figure 1.

T

Fix- Fix+

Fix0

G
0-

G
+0

G
+-

Figure 1. The principal triangle.

We will also need to consider two other types of holonomy which are
degenerate in that they cannot occur in closed RP

2 surfaces. The first is
quasi-hyperbolic holonomy, in which the holonomy matrix is conjugate
to  α1 1 0

0 α1 0
0 0 α3

 for αi > 0, α2
1α3 = 1, α1 �= α3.

Also, we will consider parabolic holonomy, in which the holonomy matrix
is conjugate to  1 1 0

0 1 1
0 0 1

 .

Choi [8] discusses all the types of holonomy which can appear in an
oriented RP

2 surface. We describe the dynamics of quasi-hyperbolic
and parabolic holonomies is Sections 7.5 and 7.6 respectively.
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There are also twist parameters analogous to those in Fenchel–Nielsen
theory. We recall the discussion in Goldman [17]. Around any oriented
simple homotopically non-trivial loop in a compact, convex RP

2 surface
S = S0, the holonomy type is hyperbolic. Inside the homotopy class of
such a loop, there is a unique representative which is a simple closed
principal geodesic loop L. Then we may cut the surface S0 along L to
form a possibly disconnected RP

2 surface Scut
0 with principal geodesic

boundary. For simplicity, we discuss only the case where Scut
0 = Sa0 Sb0

is disconnected. The other case is similar. Choose RP
2 coordinates on

Sa0 near the principal boundary geodesic so that the holonomy matrix H
is in the standard form (2), the principal boundary geodesic L develops
to the standard G+−, and the developed image of Sa0 does not intersect
the interior of T . Then, the other component Sb0 is attached along G+−
by placing the image of its developing map inside T across G+− from
devS̃a0 . (The inverse image of L in the universal cover Ω = S̃0 consists
of not just the line segment G+−, but also a line segment hol(β)G+−
for each β in the coset space π1S0/〈γ〉, where γ is the element in π1S0

determined by L. We must do a similar gluing across each of these line
segments. For simplicity, we focus on just the gluing across G+−.)

The RP
2 structure on the glued surface S0 = Sa0 ∪L Sb0 is then de-

termined by an orientation-reversing projective diffeomorphism J from
a neighborhood Na ⊂ Sa0 of L to a similar neighborhood N b ⊂ Sb0. In
terms of coordinates in the developed image near G+−, J may be rep-
resented as the diagonal matrix D(1,−1, 1), which commutes with the
holonomy matrix H.

Now, the twist parameters come in. For real (σ, τ), consider the twist
matrix

M(σ, τ) = D(e−σ−τ , e2τ , eσ−τ ).

Then, we form a new RP
2 surface Sσ,τ by gluing the neighborhood Sb0 by

the projective involution Jσ,τ = M(σ, τ)J instead of the standard J . See
Figure 2. Let devσ,τ be equal to the standard developing map on S̃a0 as in
the previous paragraph, and extend to all of S̃σ,τ by using the gluing map
Jσ,τ . We adapt Kim’s terminology in [25] to call σ the horizontal twist
parameter and τ the vertical twist parameter. For the RP

2 structure
determined by a hyperbolic Riemann surface, σ corresponds to the usual
Fenchel–Nielsen twist parameter.

Note that as the vertical twist parameter τ → +∞, the image of the
developing map devσ,τ (S̃σ,τ ) expands to include all the interior of the
principal triangle T . In this case, we have attached the entire principal
half-annulus A = T/〈H〉 to Sa0 along the principal boundary geodesic
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Fix- Fix+

Fix0

N
a

JN
a

σ=0

Fix- Fix+

Fix0

N
a

σ>>0

Jσ,τN
a

Figure 2. Twist Parameters.

L. There is only one way to attach this principal half-annulus as an
RP

2 surface without boundary. (Although there are two distinct ways
to put a non-principal geodesic boundary on Sa0 ∪L A—see e.g., Choi–
Goldman [11].)

Similarly, if τ → −∞, devσ,τ (S̃σ,τ ) shrinks so that the glued part of

devσ,τ (S̃b0) vanishes, and devσ,τ (S̃σ,τ ) does not intersect the principal
triangle T . In this case, the principal geodesic segment L is a natural
boundary for the limit RP

2 surface.
Goldman [17] also introduces interior parameters associated to each

pair of pants. See also Kim [25]. We hope to use the methods of this
paper to analyze them in future work.

3. Hyperbolic affine spheres and convex RP
n structures

Recall the standard definition of RP
n as the set of lines through 0 in

R
n+1. There is a map P : R

n+1 \ 0 → RP
n with fiber R

∗. For a convex
domain Ω ⊂ R

n ⊂ RP
n as above, then P−1(Ω) has two connected

components. Call one such component C(Ω), the cone over Ω. Then,
any representation of a group Γ into PGL(n + 1,R) so that Γ acts
discretely and properly discontinously on Ω lifts to a representation into

SL±(n + 1,R) = {A ∈ GL(n + 1,R) : detA = ±1}

which acts on C(Ω). See e.g., [28].
For a properly convex Ω, then there is a unique hypersurface as-

ymptotic to the boundary of the cone C(Ω) called the hyperbolic affine



232 J.C. LOFTIN

sphere [3, 5, 6]. This hyperbolic affine sphere H ⊂ C is invariant un-
der automorphisms of C(Ω) in SL±(n + 1,R). The projection map P
induces a diffeomorphism of H onto Ω. Affine differential geometry pro-
vides SL±(n + 1,R)-invariant structure on H which then descends to
M = Ω/Γ. In particular, both the affine metric, which is a Riemannian
metric conformal to the (Euclidean) second fundamental form of H, and
a projectively flat connection whose geodesics are the RP

n geodesics on
M , descend to M . See [28] for details. A fundamental fact about hy-
perbolic affine spheres is due to Cheng–Yau [6] and Calabi–Nirenberg
(unpublished):

Theorem 4. If the affine metric on a hyperbolic affine sphere H is
complete, then H is properly embedded in R

n+1 and is asymptotic to a
convex cone C ⊂ R

n+1 which contains no line. By a volume-preserving
affine change of coordinates in R

n+1, we may assume C = C(Ω) for
some properly convex domain Ω in RP

n.

In Section 4, we recall a theory due to C.P. Wang in the case n = 2
and M is oriented. In this case, a properly convex RP

2 structure is
given by certain data on a Riemann surface Σ, and the developing map
is given explicitly in terms of these data by the solution to a first-order
linear system of PDEs.

4. Wang’s developing map

Wang formulates the condition for a two-dimensional surface to be
an affine sphere in terms of the conformal geometry given by the affine
metric [31]. Since we rely heavily on this work, we give a version of the
arguments here for the reader’s convenience. For basic background on
affine differential geometry, see Calabi [3], Cheng–Yau [6] and Nomizu–
Sasaki [30].

Choose a local conformal coordinate z = x+ iy on the hypersurface.
Then, the affine metric is given by h = eψ|dz|2 for some function ψ.
Parametrize the surface by f : D → R

3, with D a domain in C. Since
{e− 1

2
ψfx, e

− 1
2
ψfy} is an orthonormal basis for the tangent space, the

affine normal ξ must satisfy this volume condition (see e.g., [30])

det(e−
1
2
ψfx, e

− 1
2
ψfy, ξ) = 1,

which implies

(3) det(fz, fz̄, ξ) = 1
2 ie

ψ.

Now, only consider hyperbolic affine spheres. By scaling in R
3, we

need only consider spheres with affine mean curvature −1. In this case,
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we have the following structure equations:

(4)
{
DXY = ∇XY + h(X,Y )ξ

DXξ = X

Here, D is the canonical flat connection on R
3, ∇ is a projectively flat

connection, and h is the affine metric. If the center of the affine sphere
is 0, then we also have ξ = f .

It is convenient to work with complexified tangent vectors, and we
extend ∇, h and D by complex linearity. Consider the frame for the
tangent bundle to the surface {e1 = fz = f∗( ∂∂z ), e1̄ = fz̄ = f∗( ∂∂z̄ )}.
Then, we have

(5) h(fz, fz) = h(fz̄, fz̄) = 0, h(fz, fz̄) = 1
2e
ψ.

Consider θ the matrix of connection one-forms

∇ei = θji ej , i, j ∈ {1, 1̄},

and θ̂ the matrix of connection one-forms for the Levi–Civita connection.
By (5),

(6) θ̂1
1̄ = θ̂1̄

1 = 0, θ̂1
1 = ∂ψ, θ̂1̄

1̄ = ∂̄ψ.

The difference θ̂ − θ is given by the Pick form. We have

θ̂ji − θji = Cjikρ
k,

where {ρ1 = dz, ρ1̄ = dz̄} is the dual frame of one-forms. Now, we
differentiate (3) and use the structure equations (4) to conclude

θ1
1 + θ1̄

1̄ = dψ.

This implies, together with (6), the apolarity condition

C1
1k + C 1̄

1̄k = 0, k ∈ {1, 1̄}.
Then, when we lower the indices, the expression for the metric (5) im-
plies that

C1̄1k + C11̄k = 0.

Now, Cijk is totally symmetric on three indices [6, 30]. Therefore, the
previous equation implies that all the components of C must vanish
except C111 and C1̄1̄1̄ = C111.

This discussion completely determines θ:

(7)

(
θ1
1 θ1

1̄

θ1̄
1 θ1̄

1̄

)
=

(
∂ψ C1

1̄1̄
dz̄

C 1̄
11dz ∂̄ψ

)
=
(

∂ψ Ūe−ψdz̄
Ue−ψdz ∂̄ψ

)
,

where we define U = C 1̄
11e

ψ.
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Recall thatD is the canonical flat connection induced from R
3. (Thus,

for example, Dfzfz = D ∂
∂z
fz = fzz.) Using this statement, together

with (5) and (7), the structure equations (4) become

(8)


fzz = ψzfz + Ue−ψfz̄
fz̄z̄ = Ūe−ψfz + ψz̄fz̄
fzz̄ = 1

2e
ψf.

Then, together with the equations fz = fz and fz̄ = fz̄, these form a
linear first-order system of PDEs in f , fz and fz̄:

∂

∂z

 f
fz
fz̄

 =

 0 1 0
0 ψz Ue−ψ

1
2e
ψ 0 0

 f
fz
fz̄

 ,(9)

∂

∂z̄

 f
fz
fz̄

 =

 0 0 1
1
2e
ψ 0 0

0 Ūe−ψ ψz̄

 f
fz
fz̄

 .(10)

In order to have a solution of the system (8), the only condition is that
the mixed partials must commute (by the Frobenius theorem). Thus,
we require

ψzz̄ + |U |2e−2ψ − 1
2e
ψ = 0,(11)
Uz̄ = 0.

The system (8) is an initial-value problem, in that given (A) a base
point z0, (B) initial values f(z0) ∈ R

3, fz(z0) and fz̄(z0) = fz(z0), and
(C) U holomorphic and ψ which satisfy (11), we have a unique solution
f of (8) as long as the domain of definition D is simply connected. We
then have that the immersion f satisfies the structure equations (4).
In order for f to be the affine normal of f(D), we must also have the
volume condition (3), i.e. det(fz, fz̄, f) = 1

2 ie
ψ. We require this at the

base point z0 of course:

(12) det(fz(z0), fz̄(z0), f(z0)) = 1
2 ie

ψ(z0).

Then, use (8) to show that the derivatives with respect to z and z̄
of det(fz, fz̄, f)e−ψ must vanish. Therefore, the volume condition is
satisfied everywhere, and f(D) is a hyperbolic affine sphere with affine
mean curvature −1 and center 0.

Using (8), we compute det(fz, fzz, f) = 1
2 iU , which implies that U

transforms as a section of the bundle of cubic differentials K3, and
Uz̄ = 0 means it is holomorphic.

Also, consider two embeddings f and f̂ from a simply connected D
to R

3 which satisfy (8) and the initial value condition (12) for some z0
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and z̃0. Then, consider the map A ∈ GL(3,R)

A =

 f(z0)
fz(z0)
fz̄(z0)

−1 f̂(z0)
f̂z(z0)
f̂z̄(z0)

 .

By the volume condition (3), A ∈ SL(3,R). The uniqueness of solutions
to (8) then shows that fA = f̂ everywhere.

We record all this discussion in the following:

Proposition 1 (Wang [31]). Let D ⊂ C be a simply connected do-
main. Given U a holomorphic section of K3 over D, ψ a real-valued
function on D so that U and ψ satisfy (11), and initial values for f ,
fz, fz̄ which satisfy (12), we can solve (8) so that f(D) is a hyperbolic
affine sphere of affine mean curvature −1 and center 0. Any two such
f which satisfy (8) are related by a motion of SL(3,R).

More generally, if Σ is a Riemann surface with metric h = eφ|dz|2.
Now, write the affine metric as eψ|dz|2 = eu h. Therefore, u is a globally
defined function on Σ and locally ψ = φ + u. The Laplacian ∆ =
4e−φ∂z∂z̄. Therefore, ψ solves (11) exactly if the following equation in
u holds:

∆u = 4e−φψzz̄ − ∆φ(13)

= 2e−φ(−2e−2ψ |U |2 + eψ) + 2κ

= −4e−2u‖U‖2 + 2eu + 2κ.

Here, ‖ · ‖2 = | · |2e−3φ denotes the metric on K3 induced by h and
κ = −1

2∆φ is the curvature of h.
Note that this discussion gives an explicit description of the develop-

ing map. Consider a Riemann surface Σ equipped with a holomorphic
cubic differential U and a conformal metric h. Let D ⊂ C be the uni-
versal cover of Σ. If on Σ there is a solution u to (13) so that euh is
complete, then Cheng–Yau and Calabi–Nirenberg’s Theorem 4 above
implies that the affine sphere f(D) is asymptotic to a convex cone C
which contains no lines. Therefore, C = C(Ω) for a properly convex
Ω ⊂ RP

2. As in Section 3, the projection map P takes f(D) diffeomor-
phically to Ω. The developing map from D to Ω is then explicitly P (f),
where f satisfies the initial value problem (8), (12).

Consider as above (Σ, U, euh) with euh complete, and D the universal
cover of Σ. For z0 ∈ D, choose a particular solution f : D → R

3 to the
initial value problem (8), (12). Let γ ∈ π1M be a deck transformation
of D → Σ, which we take to be a holomorphic automorphism of D.
Then, the uniqueness of the hyperbolic affine sphere and of the initial
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value problem imply that f(D) = γ∗f(D). Moreover, the complexified
frame in R

3 {f, fz, fz̄} pulls back under γ to

(14) {f ◦ γ, γ′fz ◦ γ, γ′fz̄ ◦ γ}.
In the particular cases considered in Sections 6 and 7, the deck trans-
formation γ is of the form

γ : z �→ z + c

for a constant c. Thus, by (14), {f, fz, fz̄} makes sense as a frame of a
natural vector bundle over D/〈γ〉. Define the matrix Hγ by

Hγ : {f(z0), fz(z0), fz̄(z0)} �→ {f(γ(z0)), fz(γ(z0)), fz̄(γ(z0))}.
Hγ maps the affine sphere f(D) to itself and satisfies detHγ = 1. Then,
Hγ is conjugate to a matrix in SL(3,R)—simply use the real frame
{f, fx, fy} instead—and, by projecting to PGL(3,R), determines the
holonomy of the RP

2 structure along a loop in Σ whose endpoints lift
to z and γ(z). We record this in

Proposition 2. Consider (Σ, U, euh) as above so that euh is com-
plete, and let D ⊂ C be the universal cover of Σ. If a loop in Σ can
be represented by a deck transformation of the form γ(z) = z + c, then
the frame {f, fz, fz̄} may be used to calculate the holonomy around this
loop. A matrix in the conjugacy class of the holonomy may be obtained
by integrating the initial-value problem (9–10), (12) along a path whose
endpoints in D are z and z + c.

We remark that in the particular case, the initial metric h is hyper-
bolic (i.e., with constant curvature −1), we have the equation

∆u = −4e−2u‖U‖2 + 2eu − 2,

which has a unique solution on a compact Riemann surface Σ of genus
g ≥ 2 for any U ∈ H0(Σ,K3) (Wang, [31]). In Section 5, we extend
this result to non-compact Riemann surfaces which admit a hyperbolic
metric of finite volume.

5. Finding solutions

5.1. The Ansatz. Consider Σ = Σ̄\{pi} be a Riemann surface of finite
type equipped with a complete hyperbolic metric. Consider U a section
of K3

Σ with poles of order at most three allowed at the punctures pi. In
other words, U ∈ H0(K3

Σ̄
⊗
∏
i[pi]

3). We want to find a metric h so that

(15) − 4‖U‖2 + 2 + 2κ→ 0 at the pi,

so that u = 0 is an approximate solution to (13).
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Near a puncture point pi, consider z = zi the local coordinate function
so that the hyperbolic metric is exactly

(16) h =
4

|z|2(log |z|2)2 |dz|2

near the puncture {z = 0}. (For now, we drop the notational depen-
dence on i.) Such a coordinate z is called a cusp coordinate near the
puncture. Cusp coordinates are unique up to a rotation z̃ = eiθz. Near
the puncture, U = Rz−3dz3 + O(z−2) for a complex number R. We
call R the residue of U at the puncture. If R = 0, then, we just leave
the hyperbolic metric, and ‖U‖2 = O

(
|z|2(log |z|2)6

)
; therefore, (15) is

satisfied.
For R �= 0, however, we choose a flat metric near the puncture. Let

(17) h =
2

1
3 |R| 23
|z|2 |dz|2

near z = 0. This metric then satisfies the asymptotic requirement (15).
Now, for a given U , we can patch these metrics together on Σ by

requiring that h be hyperbolic outside of a neighborhood of those pi for
which Ri �= 0. In particular, h must be hyperbolic on a neighborhood
of all the zeros of U . In a neighborhood of each pi for which Ri �= 0, we
make h be the flat metric (17). On the remainder of Σ (which consists of
annular necks around each pi with non-zero residue), we let h be an ar-
bitrary conformal metric smoothly interpolating the flat and hyperbolic
metrics. Note that by this construction, we have two types of punctures
pi. We name these ends according to the holonomy of the RP

2 surface
we will construct from (Σ, U, h)—see Table 1. We call those punctures
pi for which Ri �= 0 the QH ends of (Σ, h), since the RP

2 holonomy will
be quasi-hyperbolic or hyperbolic according to whether ReRi = 0 or
not. Those pi for which Ri = 0 are the parabolic ends of (Σ, h).

Here is a more explicit description of the metric near a QH end. In
the conformal coordinate zi as above, we define

(18) h =


2

1
3 |R| 23
|z|2 |dz|2 for |zi| < ci
eρi |dz|2 for ci ≤ |zi| ≤ Ci
4

|z|2(log |z|2)2 |dz|
2 for |zi| > Ci

Here, ci < Ci are appropriate radii and eρi is a smooth interpolation
between the two metrics. We require the zeros of U to be away from
the QH ends of (Σ, h), so that for 0 < |zi| ≤ Ci, ‖U(zi)‖ ≥ δi > 0. This
is possible since at each QH end, limzi→0 ‖U(zi)‖ = 1√

2
.
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5.2. Solving Wang’s equation. Now, we will find solutions to (13)
for the given Σ and U , and the metric h constructed in Section 4. We
will construct barriers on Σ to show that the solution u we find will be
bounded and will approach zero near the QH ends of (Σ, h).

To find a supersolution to (13), define

(19) L(u) = ∆u+ 4e−2u‖U‖2 − 2eu − 2κ

so that L(u) = 0 is our equation. Then, near a QH end of (Σ, h),
consider v = β|z|2α for α, β positive constants. Calculate

L(v) = 4βα2(2−
1
3 )|R|− 2

3 |z|2α + [2 +O(|z|)]e−2β|z|2α − 2eβ|z|
2α

(20)

=
[
4α2(2−

1
3 )|R|− 2

3 − 3
]
v + 2e−2v − 2ev + 3v + e−2vO(|z|).

If we choose α small enough, the first term is negative, and we can check
that 2e−2v − 2ev + 3v is negative for all v > 0. The term e−2vO(|z|) is
dominated by the first term for α small, β large and z near 0. So L(v) ≤
0 on a neighborhood N of z = 0, and N can be made independent of
the choice of β for β � 0.

So, consider a smooth positive function f on Σ which satisfies f =
|zi|2αi on the neighborhood Ni corresponding to each QH end of (Σ, h)
for a suitably small αi. Near the parabolic ends of Σ, let f be a positive
constant,and let f be smooth and positive on all Σ. Then, for β large,
L(βf) ≤ 0 on all of Σ, since the −2eu term in (19) dominates outside
the Ni. This will be our supersolution S = βf . Note that S is bounded
and positive, and S → 0 at each QH end of (Σ, h).

Finding a subsolution is somewhat more delicate, since the presence
of zeros of U means that the positive term 4e−2u‖U‖2 in (19) cannot
dominate all the others for u � 0. We will look to the curvature term
−2κ instead for positivity. In particular, we have required the metric
to be hyperbolic (so −2κ = 2) wherever ‖U‖ is small.

First, near each QH end, we can consider w = −β|z|2α for α, β > 0.
As above

L(w) =
[
4α2(2−

1
3 )|R|− 2

3 − 3
]
w + 2e−2w − 2ew + 3w + e−2wO(|z|),

and for negative w, 2e−2w − 2ew + 3w > 0. For small α, large β, the
first term is positive and dominates the term e−2wO(|z|). Therefore, as
above, we have neighborhoods of the QH ends Ni which do not depend
on β for β � 0, and L(w) ≥ 0 on these Ni.

Now, recall the situation in equation (18). Near a QH end, we have
the metric is hyperbolic for |zi| > Ci, flat for |zi| < ci. Also, we assume
that the Ni ⊂ {|zi| < ci}. We have no control over the curvature κ for
ci ≤ |zi| ≤ Ci, but we do know that ‖U‖ ≥ δi there. Therefore, we can
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let βi become large so that the term 4e−2w‖U‖2 dominates the others
on {|zi| ≤ Ci} \ Ni, and thus L(−βi|zi|2αi) ≥ 0 for |zi| ≤ Ci.

By making some βi larger if necessary, we can make sure that the
values of −βi|zi|2αi are all equal to some negative constant −B on the
circles {|zi| = Ci}. Then, we define the subsolution s as

s =
{

−βi|zi|2αi on each |zi| ≤ Ci,
−B elsewhere

Then, in the hyperbolic part of (Σ, h), L(s) = 4e2B‖U‖2−2e−B+2 > 0.
On the circles {|zi| = Ci}, s is not smooth, but since ∆(s) ≥ 0 as a
distribution there, s is a suitable lower barrier. So L(s) ≥ 0 on Σ and
s→ 0 at the QH ends of (Σ, h). Also note s is bounded and negative.

Now that we have upper and lower barriers, we can find a solution
to (13) on (Σ, h). Write Σ =

⋃
j Ωj , where the Ωj are a sequence of

compact submanifolds with boundary which exhaust Σ. Then, on each
Ωj, we can solve the Dirichlet problem L(u) = 0 on Ωj and u = 0 on
∂Ωj (as in e.g. [15], Theorem 17.17; the main thing to check here is
that the non-linear operator L is decreasing as a function of u.) Call
this solution uj . By the maximum principle, we have S ≥ uj ≥ s.

These bounds on the uj then give uniform local Lp bounds on the right
hand side of (13), and therefore by the elliptic theory [15], we have local
W 2,p bounds on the uj. This is enough to ensure that a subsequence of
the uj converges uniformly to a solution u on Σ. Higher regularity of
u is standard, and the barriers S and s ensure that S ≥ u ≥ s. Thus,
u→ 0 at the QH ends of (Σ, h) and u is bounded everywhere.

We can also show, using Cheng and Yau’s maximum principle for
complete manifolds [4], that the u we have constructed is the unique
bounded solution to (13).

Proposition 3. There is only one bounded solution to (13) for a
given (Σ, U) and metric h as constructed above.

Proof. If u and ũ are two solutions to (13) so that |u|, |ũ| ≤M , then
u− ũ satisfies

∆(u− ũ) = g(x, u) − g(x, ũ),

where g(x, u) = −4e−2u‖U‖2 + 2eu is strictly increasing in u. There is
a positive constant

C = inf{∂ug(x, u) : x ∈ Σ, u ∈ [−M,M ]}

so that

∆(u− ũ) ≥ C(u− ũ).
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Since (Σ, h) is complete and has bounded Ricci curvature, Cheng and
Yau’s result implies

∀ ε > 0, ∃xε ∈ Σ so that ∆(u− ũ)(xε) ≤ ε, (u− ũ)(xε) ≥ B − ε,

where B = supΣ(u− ũ). Therefore,

ε ≥ ∆(u− ũ)(xε) ≥ C(u− ũ)(xε) ≥ C(B − ε)

Then, B ≤ ε1+C
C for all ε > 0, and thus B ≤ 0. A similar argument

shows infΣ(u− ũ) ≥ 0 also. So u = ũ on all of Σ. q.e.d.

Finally, we will need bounds on the gradient of u. We use the Lp

theory again to accomplish this.

Lemma 4. Let |∇ · | denote the norm of the gradient with respect to
the metric h and let f = −4e−2u‖U‖2 + 2eu + 2κ be the right-hand side
of (13). Then, there is a constant K independent of x ∈ Σ such that

|∇u(x)| ≤ K(‖u‖x + ‖f‖x),
where ‖ · ‖x denotes the sup norm in a geodesic ball of radius 1 around
x.

This lemma immediately shows that |∇u| is always bounded and it
approaches zero at the QH ends of (Σ, h), since u → 0 at a QH end
implies f → 0 there as well by (17).

Proof. Since the ends of Σ are constant curvature 0 or −1, Σ has
bounded geometry. In other words, there are uniform constants A < 1,
Bn so that for any x ∈ Σ,

• There is a quasi-coordinate ball B of radius A around x. (Take
some neighborhood N of x in Σ, and pull back the metric to the
universal cover Ñ of N . Our quasi-coordinate ball B ⊂ Ñ is
a geodesic ball of radius A centered at a lift of x and properly
contained in Ñ .) In these coordinates in B, we have

• The metric gij satisfies |gij − δij | < B0.
• The ordinary nth derivatives of gij are bounded by Bn.

The usual geodesic normal coordinate balls satisfy these conditions.
These are the conditions we need to apply the Lp estimates.

Choose p > 2. By the elliptic theory [15], for uniform constants C,
C ′, and a smaller ball B′, also centered at x̃, we have

|∇u(x)| ≤ ‖u‖C1(B′) ≤ C‖u‖W 2,p(B′) ≤ C ′ (‖u‖Lp(B) + ‖f‖Lp(B)

)
.

The second inequality follows by the Sobolev embedding theorem and
the third by interior Lp estimates. The Lp norm is in turn dominated
by the sup norm as required. q.e.d.
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We record the above discussion in a proposition.

Proposition 5. Given Σ, U and h as above, there is a unique bounded
solution u to (13). u is smooth and approaches zero at the QH ends of
(Σ, h). Furthermore, the norm of the gradient |∇u| is bounded and ap-
proaches zero at the QH ends of (Σ, h). Specifically, near each QH end
of (Σ, h), there are constants αi, βi > 0 so that |u|, |∇u| ≤ βi|zi|2αi .
The metric euh is complete, and (Σ, euh,U) determine a convex RP

2

structure on the surface.

Proof. We have already proved all but the last sentence. The affine
metric euh is complete since u is bounded and h is complete. The
statement about RP

2 structures follows from Wang’s work on affine
spheres as above, and Cheng and Yau’s classification of affine spheres
with complete affine metric [6]. See [26] or [28] for more details about
affine spheres and RP

n structures. q.e.d.

Note that in [26, 28], it is shown that a convex RP
2 structure on a

compact oriented surface S is equivalent to a pair (Σ, U) of Σ a confor-
mal structure on S and U a cubic differential on Σ.

6. Holonomy type of the ends

In this section, we will use the asymptotics of the affine metric euh
computed above and Wang’s integrable system for the associated affine
sphere to compute the asymptotics of the RP

2 structure on Σ near each
of its ends. The cases of the QH and parabolic ends of Σ will be treated
separately.

6.1. Topological setup. Represent the universal cover of Σ as the
upper half-plane H = {w = x + iy ∈ C : y > 0}. Each puncture of Σ
corresponds to a parabolic element of Aut(H), which in turn is conjugate
to the map γ : w �→ w + 2π. For a given puncture p, we have covering
maps

H
ζ→ D0

ξ→ Σ
Here, D0 is the punctured disk {z ∈ C : 0 < |z| < 1}, and ξ extends to
map z = 0 to the puncture p. Also, we define ζ(w) = eiw; then the map
γ generates the deck transformations for the covering map ζ. Recall
that on Σ near the end z = 0, U = R

z3
[1 +O(z)]dz3, and so

(21) ζ∗U = −iR[1 +O(e−y)]dw3.

We consider neighborhoods of the puncture of the form N = {0 <
|z| < ε}, which is topologically a cylinder. Below, we will consider
explicit paths from a base point p ∈ N to the puncture. As above, lift
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N to the set Ñ = {w : y > − log ε}, and the base point p to its lift in
Ñ . We will consider particular paths in Ñ corresponding to rays along
which y → ∞. Pushed down to the z coordinate, these paths go to the
puncture z = 0.

Solving the initial value problem (8), as determined by (Σ, U, euh),
then provides a developing map from the universal cover H of Σ into
RP

2. Denote S as the RP
2 surface constructed in this way. In S, N

is topologically a cylindrical neighborhood of the end. We consider the
π1(S) with respect to the basepoint p ∈ N ⊂ S. We only consider paths
from p to the end which remain in N , and thus we need only consider
paths in the universal cover S̃ which remain in dev(Ñ). All this will
supply a very explicit model of the developing map near the end, upon
appropriate choice of coordinates on RP

2.

6.2. The main holonomy computation. We present a simple argu-
ment to calculate the holonomy around the puncture for these singular
surfaces.

Consider the frame {f, fw, fw̄}. Then, (8) shows that

(22)
∂

∂x

 f
fw
fw̄

 =

 0 1 1
1
2e
ψ ψw Ue−ψ

1
2e
ψ Ūe−ψ ψw̄

 f
fw
fw̄


As above, ψ = φ + u and the initial metric h = eφ|dw|2. Define Ay to
be the matrix in equation (22).

Lemma 6.

lim
y→∞Ay = A =

 0 1 1
2−

2
3 |R| 23 0 −i2− 1

3R|R|− 2
3

2−
2
3 |R| 23 i2−

1
3 R̄|R|− 2

3 0


uniformly in x. (If R = 0, we put all the matrix entries involving R to
be zero.) The characteristic polynomial of A is

(23) χ(λ) = λ3 − 3(2−
2
3 )|R| 23λ− ImR.

Proof. In the case of a QH end, R �= 0 and Proposition 5 shows that
in the w coordinates, each of u, uw = O(e−2αy) as y → ∞. Then, the
definition of h (17) and the asymptotics of U (21) provide the result.

If R = 0, h = |dw|2
y2

and thus, φ = −2 log y. Proposition 5 then shows
that |u| ≤ C and |uw| ≤ C

y . These, together with the asymptotics of U
(21), complete the proof. q.e.d.

We can immediately find the eigenvalues of any holonomy matrix
around each end. For a fixed y � 0, the loop |z| = e−y on Σ lifts to
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the line segment (x, y) in H, where x goes from 0 to 2π. Let Hy be
the holonomy matrix of the connection D with respect to the frame
{f, fw, fw̄} around this loop. This is justified by Proposition 2 above.
Then, Hy = Φ(2π), where Φ solves the initial value problem {(22),
Φ(0) = I}. Since D is flat and the loops are freely homotopic, all Hy

for y � 0 are conjugate to each other in GL(3,C). Moreover, as the
fundamental solution to (22),

(24) lim
y→∞Hy → e2πA.

This last statement follows by Lemma 6 and the theory of ODEs with
parameters [21]. All the matrices Hy for y � 0 have the same eigenval-
ues, and (24) shows that they are e2πλi , where λi are the eigenvalues of
A. Note that since TrA = 0, Hy is conjugate to a matrix in SL(3,R).

In the case of repeated roots of χ(λ), we cannot conclude, however,
that the Hy have the same conjugacy type as e2πA. As we will see below,
this is false, since the matrix e2πA, in this case, can be approximated,
by matrices with the same eigenvalues, but whose Jordan decomposi-
tion consists of maximal Jordan blocks. Indeed, we will see below in
Section 7.2 that the matrix through which Hy0 and Hy are conjugate
diverges as y → ∞ and y0 is fixed.

The discriminant of χ(λ) is

(25) D = −1
4 |R|

2 + 1
4(Im R)2.

So, D ≤ 0 always, and D = 0 only if ReR = 0. Therefore, χ(λ) only
has real roots, and these are repeated if and only if ReR = 0. So,
if ReR �= 0, we know the holonomy type is given by the hyperbolic
holomomy matrix whose eigenvalues are e2πλi for λi the eigenvalues A.

Proposition 7. If ReR �= 0, then the holonomy around the puncture
is conjugate to  e2πλ1 0 0

0 e2πλ2 0
0 0 e2πλ3

 ,

where λi are the roots of χ(λ).
∑

i λi = 0, and the λi are real and
distinct.
6.3. Quasi-hyperbolic holonomy.

Proposition 8. Let ReR = 0, but R �= 0, then the holonomy type is
conjugate to  e2πλ1 1 0

0 e2πλ1 0
0 0 e2πλ3

 ,
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where λi are the roots of χ(λ), with λ1 the repeated root. 2λ1 + λ3 = 0,
λ1 �= λ3, and λi ∈ R.

Proof. We have two choices for the holonomy:

F =

 e2πλ1 0 0
0 e2πλ1 0
0 0 e2πλ3

 or G =

 e2πλ1 1 0
0 e2πλ1 0
0 0 e2πλ3


Let αi = e2πλi . A result of Choi [8, Prop. 2.3], rules out the case of F
for a surface of negative Euler characteristic. The result only applies,
however, to a surface whose end has the structure of an RP

2 surface
with convex boundary. To find such a boundary, choose coordinates so
that F is the lift of the element of the fundamental group corresponding
to holonomy around the end. The developing image Ω must contain a
point p = [x, 1, z], written in homogeneous coordinates in RP

2. γn then
takes p �→ pn =

[
x, 1,

(
α3
α1

)n
z
]
. All of these pn must be in Ω, and by

convexity, there must be some line segment pnpn+1 must be in Ω. The
action of powers of γ ensure that all such line segments are in Ω; so, the
entire geodesic segment {[x, 1, sz] : s ∈ (0,∞)} is in Ω. On the quotient
surface S = Ω/π1, this is a geodesic loop isolating the end from the
rest of the surface. Cut along this geodesic loop and then apply Choi’s
result to get a contradiction. Therefore, the holonomy in this case is
quasi-hyperbolic. q.e.d.

6.4. Parabolic holonomy. Finally, if R = 0, then we have all the
eigenvalues of e2πA are 1.

Proposition 9. Let S be a properly convex RP
2 surface. In other

words, S = Ω/Γ, where Ω is a convex bounded open subset of some R
2 ⊂

RP
2, and Γ is a subgroup of PGL(3,R) acting properly discontinuously

on Ω. Any element γ ∈ Γ whose set of eigenvalues is {1} must be
conjugate to N , which consists of one 3 × 3 Jordan block.

Proof. γ must be conjugate to one of

I =

 1 0 0
0 1 0
0 0 1

 , Q =

 1 1 0
0 1 0
0 0 1

 , N =

 1 1 0
0 1 1
0 0 1

 .

The identity map I is obviously not possible. We now rule out Q.
Choose coordinates so that Q is the lift of γ in SL(3,R). Ω must
contain a point p = [x, 1, z], written in homogeneous coordinates on
RP

2. γn then takes p �→ pn = [x+n, 1, z], and so each pn ∈ Ω. Because
Ω is convex in some R

2 ⊂ RP
2, it must then contain a line segment
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Table 1. Residue and Holonomy

Residue Holonomy type Holonomy name

R = 0

 1 1 0

0 1 1

0 0 1

 Parabolic

ReR = 0,

R �= 0

 α1 1 0

0 α2 0

0 0 α3

 (α2 = α1) Quasi-hyperbolic

ReR �= 0

 α1 0 0

0 α2 0

0 0 α3

 Hyperbolic

Here, χ
(
(2π)−1 log αi

)
= 0,

∏
αi = 1, αi > 0.

between two points pn and pn+1 for some n. By the action of powers of
γ, it must contain all such line segments. In short, Ω contains the line
{[x+ t, 1, z] : t ∈ R}. As a properly convex domain, Ω cannot contain a
whole line, γ cannot be conjugate to Q. q.e.d.

6.5. Results. We record these results in Table 1.
Note that the holonomy type is uniquely determined by ImR and

|R| alone, by (23). Therefore, the holonomy type for R is the same as
that of −R̄. When ReR �= 0, we have two residues which give the same
holonomy. The two cases will be distinguished by their vertical twist
factors being ∞ or −∞.

Also, all holonomy types in the table actually occur for some R ∈ C.
We check that for any λ1, λ2, λ3 ∈ R with

∑
λi = 0, then the polynomial

(26)
∏

(λ− λi) = χ(λ) = λ3 − 3(2−
2
3 )|R| 23λ− ImR,

for some R ∈ C. We have to ensure that |R| ≥ |ImR| with equality only
in the case of multiple roots (by (25)). Equation (26) is equivalent to

ImR = λ1λ2λ3 and − 3(2−
2
3 )|R| 23 = λ1λ2 + λ1λ3 + λ2λ3

for
∑
λi = 0. Now, write λ3 = −λ1−λ2. By the homogeneity properties

of (26) in λi and R, we may assume λ1 = 1 also. We have

|R|2 − (ImR)2 = 4
27(λ2

2 + λ2 + 1)3 − (λ2
2 + λ2)2

= 4
27(λ2 + 2)2(λ2 − 1)2(λ2 + 1

2 )2
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This expression is always non-negative and at each root, λi = λj for
some i �= j.

All together, we have

Theorem 5. On a Riemann surface Σ = Σ̄ \ {pi}i=1...N , of negative
Euler characteristic, and a cubic form U on Σ which is allowed poles
of order at most 3 at each puncture pi, there is an RP

2 structure. The
RP

2 holonomy at each end is determined by residue R of U at the cor-
responding puncture, i.e., by the z−3 coefficient in the Laurent series
of U , by Table 1. Conversely, every hyperbolic, quasi-hyperbolic, and
parabolic holonomy type is determined by some R ∈ C.

7. Detailed structure of the ends

7.1. The triangle model. Recall the situation above. Model a neigh-
borhood of a puncture of Σ by a punctured disc D0, and let the map
ζ(w) = eiw be the covering map from the upper half-plane H to D0.
Recall the asymptotics for U (21). For our model metric h (17),

(27) ζ∗h = 2
1
3 |R| 23 |dw|2

for y � 0. Then, if we change coordinates

(28) ξ3 = 2iR−1, ν = σ + iτ = ξw,

then, U = 2 dν3, h = 2 |dν|2, and we can use this model for any non-zero
residue R.

So, consider the complex plane C with coordinates ν = σ+ iτ , metric
h = 2 |dν|2 and cubic form U = 2 dν3. This configuration of h and
U satisfies the conditions above to form an affine sphere. In fact, we
can explicitly solve the initial value problem. From (8) for the frame
{f, fν , fν̄}

∂

∂σ

 f
fν
fν̄

 =

 0 1 1
1 0 1
1 1 0

 f
fν
fν̄

 ,

∂

∂τ

 f
fν
fν̄

 =

 0 i −i
−i 0 i
i −i 0

 f
fν
fν̄

 .

Since the two matrices above are simultaneously diagonalizable (they
must commute since the system is integrable), we can solve this system
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explicitly to find that (f, fν , fν̄)� is

(29)
1
3

 1 1 1
1 ω2 ω
1 ω ω2

 e2σ 0 0
0 e−σ+

√
3τ 0

0 0 e−σ−
√

3τ


·

 1 1 1
1 ω ω2

1 ω2 ω

 f(0)
fν(0)
fν̄(0)

 ,

where ω = e
2πi
3 = −1

2 + i
√

3
2 . The imbedding f is real and therefore,

fν(0) = fν̄(0). Also, we have the initial condition (12) so that

det(f(0), fν(0), fν̄(0)) = i.

Choose initial conditions according to the eigenvectors of A,B: Let

(30)

 f(0)
fν(0)
fν̄(0)

 =
1√
3

 1 1 1
1 ω2 ω
1 ω ω2

 .

The affine sphere for any other choice of initial data will simply differ
by a map in SL(3,R).

Now, we have an explicit formula for the imbedding f of the affine
sphere into R

3:

(31) f = 1√
3

(
e2σ , e−σ+

√
3τ , e−σ−

√
3τ
)
.

Let T be the triangle with vertices v1 = [1, 0, 0], v2 = [0, 1, 0], and v3 =
[0, 0, 1] and interior {[1, x2, x3] : x2, x3 > 0} in homogeneous coordinates
in RP

2. Then, the affine sphere in (31) is asymptotic to the boundary
of the cone over T in R

3, which is the first octant.
Consider any ray in the (σ, τ) plane approaching infinity. First, use

(31) to put the path on the affine sphere in R
3, and then project down

to RP
2. Then, the image of the ray approaches the boundary of the

triangle T in a way that depends on the angle of the ray in the usual
polar coordinates (σ, τ) = (r cos θ, r sin θ). We record this in Table 2,
and note that in the cases where the limit point is on a line segment,
the exact limit point is determined by the τ -intercept of the ray.

Now, pass back to the w coordinate as in (28). The topology of
the end specifies two things. First, a clockwise orientation around the
puncture of the loop |z| = ε pulls back to give the direction ∂

∂x with
which we have computed the holonomy. Now, relate this holonomy
direction to R: Consider argR ∈ [−π

2 ,
3π
2 ). For an appropriate choice of

cube root in (28), arg ξ ∈ (−π
3 ,

π
3 ]. (Note the cube root needed to find

ξ corresponds to the threefold symmetry of the triangle T .) Then, the
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Table 2. Limit Points

range of θ limit point in ∂T
(−π

3 ,
π
3 ) v1

π
3 on segment v1v2

(π3 , π) v2

π on segment v2v3
(π, 5π

3 ) v3
5π
3 on segment v3v1

holonomy direction in the ν plane is equal to arg ξ. (We normalize the
direction ∂

∂σ in the ν plane to be 0.)
Second, we have that any ray in the w plane in any direction between

the w plane of the form

(32) cos ι
∂

∂x
+ sin ι

∂

∂y

for ι ∈ (0, π) will approach the end. In the ν plane, then, any direction
between arg ξ and arg ξ+π will approach the end. Below, we will choose
particular rays going to the puncture to map out the affine sphere and
determine the vertical twist parameter for a puncture with residue R if
ReR �= 0.

Notice that three things can happen depending on the sign of ReR. If
ReR > 0, then arg ξ ∈ (0, π3 ). See Figure 3. Then, for θ ∈ (arg ξ, π3 ), the
ray goes to the attracting fixed point Fix+ of the holonomy, and if θ ∈
(π, π+ arg ξ), the ray goes to the repelling fixed point Fix−. (The limit
points of the remaining rays for θ = π

3 , π should map out the geodesics
G+0 and G0− respectively, which go between the corresponding fixed
points.) This leaves rays with θ ∈ (π3 , π) to go to the saddle fixed point
Fix0, and thus, the vertical twist parameter is ∞.

On the other hand, if ReR < 0, arg ξ ∈ (−π
3 , 0). See Figure 4. Then,

for θ ∈ (arg ξ, π3 ), the ray goes to the attracting fixed point Fix+, and
if θ ∈ (π3 , π+ arg ξ), the ray goes to the repelling fixed point Fix−. The
limit points of the ray with θ = π

3 , should map out the geodesic G+−
between these two fixed points, and the vertical twist parameter will be
−∞.

If ReR = 0, then arg ξ = 0 or π
3 , and the model breaks down. It

would predict holonomy F as in Proposition 8 above, which we know is
incorrect.
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∂x
∂- ∂x

∂

to Fix0

to Fix+

to Fix-

to G
+0

to G0-

Figure 3. Rays in the w Plane for ReR > 0.

∂x
∂- ∂x

∂

to Fix+
to Fix-

to G+-

Figure 4. Rays in the w Plane for ReR < 0.

The next few subsections will prove the RP
2 structure of an end with

ReR �= 0 follow the predictions we have just made.

7.2. Perturbed linear systems. This model for the developing map
is valid only near a given puncture. Recall the basic setup: We lift a
neighborhood of a puncture {z : ε > |z| > 0} on Σ to the region in the
upper half plane {w = x + iy : y > − log ε}. In this region, we will
use our bounds on u to approximate the initial value problem for the
affine sphere (8) by the explicit models computed above. As discussed in
Section 7.1, it may not be useful only to consider the direction ∂

∂y going
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to infinity, but also other directions of the form (32). So, for ι ∈ (0, π),
introduce new coordinates x̃ = x− y cot ι, ỹ = y csc ι so that

∂

∂x̃
=

∂

∂x
,(33)

∂

∂ỹ
= cos ι

∂

∂x
+ sin ι

∂

∂y
.(34)

From (8), we have the equations for {f, fw, fw̄}

∂

∂x

 f
fw
fw̄

 =

 0 1 1
1
2e
ψ ψw Ue−ψ

1
2e
ψ Ūe−ψ ψw̄

 f
fw
fw̄

 ,(35)

∂

∂y

 f
fw
fw̄

 =

 0 i −i
−i12eψ iψw iUe−ψ

i12e
ψ −iŪe−ψ −iψw̄

 f
fw
fw̄

 ,(36)

and corresponding equations in the x̃ and ỹ coordinates. Recall the
metric eψ|dw|2 = euh. The bounds on u given in Proposition 5 show
that in the w coordinates each of u, uw = O(e−2αy) as y → ∞ for some
small positive α. Then, along with the asymptotics of U in (21), the
definition of h (17), and (33–34), we have the asymptotic result

∂

∂x̃
X =

[
A + O(e−2αy)

]
X(37)

∂

∂ỹ
X =

[
A cos ι+ B sin ι+ O(e−2αy)

]
X(38)

where X = (f, fw, fw̄)�,

A =

 0 1 1
2−

2
3 |R| 23 0 −i2− 1

3R|R|− 2
3

2−
2
3 |R| 23 i2−

1
3 R̄|R|− 2

3 0

 ,

B =

 0 i −i
−i2− 2

3 |R| 23 0 2−
1
3R|R|− 2

3

i2−
2
3 |R| 23 2−

1
3 R̄|R|− 2

3 0

 .

In order to solve this integrable system, first solve the system in the
ỹ direction from some initial condition—this will just be an ODE—and
then solve in the x̃ direction (or vice versa). Consider the system

∂x̃X = AX(39)
∂ỹX = (cos ιA + sin ιB)X.(40)
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Now, change to the ν coordinate to relate these to the explicit for-
mulas in (29). Then

∂

∂x̃
= Re ξ

∂

∂σ
+ Im ξ

∂

∂τ
∂

∂ỹ
= Re(ξeiι)

∂

∂σ
+ Im(ξeiι)

∂

∂τ

Then, the equations (39–40) become

∂x̃Z = ÃZ(41)

∂ỹZ = B̃Z,(42)

where Z = (f, fν , fν̄)� and

Ã = PD (ρ1, ρ2, ρ3) P−1,

B̃ = PD (µ1, µ2, µ3) P−1,

(43)
µ1 = 2Re(ξeiι), ρ1 = 2Re ξ,
µ2 = 2Re(ξei(ι−

2π
3

)), ρ2 = 2Re(ξe−i
2π
3 ),

µ3 = 2Re(ξei(ι+
2π
3

)), ρ3 = 2Re(ξei
2π
3 ),

(44) P =
1√
3

 1 1 1
1 ω ω2

1 ω2 ω

 .

Here, D(·, ·, ·) is a diagonal matrix. Also, (37–38) become

∂x̃Z =
[
Ã + O

(
e−2αỹ sin ι

)]
Z(45)

∂ỹZ =
[
B̃ + O

(
e−2αỹ sin ι

)]
Z(46)

Denote the perturbation terms O
(
e−2αỹ sin ι

)
by Apert and Bpert respec-

tively.
There is a theory, developed originally by Dunkel [13], which ad-

dresses solutions to (46) as a perturbation of (42) as ỹ → ∞. Below in
Appendix A, we follow Levinson [27] to find a version which works with
parameters. See also Hartman–Wintner [22]. It is convenient to state
it in terms of an eigenbasis for B̃.

Lemma 10. Let Zi be a vector solution of the linear constant-coeffi-
cient equation (42) which has the form eµi ỹχi for a vector χi. Then,
(46) has a solution Wi such that

(47) lim
ỹ→∞

‖Wi − Zi‖e−µi ỹ = 0.
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Moreover, for any solution W to (46), there is a solution Z to (42)
satisfying estimate (47) (with µi replaced by µ = limỹ→∞ 1

ỹ log ‖W‖).
If (46) depends continuously on a set of parameters τ—i.e., if the

perturbation terms Bpert(ỹ, τ) are smooth in y and continuously vary
in L1([T,∞)) as τ varies—then Wi(ỹ, τ) is continuous in τ and the
limit (47) is uniform in τ .

Proof. The exponential decay of the perturbation term in (46) are
more than sufficient to apply the results in Levinson [27] to prove the
first statement. The second statement follows from the first by the fact
that we can choose {Wi} to be a basis for the solution space of (46).
We check in Appendix A that the estimates are uniform in a parameter
τ . q.e.d.

Choose eigenvectors χi to be the column vectors of P (44). Then, by
the lemma, we have a matrix solution Z to (46) so that as ỹ → ∞,

(48) Z = P

 eµ1 ỹ + o(eµ1 ỹ) o(eµ2ỹ) o(eµ3 ỹ)
o(eµ1 ỹ) eµ2ỹ + o(eµ2ỹ) o(eµ3 ỹ)
o(eµ1 ỹ) o(eµ2ỹ) eµ3 ỹ + o(eµ3 ỹ)

 .

This is enough to show that the limit of the ray in the direction ∂
∂ỹ

approaches a point on the boundary of the triangle T , as in Table 2,
with direction θ = ι + arg ξ. We also need to know, however, how this
solution (48) relates to the holonomy. Equation (48) provides us with
some information about a frame at infinity and how to relate it to the
frame {f, fν , fν̄}.

Pick a point p0 so that x̃ = 0 and ỹ = ỹ0 � 0. For any ỹ, let consider
the holonomy matrix Hỹ for the frame {f, fν , fν̄} along the loop (x̃, ỹ)
for x̃ ∈ [0, 2π]. Denote H0 = Hỹ0. By Section 4, we are free to choose
initial conditions for f in the initial value problem (8), at least up to a
multiplicative constant, which will not essentially affect our arguments.
So, choose initial conditions for f, fν, fν̄ at p0 so that for Z from (48)

(49) (f(p0), fν(p0), fν̄(p0))
� = Z(p0) = Z0

Then, in a path from (0, ỹ0) to (0, ỹ), the holonomy with respect to our
frame is

(50) Fỹ = ZỹZ−1
0 .

Since the connection D is flat,

(51) HỹFỹ = FỹH0.
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We also know, as in (24), limỹ→∞ Hỹ = e2πÃ, and so as ỹ → ∞,

(52) Hỹ = P
[
D(e2πρ1 , e2πρ2 , e2πρ3) + o(1)

]
P−1,

where ρi are the eigenvalues of Ã as in (43). Compute by (48), (50),
(51), and (52)

(53) H0 = Z0

 e2πρ1 + o(1) o(e(−µ1+µ2)ỹ) o(e(−µ1+µ3)ỹ)
o(e(µ1−µ2)ỹ) e2πρ2 + o(1) o(e(−µ2+µ3)ỹ)
o(e(µ1−µ3)ỹ) o(e(µ2−µ3)ỹ) e2πρ3 + o(1)

Z−1
0 .

In the applications below, we choose the parameter ι so that two
of the eigenvalues µi of B̃ are equal to each other and greater than
the remaining eigenvalue—see (43). Assume without loss of generality
µ1 = µ2 > µ3. Then, (52) shows

(54) H0 = Z0

 e2πρ1 0 0
0 e2πρ2 0
K L e2πρ3

Z−1
0 .

K and L denote real numbers over which we have no a priori control, and
this expression is with respect to the frame Z0 = {f(p0), fν(p0), fν̄(p0)}.
Therefore, with respect to the standard frame in R

3, then the holonomy
is given by

(55) H =

 e2πρ1 0 0
0 e2πρ2 0
K L e2πρ3


This determines the eigenvalues of the holonomy (as in Table 1); also,
(1, 0, 0) and (0, 1, 0) are eigenvectors corresponding to eigenvalues e2πρ1
and e2πρ2 respectively. (Note that H acts on the right on row vectors
in R

3.) Therefore, projecting down to RP
2, [1, 0, 0] and [0, 1, 0] are

fixed points of the holonomy action. Each of these two fixed points is
attracting, saddle, or repelling according to whether the appropriate ρj
(j = 1 or 2) is numerically the largest, the middle, or the smallest of
the {ρi}3

i=1.
Recall that f(0, ỹ) is the top row of the matrix Z. Therefore, (48)

shows that, upon projecting from R
3 to RP

2, limỹ→∞[f(0, ỹ)] = [1, 1, 0].
Moreover, we have by (55)

lim
ỹ→∞

[f(2πn, ỹ)] = [e2πnρ1 , e2πnρ2 , 0] = �n,

for n ∈ Z. So, all these limit points �n are on a geodesic segment
between [1, 0, 0] and [0, 1, 0]. Since they are limit points of rays which
go to infinity in the universal cover of Σ, and since the RP

2 structure is
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convex, these limit points �n in RP
2 must all be on the boundary ∂Ω.

Therefore, by convexity, the entire geodesic segment

{[1, t, 0] : t ∈ [0,∞]} ⊂ ∂Ω.

We record this discussion in

Proposition 11. Let vi be the standard ith basis vector in R
3, and [vi]

the projection to RP
2. Choose the parameter ι so that µj = µk are the

largest two eigenvalues of B̃. The points [vj ] and [vk] are fixed points of
the holonomy. Each is attracting, repelling or saddle-type according to
whether the corresponding eigenvalue of the holonomy is numerically the
largest, the smallest, or the middle among {e2πρi}3

i=1. The line segment

{[vj + tvk] : t ∈ (0,∞)}
is in the boundary of the image of the developing map.

7.3. Hyperbolic ends: the case ReR > 0. In this case, the vertical
twist parameter is ∞.

Proposition 12. Consider the end of the RP
2 surface corresponding

to (Σ, U) with residue R at the end. If ReR > 0, then the vertical twist
parameter of the end is ∞.

Proof. If ReR > 0, then choose ξ = (2iR−1)
1
3 so that arg ξ ∈ (0, π3 ).

Let ι = π
3 −arg ξ and ι̂ = π−arg ξ so that θ = ι+arg ξ = π

3 , and θ̂ = π.
First consider the case θ = π

3 . Then, (43) shows that µ1 = µ2 > µ3

and ρ1 > ρ2 > ρ3. For a value of y � 0, choose initial condition (49)
for the equation (8). Proposition 11 shows that [v1] = Fix+, [v2] = Fix0

and the geodesic segment G+0 is contained in the boundary of the image
of the developing map. Moreover, the holonomy matrix with respect to
the standard frame in R

3 is given by (55). Note the there is as yet no
a priori control over K and L. By measuring the holonomy in the ι̂
direction as well, we shall see that K and L do vary continuously in
families however.

Now, for ι̂, µ̂2 = µ̂3 > µ̂1 and we still have ρ1 > ρ2 > ρ3. Therefore,
again choose initial condition (49) for the equation (8). Note that this
amounts to choosing a new frame on R

3, {v̂i}3
i=1. With respect to this

frame, [v̂2] = Fix0 and [v̂3] = Fix−. Proposition 11 shows that the
geodesic segment G0− is in the boundary of the developing map.

By convexity, then the principal geodesic segment G+− must be con-
tained in the closure Ω̄ of Ω the image of the developing map. We claim
the open segment G+− ⊂ Ω. If on the contrary G+− ⊂ ∂Ω, then Ω is a
triangle and as in Section 7.1, the affine metric h on Ω is complete and
flat. Therefore, (Ω, h) is conformally equivalent to C. This contradicts
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the fact that Σ admits a complete hyperbolic metric. Now, if there were
a single point of the open segment G+− in ∂Ω, then since the endpoints
Fix+, Fix− ∈ ∂Ω, convexity forces all of G+− ⊂ ∂Ω, and we reach a
contradiction again to prove the claim.

The discussion in Section 2 above then proves the proposition. q.e.d.

It will be useful below to show that the holonomy matrix (55) varies
continuously in families. We will determine the constants K and L in
terms of the change of frame between the vi and v̂i above.

Diagonalize (55)

H =

 1 0 0
0 1 0
K ′ L′ 1

 e2πρ1 0 0
0 e2πρ2 0
0 0 e2πρ3

 1 0 0
0 1 0

−K ′ −L′ 1

 ,

where K ′ = K/(e2πρ1 − e2πρ3) and L′ = L/(e2πρ2 − e2πρ3). Then, in
terms of the v̂i frame,

Ĥ =

 e2πρ1 K̂ L̂
0 e2πρ2 0
0 0 e2πρ3


=

 1 K̂ ′ L̂′
0 1 0
0 0 1

 e2πρ1 0 0
0 e2πρ2 0
0 0 e2πρ3

 1 −K̂ ′ −L̂′
0 1 0
0 0 1

 ,

where K̂ ′ = K̂/(e2πρ2 − e2πρ1) and L̂′ = L̂/(e2πρ3 − e2πρ1).
Denote by Q the change of frame in R

3 between the vi and the v̂i.
Then, H = QĤQ−1. Since the eigenvalues {e2πρi} are distinct, there
must exist real constants ωi �= 0 so that 1 0 0

0 1 0
K ′ L′ 1

 ω1 0 0
0 ω2 0
0 0 ω3

 = Q

 1 K̂ ′ L̂′
0 1 0
0 0 1


Let Q = (Qij). The previous equation forces Q2

1 = Q2
3 = 0, and the free

parameters are determined by Q:

K̂ ′ = −Q
1
2

Q1
1

, L̂′ = −Q
1
3

Q1
1

, K ′ =
Q3

1

Q1
1

, L′ =
Q3

2Q
1
1 −Q3

1Q
1
2

Q1
1Q

2
2

,

ω1 = Q1
1, ω2 = Q2

2, ω3 =
Q3

3Q
1
1 −Q3

1Q
1
3

Q1
1

.

Note the last row implies Q1
1, Q

2
2 �= 0. Q is determined by the initial con-

ditions Z0 and Ẑ0 from (49) to the initial value problem (8). Explicitly,
Proposition 1 shows that Q = Ẑ−1

0 Z0. Z0 and Ẑ0 come from Lemma
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10. Therefore, Lemma 10 and Proposition 24 imply the parameters
K,L, K̂, L̂ vary continously in families.

Proposition 13. The holonomy matrix (55) constructed above varies
continuously for families of equations as long as the perturbation term
Bpert(y, τ) satisfies the hypotheses of Lemma 10.

Remark. Here is a more geometric interpretation of the preceding
proposition and its proof. The proposition allows us to control the RP

2

coordinates of the developing map of a degenerating family. In other
words, it allows us to control the gauge. Developing along rays for the
parameter ι allow us to control the line segment G+0, and similarly for
the parameter ι̂, we control the line segment G0−, up to a change of
gauge Q which varies continuously. Any automorphism of RP

2 which
fixes G+0 ∪G0− must be trivial, and so the proposition follows.
7.4. Hyperbolic ends: the case ReR < 0. In this case, the vertical
twist parameter is −∞.

Proposition 14. On an end of (Σ, U) with residue R so that ReR <
0, the principal geodesic line segment of the holonomy action around this
end is in the boundary of the image of the developing map. The vertical
twist parameter for this end is −∞.

Proof. If ReR < 0, then choose ξ = (2iR−1)
1
3 so that arg ξ ∈ (−π

3 , 0).
Let ι = π

3 − arg ξ so that θ = π
3 . Then, (43) shows that µ1 = µ2 > µ3

and ρ1 > ρ3 > ρ2. Proposition 11 then implies that [1, 0, 0] = Fix+ and
[0, 1, 0] = Fix−, and that the geodesic segment between them, G+−, is
contained in the boundary of the image of the developing map. The
discussion in Section 2 then implies the vertical twist parameter is −∞.

q.e.d.

7.5. Quasi-hyperbolic ends. For ReR = 0, R �= 0, Table 1 shows
the holonomy type of the end is quasi-hyperbolic. This completely de-
termines the structure of the end.

Proposition 15. Let S be a properly convex RP
2 surface with an end

with quasi-hyperbolic holonomy. If Ω ⊂ RP
2 is the universal cover, then

the end of S has boundary given by the push-down of a geodesic segment
in ∂Ω whose endpoints are the two fixed points of the holonomy action.

Proof. Lift the holonomy action to SL(3,R) and choose coordinates
(x1, x2, x3) in R

3 so that the holonomy matrix is of the form

γ =

 α1 1 0
0 α1 0
0 0 α3

 .



THE COMPACTIFICATION OF THE MODULI SPACE 257

Here, αi > 0, α2
1α

3 = 1, and α1 �= α3. Consider the case α1 > α3.
The two fixed points of the holonomy are a repelling fixed point Fix− =
[0, 0, 1], and FixP = [1, 0, 0]. There are also two geodesic lines preserved
by the holonomy given by L = {x2 = 0}, which connects the two fixed
points and on which the action is hyperbolic; and L′ = {x3 = 0}, on
which the action is parabolic.

Pick a point p = [x1, x2, 1] ∈ Ω \ (L ∪ L′). Then, pn = γnp satisfies
limn→∞ pn = FixP , limn→−∞ pn = Fix−. The convexity of Ω implies
that one of the two geodesic segments between Fix− and FixP must be
contained in Ω̄. If x2 > 0, then it is the segment Gpos = {[t, 0, 1] : t > 0},
and if x2 < 0, then it is the segment Gneg = {[t, 0, 1] : t < 0}. Now,
we claim that this segment Gpos or Gneg must be in the boundary ∂Ω.
Without loss of generality, assume x2 > 0. Then, if a neighborhood
of any point in Gpos is contained in Ω, then Ω contains a point with
x2 < 0, and therefore, Ω̄ contains Gneg as well, and so ∂Ω contains the
whole line L. This contradicts the fact that Ω is strictly convex. See
Figure 5. The case α1 < α3 is similar. q.e.d.

L' L'

Fix-

Fix P Fix P
G neg

G pos

Figure 5. The Dynamics of Quasi-Hyperbolic Holo-
nomy.

7.6. Parabolic ends. If the residue R = 0, Table 1 shows the holo-
nomy type of the end is parabolic. As in the quasi-hyperbolic case above,
the holonomy’s being parabolic completely determines the structure of
the end.
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Proposition 16. Let S be a properly convex RP
2 surface with an end

with parabolic holonomy. Assume the fundamental group π1(S) �= Z. If
Ω ⊂ RP

2 is the universal cover of S, then the end of S has boundary (as
a set ) given by the push-down of the single fixed point of the holonomy
action, which is in ∂Ω.

Proof. Lift the holonomy action to SL(3,R). Choose coordinates in
(x1, x2, x3) of R

3 so that the holonomy matrix is

γ =

 1 1 0
0 1 1
0 0 1

 .

The only fixed point is Fix = [1, 0, 0]. Also, there is a single line pre-
served by the holonomy action given by the line L = {x3 = 0}. The
holonomy is parabolic along L. For any point p ∈ Ω and pn = γnp,
then we have pn → Fix for n → ±∞. Therefore, Fix ∈ Ω̄. Since the
holonomy acts on Ω without fixed points, Fix ∈ ∂Ω.

For a domain Ω on which γ acts, there are two ends of the cylindrical
quotient Ω/〈γ〉. See Figure 6. Call the end which develops to Fix the
small end, and the other the large end. We want to rule out the large
end. Notice that the holonomy action γn takes the part of ∂Ω associated
with the large end to all of ∂Ω \ {Fix}.

Fix L

Ω

D

γDDγ−1

Figure 6. Parabolic Holonomy.

Assume that our end develops to the large end of Ω/〈γ〉. As in Section
6.1 above, fix a basepoint p ∈ S near the end in question, and consider a
path P going from p to the end which does not leave a fixed cylindrical
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neighborhood N of the end. Fix a fundamental domain D ∈ S̃ which
contains a lift P̃ of the path P . We may assume that dev(P̃ ) has a
limit point r ∈ ∂Ω. Since we have dev(P̃ ) contained in the large end,
we may assume r �= Fix. By the action of γn on the large end, a simple
continuity argument, along with Figure 6, shows that the closure in RP

2

of
⋃
n dev(γnD) contains all of ∂Ω, and also includes a neighborhood in

Ω̄ of ∂Ω \ {Fix}.
Now, consider an element γ′ ∈ π1(S)\〈γ〉, and the corresponding holo-

nomy H = hol(γ′) ∈ PGL(3,R). Then, we may assume, by perturbing
the path P if necessary, that H(r) �= Fix, but, of course, H(r) ∈ ∂Ω.
Also, H(r) is the limit point of the path γ′P̃ , where we consider γ′ as
the path starting at p̃ ∈ S̃ and covering an appropriate loop. But this
then contradicts the fact that

⋃
n dev(γnD) contains a neighborhood in

Ω̄ of ∂Ω \ {Fix}. q.e.d.

8. The boundary of the moduli space

8.1. Regular 3-differentials. The material in this subsection is well
known. I would like to thank Michael Thaddeus, Ravi Vakil and Richard
Wentworth for explaining some of it to me. A basic reference for the
algebraic theory is the book of Harris and Morrison [20]. A good sum-
mary of the analytic techniques used here is contained in Wolpert [37].
We only give a sketch of the arguments.

Consider the Deligne–Mumford compactification Mg of the moduli
space of Riemann surfaces of genus g ≥ 2 and also Mg,1 the com-
pactification of the moduli space of genus-g Riemann surfaces with one
marked point p. Let F : Mg,1 → Mg be the forgetful map. In this
context, Mg,1 is the universal curve over Mg. These moduli spaces are
only V-manifolds (smooth Deligne–Mumford stacks). We will describe
complex coordinates on the sense of V-manifolds: in general, for each
point x in the moduli space, there is a chart given by the quotient of an
open set in C

N by a finite group G of biholomorphisms. (For details of
V-manifolds, see Baily [1].) Charts in Teichmüller space provide these
V-manifold charts near x ∈ Mg. (We describe below coordinate charts
near x ∈ Mg \ Mg.) The group G is given by the group of automor-
phisms of the curve F−1(x) over the point x. (In the case, g = 2 with
no marked point, the group G is instead the quotient of the group of
automorphisms of the curve by the automorphism group of the generic
curve, which is generated by the hyperelliptic involution.)

At a point x ∈ Mg, consider the curve C0 over x. The tangent space
at x of Teichmüller space Tg consists of 3g − 3 Beltrami differentials
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νi. For s = (si) ∈ C
3g−3 small, then ‖siνi‖L∞ < 1 and thus, there is a

quasiconformal map homeomorphism C0 to Cs with Beltrami differential
siνi. Then, s form local C∞ V-manifold coordinates around x ∈ Mg.
Note s is not a holomorphic coordinate system.

Each point x ∈ Mg \Mg represents a Riemann surface with nodes.
In other words, each point p in our curve C over x has a neighborhood
of the form either {z : |z| < K} or {(z, z′) : zz′ = 0, |z| < K, |z′| < K}.
Let n be the number of nodes. Let Creg be the smooth part of C, which
is formed by removing the n nodes. Creg is a possibly disconnected
non-compact Riemann surface. Creg may be smoothly compactified
to C̃ by adding 2n points {pi, qi}. C̃ is the normalization of C. A
natural analytic map from C̃ to C identifies each pair (pi, qi) to a single
point to form each node. C must be stable: i.e. C has only finitely
many automorphisms; equivalently Creg admits a conformal complete
hyperbolic metric.

A natural deformation of C consists of plumbing the nodes, in which
we replace each node {zz′ = 0} by the smooth neck {zz′ = t}. There
is a nice overview of the plumbing construction in Wolpert [37]. A
neighborhood of the ith node is for local coordinates zi, z′i
(56) Ni = {(zi, z′i) : ziz′i = 0, |zi| < K, |z′i| < K}.
For a complex parameter ti : |ti| < K2, we replace Ni by the smooth
cylinder N ti

i = {(zi, z′i) : ziz′i = ti, |zi| < K, |z′i| < K}. It is clear that
for t=(ti)

Ct = [C \ (∪iNi)]
⊔(

∪iN ti
i

)
patches together complex-analytically to make Σt smooth on a neigh-
borhood of each N ti

i . These ti form n complex V-manifold coordinates
over Mg.

In addition, Wolpert [36, Lemma 1.1] has shown there is a real-
analytic family of Beltrami differentials ν(s) on Creg parametrized by
s in a neighborhood of the origin in C

3g−3−n so that the induced qua-
siconformal maps ζν(s) : Creg → Creg

s preserve the cusp coordinate up
to multiplying by a rotation eiθs . Form Cs by completing Creg

s by reat-
taching the corresponding nodes. For the n nodes and t ∈ C

n small, we
perform the plumbing construction as above with respect to the cusp
coordinates on each Cs to form a family Cs,t of curves. Then, (s, t) form
a real-analytic V-manifold coordinate chart of Mg near a nodal curve.
For each fixed s, the t coordinates are complex-analytic.

There are similar coordinates on the universal curve Mg,1. The idea
is to treat the marked point p as a puncture. As above, by Lemma 1.1
in [36], in Mg,1, there is a real-analytic family of Beltrami differentials
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ν(s) for s in a neighborhood of 0 in C
3g−3 so that the quasiconformal

maps ζν(s) preserve a canonical complex coordinate neighborhood U of
p ∈ C0. Then, p may move complex-analytically in U so that (s, p) form
a real-analytic V-manifold coordinate chart of Mg,1, and for each fixed
s, the p coordinate is complex-analytic.

It is straightforward to combine the construction in the last two para-
graphs in the case of a nodal curve C with n nodes over a point in
Mg \Mg and a point p ∈ Creg. Then, we have real-analytic coordinates
(s, p, t) with s ∈ U ⊂ C

3g−3−n, t ∈ U ′ ⊂ C
n, and p ∈ U ′′ ⊂ Creg

s,t so that
for s fixed, the coordinates (p, t) are complex-analytic.

The remaining case of a nodal curve C with p at a node is more subtle.
First of all, having p equal to a node is technically not allowed in the
Deligne–Mumford compactification. Let the node in C be represented
by zz′ = 0. Then, if p is the point of the node {z = z′ = 0}, this
configuration is not stable. Instead, introduce a sphere CP

1 attached to
C̃ by one point r ∈ CP

1 to {z = 0} and by another point r′ ∈ CP
1 \ {r}

to {z′ = 0}. This amounts to having a sphere “bubbling” to separate the
existing node into two pieces and having the sphere attached by nodes
at r, r′ to each piece. See Figure 7 (in the case, the node separates the
curve into two parts C1 and C2). Then, p is allowed to be any point
in CP

1 \ {r, r′}. However, since the sphere with three marked points
p, r, r′ has no automorphisms, we may collapse the CP

1 and identify this
configuration canonically with the configuration of the point p equal
to the node {z = z′ = 0}. Then, p is no longer a smooth complex
coordinate, since it must vary in a singular curve at the singularity.
Instead, consider the plumbing variety {zz′ = t} ⊂ C

3 for z, z′, t near
0 and t = t1. (z, z′) are natural complex coordinates for the plumbing
variety—see e.g. [37]. Then, as above, there is a complex 3g − 3 −
n dimensional family of real-analytic coordinates s corresponding to
quasiconformal maps which preserve the complex coordinates near the
nodes. (s, z, z′, t2, · · · , tn) form a real-analytic coordinate neighborhood
in Mg,1 so that for each fixed s, (z, z′, t2, · · · , tn) are complex-analytic
coordinates.

C
1 C2

P
P

C
1 C2

Cbubble

Figure 7. Mg,1 near a Node.
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Let ρ be a positive integer. On any Riemann surface with local co-
ordinate z, a section U of Kρ with a pole of order ρ at p = {z = 0}
has a residue RUp , which is the the coefficient of the

(
dz
z

)ρ
term in the

Laurent series of U . It is easy to check RUp does not depend on the
complex coordinate z. Over a curve C with n nodes formed by pairing
up n pairs of points (pi, qi) in C̃, the space of regular ρ-differentials over
C is{

U ∈ H0(C̃,Kρ

C̃
Πi([pi]ρ[qi]ρ)) : RUpi

= (−1)ρRUqi ∀ i = 1, . . . , n
}
.

In other words, these are sections of Kρ over C̃ with poles of order ρ
allowed at pi, qi so that the residues match up appropriately on either
side of each node. We are interested in the case ρ = 3 of regular 3-
differentials and we denote the sheaf of regular 3-differentials over C as
K3,reg
C .
Let K3 be the line bundle over Mg,1 whose fiber over a pointed curve

(C, p) is the vector space K3,reg
C (p) the fiber of the regular 3-differentials

over C at p. It straightforward that this forms a holomorphic line bundle
over Mg,1, except possibly in the situation of a nodal curve C in which
the marked point p is equal to a node. Recall the situation above: we
separate the node and place a bubble CP

1 in between attached to the
local normalization C̃ loc at points r and r′. p is any other point in CP

1.
Call this new curve Cbubble. Then, any regular 3-differential on Cbubble

has residues

Rz=0 = −Rr and Rz′=0 = −Rr′ .
Now, dimCH

0(CP
1,K3[r]3[r′]3) = 1, and the residues satisfy Rr =

−Rr′ . Thus, Rz=0 = −Rz′=0. So, K3 at this point has a stalk naturally
corresponding to the residues at the node p = {z = z′ = 0}.

Now, a local trivialization of K3 near the point in Mg,1 corresponding
to (C, p) is given in terms of the coordinates z, z′ of the plumbing variety.
For z �= 0, z′ �= 0, let

T =
(
dz

z

)3

= −
(
dz′

z′

)3

,

and T is well-defined except at the node. Then, T extends over the node
{z = z′ = 0} to a local trivialization so that at the node, T has residues
RTz=0 = 1 and RTz′=0 = −1. This is simply in terms of the coordinates
on the plumbing variety z, z′. In general, we take

(57) T = c(s)
(
dz

z

)3

= − c(s)
(
dz′

z′

)3

,
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where the scalar c(s) depends only real-analytically on s. We may take
c(0) = 1. This factor appears because the s coordinates on Mg,1 are
only real-analytic with respect to the underlying complex structure.

Now, push forward the sheaf K3 by the map F : Mg,1 → Mg to form
a sheaf S = K3

Mg,1/Mg
over Mg. In particular, since the cohomology

H i(C,K3,reg) = {0} for all i > 0, and dimH0(C,K3,reg) = 5g − 5, a
theorem of Grauert [19] shows that S is a (V-manifold) vector bundle
over Mg. See Masur [29, Prop. 4.2] or Fay [14] for details.

In particular, in a neighborhood of point corresponding to a Riemann
surface with nodes in Mg, there is a holomorphic frame of regular 3-
differentials.

Proposition 17. A basis for the analytic toplogy on the total space of
S = F∗(K3) consists of neighborhood of (C,U), where C is a curve with
n nodes and U ∈ H0(C,K3,reg) consists of pairs (Cs,t, Us,t) so that (s, t)
is close to zero in C

3g−3, and Us,t is close to U in the following way:
Let the plumbing collars be represented by {ziz′i = ti : |zi|, |z′i| < K}.
Outside the plumbing collars, we require∣∣∣∣ Us,t

(dzν(s))3
− U

dz3

∣∣∣∣ < ε

for zν(s) the local conformal coordinate on Cs,t determined by the qua-
siconformal map for a local coordinate z on C. Inside the plumbing
collars |zi|, |z′i| < K, we require∣∣∣∣ z3

i

dz3
i

(Us,t − U)
∣∣∣∣ < ε.

Proof. This is proved in the above paragraphs. In particular, the last
statement follows from the trivialization (57) of K3. We remark that
since the cusp coordinate zν(s)i = eiθszi by Wolpert’s Lemma 1.1 in [36],
(dz

ν(s)
i )3

(z
ν(s)
i )3

= dz3i
z3i

for zi inside the collar neighborhood. q.e.d.

Remark. Fay [14] and Yamada [38] produce a more explicit asymp-
totic expansion for a basis of regular 1-differentials on a degenerating
family of Riemann surfaces, and Masur [29] does the same for regular
2-differentials. The same techniques should apply to the present case
of regular 3-differentials as well. Such a specific result is not needed in
this paper.

We use this characterization to describe a degenerating family of pairs
(Cτ , Uτ ), which approach a pair (C0, U0) of a nodal curve C0 and a regu-
lar 3-differential U0 on C0. In general, the parameter τ = τ(s, t1, . . . , tn).
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For notational simplicity, we focus on the case τ = t1 = t the plumbing
parameter of the first node. Given a noded surface C0 and a degener-
ating family Ct determined by plumbing coordinates zz′ = t, a regular
3-differential U0 on C0 may be described as a limit of holomorphic 3-
differentials Ut on Ct. Recall (56). Then

U0|z′=0 =
∞∑

m=−3

amz
mdz3

U0|z=0 =
∞∑

m=−3

bm(z′)m(dz′)3

where b−3 = −a−3. Then, by Proposition 17, we may define on the
collar neighborhood {z : |z| ∈ [ |t|K ,K]} ⊂ Ct

Ut =
∞∑

m=−∞
am(t)zmdz3,

where am(t) is a continuous function of t so that for m ≥ −3, am(0) =
am, and for m ≤ −3, am(t) = −t−m−3b−m−6(t), where bn(t) is contin-
uous in t and bn(t) = bn for n ≥ −3. (To make Ut a holomorphically
varying family, we may choose am, bm to vary holomorphically in t up
to the matter of a branch cover of degree 2. See e.g. Masur [29].)

It is useful to compute in terms of more symmetric coordinates. For
some choice of branch of log t, let � be the quasi-coordinate function
given by

(58) � = log z − 1
2 log t = − log z′ + 1

2 log t,

and let µ = Re �. Then, we have

(59) Ut =

(
−

∞∑
n=1

bn−3(t)t
n
2 e−n� + a−3(t) +

∞∑
n=1

an−3(t)t
n
2 en�

)
d�3.

Note that we may include the parameters (s, t2, . . . , tn). In this case, the
coefficients bm and am vary continuously in these parameters as well.
Also, let �s,t = log zν(s) − 1

2 log t for zν(s) the complex coordinate on Cs,t
given by the quasi-conformal map determined by ν(s).

8.2. Holonomy of necks approaching a QH end. Recall that at a
QH end, the residue R = a−3(0) �= 0. In this case, we have on either side
of the node, the model metric is given by (17), and which is the same for
residue R and −R. These are flat cylindrical metrics of the same radius
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which can simply be glued together in the plumbing construction. For
each t small, we modify the cylindrical metric to be

(60) ht = 2
1
3 |a−3(t)|

2
3 |d�|2.

(Recall |d�|2 = |dz|2
|z|2 = |dz′|2

|z′|2 .) Note that again, for simplicity, we repress
the dependence of ht on the other variables (s, t2, . . . , tn), in which ht
varies continuously. We may assume that the plumbing parameter t
satisfies |t| < c2, where c is the constant as in (18), so that the Ansatz
metric is flat for |z|, |z′| < c. (Note we can choose a uniform c for a
neighborhood of 0 in t as long as a−3(t) is bounded away from 0.)

We will modify the barriers constructed in Section 5.2 to show that
as t → 0, the solution u to (13) will go to zero on the neck which is
being pinched to the node. Although the cylindrical metrics fit together
well, the barriers must be modified.

Our barriers will be functions only of µ = Re �. For S = S(µ), use
(59) so that equation (19) becomes
(61)
L(S) = 2−

1
3 |a−3(t)|−

2
3S′′ − 2eS + 2e−2S

[
1 +O(|t| 12 eµ) +O(|t| 12 e−µ)

]
.

We need L(S) ≥ 0 for a lower barrier and L(S) ≤ 0 for an upper barrier.
Modify the barrier only in a neighborhood of the loop

Lt = {|z| = |z′| = |t| 12 } = {µ = 0},

where µ = Re �. We may do this because outside a neighborhood
|z|, |z′| < K, the original barriers suffice—outside this neighborhood,
U0 changes to Ut continuously, and all the choices made in construct-
ing the barriers in Section 5.2 can easily be made to accommodate this
small perturbation.

Recall our upper and lower barriers in Section 5.2 are of the form
±β|z|2α, for β � 0 and α > 0 small. We may adjust these constants so
that the same β and α are valid for both upper and lower barriers on
both sides of the puncture. On the plumbed surface, choose our upper
barrier St to be equal to

St =

 β|t|αe2αµ for µ ∈
[
1, logK − 1

2 log |t|
]

It(µ) for µ ∈ [−1, 1]
β|t|αe−2αµ for µ ∈

[
− logK + 1

2 log |t|,−1
]

Notice that for the first and third lines of this definition are respectively
β|z|2α and β|z′|2α. The middle part It(µ) is a C2 interpolation between
these two. Explicitly, we may take It(µ) to be the even fourth-order
polynomial in µ so that St is C2 at µ = ±1. In other words, for Q =
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St(1) = St(−1) = β|t|αe2α,

It(µ) = Q
[
(1 − 5

4α+ 1
2α

2) + (3
2α− α2)µ2 + (−1

4α+ 1
2α

2)µ4
]
,

I ′′t (µ) = αQ
[
(3 − 2α) + (−3 + 6α)µ2

]
.

Therefore, we claim we can choose α independent of t so that for t near
0, It(µ) > 0 and L(It) ≤ 0 for µ ∈ [−1, 1]. As in (20), rewrite (61) as

L(It) =
(
2−

1
3 |a−3(t)|−

2
3 I ′′t − 3It

)
+
(
2e−2It − 2eIt + 3It

)
+ e−2It

[
O(|t| 12 eµ) +O(|t| 12 e−µ)

]
L(It) ≤ 0 follows: 2e−2It − 2eIt + 3It < 0 for if It > 0. For α small, Q
dominates the perturbation terms O(|t| 12 eµ) and O(|t| 12 e−µ); therefore,
the first term dominates the last and L(It) ≤ 0. This shows that St is
an upper barrier for (13) on the region µ = Re � ∈ [−1, 1].

For |µ| ∈ [1, logK − 1
2 log |t|], Proposition 17 shows ‖Ut‖2

ht
→ ‖U‖2

h

uniformly in the plumbing variety coordinates z, z′ as t → 0. By our
choice of ht in (60),

‖Ut‖2
ht

≤ 2 +C|z| + C ′|z′|
for constants C,C ′. Since this is true for all t, we may choose C,C ′
uniformly in t. Then, the last term in (20) is dominated by the first for
α small, β large, and (z, z′) close to 0, where these choices may be made
independently of t. Then, L(St) ≤ 0 for |µ| ∈ [1, logK − 1

2 log |t|].
Therefore, St is an upper barrier for (13). Essentially, the same ar-

guments show that near {|µ| ≤ logK − 1
2 log |t|}, −St forms a lower

barrier for solutions to (13) with data (Creg
t , Ut, ht), and as in Section

5.2, there is a constant Bt so that a lower barrier is equal to −St inside
the plumbing collars and Bt outside. Bt depends continuously on t.

Again, following Section 5.2, the maximum principle says that there is
a bounded solution ut to (13) on Creg

t so that |ut| ≤ St for |z|, |z′| < K.
Note that as t → 0, St → 0 on a neighborhood of the loop Lt. The
geometry is still uniformly bounded in this case; so, we still have the
bound on ut and ∇ut as in Proposition 5. Then, let At be the holonomy
around the loop Lt with respect to the frame {f, fw, fw̄} as in (22).
Orient Lt counterclockwise in the z coordinate. Then, Lemma 6 still
holds and we have as in the proof of Proposition 7

Proposition 18. As t → 0, the eigenvalues of the holonomy along
Lt approach e2πλi for λi the roots, with multiplicity, of formula (23).

In terms of the other parameters (s, t2, . . . , tn), the Ansatz metric
hs,t and the upper and lower barriers vary continuously. One thing to
note is that for s small, Wolpert’s Beltrami differential ν(s) is close to
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0 and supported away from the collar neighborhoods. Therefore, the
complex structure and hyperbolic metric on Creg

s are close to that on
Creg

0 . Then, on Creg
s,t , we take hs,t to be the hyperbolic metric on Creg

s,0

outside the collar neighborhoods and modify the metrics ht as in (18)
and (60) inside the collar neighborhoods only.

8.3. Vertical twist parameters of a family. Recall that if ReR >
0, then the vertical twist parameter of the end is +∞. Theorem 6
part (2) will follow from Proposition 13 above. First, note that in a
neighborhood in the total space of K3, by Section 8.2, there are uniform
bounds on ‖Uτ‖ on each Riemann surface Creg

τ for τ near 0. Also, there
are uniform barriers of the form β|zi|2α and β|z′i|2α in each plumbing
collar, and uniform constant barriers in on the rest of Cτ . Then, we may
bootstrap as in Lemma 4 to find uniform estimates on the third covariant
derivatives of uτ the solution to (13) for data (Creg

τ , Uτ , hτ ). Therefore,
by Ascoli–Arzela, a subsequence of uτ converges in C2 (determined by
covariant derivatives of the metric) to a solution ũ of (13) for data
(Creg, U, h). By Proposition 3, ũ = u and thus, there are C2 estimates
for uτ approaching u. In particular, by (36), the perturbation matrix
Bpert
τ from (38) varies continuously in τ in the plumbing collar.
More specifically, in terms of the � coordinate in a collar neighborhood

as in the previous subsection, Bpert
τ is uniformly continuous in τ and

satisfies

|Bpert
τ | ≤ β|t|αe2αµ for µ ∈ [1, logK − 1

2 log |t|],
where t = t(τ). In terms of the y coordinate,

|Bpert
τ | ≤ βe−2αy for y ∈ [− logK,−1 − 1

2 log |t|].
We have similar bounds in the ỹ coordinates (34). Now, for t small,
replace Bpert

τ by

Bcutoff
τ =

{
Bpert
τ for y ≤ −1 − 1

2 log |t|
f(x, y, τ) for y > −1 − 1

2 log |t|
so that Bcutoff

τ satisfies the hypotheses of Lemma 10. Then, for t = t(τ)
small, the solution to (38) satisfies the asymptotic bounds (48), and
moreover, the o(eµiỹ) terms are uniform in τ as t(τ) → 0. Therefore,
as in Section 7.3 above, we may fix a large initial value of y, say y0,
independent of τ , and the solutions to the equations (using Bcutoff ) in
the two directions determined by ι and ι̂ give solutions which approach
the geodesic line segments G+0 and G0− respectively. (Notice that in
these cases, by (43), B̃ and Bcutoff satisfy the hypotheses of Proposition
24.) Now, for the actual RP

2 structure determined by (Creg
τ , Uτ ), we

must take our original perturbation term Bpert. But for y ≤ −1 −
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1
2 log |t|, the solutions are the same by uniqueness of solutions to ODEs.
Since y0 is fixed and the bound −1− 1

2 log |t| → ∞ as t→ 0, there are, as
t → 0, two regions of the developing map which approach the geodesic
line segments G+0 and G0− respectively. The only way this can happen
is if the vertical twist parameter is approaching +∞ as τ → 0.

In the case of a node with ReRi < 0, there is not as much information
concerning the holonomy maps, but we do know that the residue of the
other half of the node has positive real part, and from the point of view
of the residue with ReRi > 0, the vertical twist parameter approaches
+∞. Therefore, the vertical twist parameter from the opposite point of
view shrinks to −∞.
8.4. Holonomy of necks approaching a parabolic end. Recall
from Section 5 that the Ansatz and the barrier for a parabolic end
(one for which the residue Ri = 0) is of quite a different form. The
Ansatz metric is the hyperbolic metric, and the upper and lower bar-
riers near the puncture are both constants. We are free to make these
constants larger in norm by the methods above, and thus, we can assure
that the barriers on either side of the node are the same constant, and
thus patch together naturally as the node is plumbed.

The metric, on the other hand, must be smoothed across the plumbed
node. It is crucial that the curvature still be negative and bounded
away from 0 and −∞. For this purpose, we recall the plumbing metric
in Wolpert [35]. See also Wolf–Wolpert [33].

Proposition 19 ([35]). Let C0 be a stable nodal Riemann surface,
and let Ct be the plumbed surface as above. On the plumbing collar
{zz′ = t} for |z|, |z′| ≤ K, there is a metric ht which is equal to the
hyperbolic metric on C0 outside the plumbing collar(s), and satisfies
(62)

ht =


4|dz|2

|z|2(log |z|2)2 for |z| ∈ [2K3 ,K] i.e., |z′| ∈ [ |t|K ,
3|t|
2K ](

π
log |t| csc(

π log |z|
log |t| ) |dz||z|

)2
for |z| ∈ [3|t|K , K3 ] i.e., |z′| ∈ [3|t|K , K3 ]

4|dz′|2
|z′|2(log |z′|2)2 for |z| ∈ [ |t|K ,

3|t|
2K ] i.e., |z′| ∈ [2K3 ,K]

and smoothly interpolated for |z|, |z′| ∈ [K3 ,
2K
3 ]. The curvature κt on

(Ct, ht) satisfies
‖κt + 1‖C0 ≤ γ|t|δ

for uniform constants γ, δ > 0.

Remark. For our purposes, we may take the model grafting in Sec-
tion 3.4.MG of Wolpert [35]. We do not need to use the more compli-
cated (and accurate) grafting procedures in Section 3.4.CG of [35] or in
[33].
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Lemma 20. There is a constant δ′ so that if |t| ≤ δ′ and ‖Ut‖ht ≤ K
for a constant K independent of t, then there is a constant K′ indepen-
dent of t so that solution ut to (13) satisfies |ut| ≤ K′.

Proof. In Section 5.2, the upper and lower barriers for (13) on the
curve C0 is equal to a constant in the neighborhood of the node in
question (note that the constants may be adjusted on either side of the
node to be equal). A constant Mt > 0 is an upper barrier of (13) if

4e−2Mt‖Ut‖2
ht

− 2eMt − 2κt ≤ 0 i.e.,

4‖Ut‖2
ht

− 2E3
t − 2κtE2

t ≤ 0,

for Et = eMt . It is easy to see that Et may be chosen independently of
t given that ‖Ut‖ht is bounded independently of t, and (by Proposition
19) κt satisfies −k′ ≤ κt ≤ −k for positive constants k, k′. Similar
considerations apply for the lower barrier. q.e.d.

Proposition 21. Let At be the holonomy around the loop Lt = {|z| =
|z′| = |t| 12 } with respect to the frame {f, fw, fw̄} as in (22). Orient
Lt counterclockwise in the z coordinate. If there are uniform positive
constants δ′, C so that for |t| ≤ δ′,

(63) sup
|z|∈[ K

|t| ,K]

∣∣∣∣z3(Ut − U0)
dz3

∣∣∣∣ |log |t||3 ≤ C,

then At is continuous in t and

lim
t→0

At =

 0 1 1
0 0 0
0 0 0

 .

Proof. Recall

At =

 0 1 1
1
2e
ψ ψw Ue−ψ

1
2e
ψ Ūe−ψ ψw̄

 .

for z = eiw, ψ = φ+u, ht = eφ|dw|2, and w = x+ iy. Note we suppress
the dependence on t. The continuity in t follows from the fact that ut
and its derivatives vary continuously in t by standard elliptic regularity
arguments, as in the first paragraph of Section 8.3. (In particular, it is
easy to check that the metric (62) has bounded geometry on a uniformly
large neighborhood of Lt.) Also near Lt,

φ = 2 log
(

−π
log |t|

)
− 2 log sin

(
−πy
log |t|

)
.
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On Lt, y = −1
2 log |t|, and so

eφ =
(

π

log |t|

)2

, and φw = 0.

Moreover, by Lemma 20, |u| ≤ K′. We still have Lemma 4, which shows

|uw| ≤ K′′e
φ
2 = K′′ π

|log |t||
Finally, the assumption (63) on U , the fact that U0 has residue 0, and
the uniform bound on u shows as t→ 0, Ue−ψ → 0 on Lt. Similarly, all
the other entries in the second and third rows of At go to zero. q.e.d.

Then, as in Section 6.2, the eigenvalues of the holonomy around the
loop Lt all approach 1 as t → 0.

In terms of more general paths (Cτ , Uτ ) in S, calculating the limiting
holonomy depends on having uniform C0 estimates on u independent of
τ . The model metric on Cτ is simply the hyperbolic metric on Cs(τ),0
outside the collar neighborhoods and may be modified as above in each
collar neighborhood. Note that the complex structure and hyperbolic
metrics on Cs(τ),0 vary continuously as in Wolpert’s Lemma [36]. In a
neighborhood of a singular curve C0 with n nodes, consider V-manifold
coordinates (t1, . . . , tn, s) in Mg near C0. Let U0 have residue 0 at k of
the n nodes. Without loss of generality, assume these nodes correspond
to the plumbing parameters (t1, . . . , tk). Then

Proposition 22. For (Cτ , Uτ ) a continuous path in S, if in addition
there are uniform positive constants δ, C so that for |τ | ≤ δ, Uτ satisfies

(64) sup
|zi|,|z′i|∈[ K

|ti| ,K]

∣∣∣∣z3
i (Uτ − U0)

dz3
i

∣∣∣∣ |log |ti||3 ≤ C

for ti = ti(τ) and for all i ∈ {1, . . . , k}, then the eigenvalues of the
holonomy around each neck are continuous in τ .

Given a holomorphic frame {Ψ1, . . . ,Ψ5g−5} of the vector bundle S →
Mg, we have the following

Corollary 23. Write Uτ = aj(τ)Ψj , where a = (aj) ∈ C
5g−5 and

Ψj represents the element of H0(Cτ ,K3,reg) corresponding to the frame.
Then, if there is a uniform C so that

|[a(τ) − a(0)](log |ti|)3| ≤ C for i = 1, . . . , k,
then the eigenvalues of the holonomy around each neck are continuous
in τ .
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8.5. Results. We record the results of the previous subsections in

Theorem 6. Consider a continuous path of pairs (Cτ , Uτ ), where the
possibly nodal curve Cτ represents a point in Mg and Uτ is a holomor-
phic section of K3,reg

Cτ
so that C0 is a nodal curve with n nodes. For

each node, pick one side from which to measure the residue. For any
curve Cτ which approximates C0 by pinching a neck to form the node,
this amounts to choosing an orientation for any loop around that neck.
Then, U0 is a cubic differential with residue Ri for each node.

1) If all the residues Ri �= 0, then the eigenvalues of the holonomy
around each neck which is pinched to the node continuously ap-
proach the eigenvalues of the holonomy around the punctures of
the complete Riemann surface Creg

0 as in Table 1. The same is
true if we have some residues R1, . . . , Rk = 0 as long as Uτ satis-
fies the addition set of bounds (64).

2) Still assume (64) for all nodes with 0 residue. Consider a node
whose residue Ri satisfies ReRi �= 0. Then, the vertical twist pa-
rameter along this neck N approaches ±∞, the sign agreeing with
the sign of the ReRi. In fact, if ReRi > 0, there is a continuous
path of points pτ ∈ Mg,1 so that pτ ∈ Cτ and pτ avoids all nodes,
and a continuously varying choice of RP

2 coordinate chart near
pτ in the RP

2 surface Sτ determined by (Creg
τ , Uτ ). The holonomy

matrix with respect to these RP
2 coordinates of the neck N has

fixed points Fix0
τ , Fix+

τ and Fix−τ which vary continuously with τ .
If we fix coordinates on RP

2 so that Fix0
τ , Fix+

τ and Fix−τ are fixed,
then the image Ωτ of the developing map satisfies

lim
τ→0

Ωτ ⊃ T,

where T is the principal triangle whose vertices are the fixed points.
(In other words, for all points q ∈ T , there is a constant δ so that
if |τ | ≤ δ, then q ∈ Ωτ .)

Remark. We expect that the technical restrictions on the continuous
paths (Cτ , Uτ ) in the case Ri = 0 can be removed.

8.6. The RP
2 structure on a degenerating neck. By the definition

of regular 3-differentials, it is worthwhile to compare the RP
2 holonomy

of two punctures in Σ = Creg equipped with cubic differentials with
residues R and −R, as these will naturally be identified in the nodal
curve C. Recall that the eigenvalues of the holonomy are given by e2πλi ,
where λi are the roots of (23). If we replace R by −R in (23), then the
roots λi become −λi. In terms of the holonomy matrix, at least in the
hyperbolic case, the holonomy matrix satisfies H−R = H−1

R . We may
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think of this as the same holonomy viewed from opposite orientations,
which is natural: the holonomy is given in terms of loops which go
counterclockwise around each puncture, and if want to glue two such
punctures together, the two loops will be oriented in opposite directions.

In the case of parabolic and quasi-hyperbolic holonomies, the holo-
nomy is the only invariant we have of the end, but there is also the
vertical twist parameter for hyperbolic ends. Assume ReR > 0. Then,
the vertical twist parameter for this end is +∞, while the vertical twist
parameter with the corresponding end with residue −R will be −∞.
Again, this is to be expected. We may imagine a family of surfaces
degenerating in a way that their vertical twist parameters become infi-
nite. Then, measured from one side (vertical twist parameter going to
+∞), the piece of the developing map glued along the principal geo-
desic is becoming larger and larger until it becomes the entire principal
triangle. From the other side (for which the vertical twist parameter
goes to −∞), the glued piece of the developing map becomes smaller
and smaller until it vanishes and the boundary is simply the principal
geodesic. See Section 2.

Appendix A. Linear almost constant-coefficient systems with
parameters

Proposition 24. Consider a system of linear differential equations

(65) ∂yX(s, y) = (c(s)B +R(s, y))X(s, y),

where y ≥ T , s is a set of parameters, B = D(µ1, . . . , µn) is a constant
n × n diagonal matrix, the scalar factor c(s) is continuous, and the
matrix entries of the error term R(s, y) are smooth and L1 in y and
vary in s so that for all i, j, the map s �→ Rji (s, y) is continuous to
L1([T,∞)).

Then, there exist n linearly independent solutions X(k)(s, y) to (65)
so that for {vk} the standard basis on R

n,

X(k)(s, y) = ec(s)µkyvk + ec(s)µkyb(s, y),

and X(k)(s, y) is continuous in (s, y), limy→∞ |b(s, y)| = 0 uniformly in
s for s in a bounded region.

Remark. If in addition (as we have above), there are uniform pos-
itive constants C, γ so that |Rji (s, y)| ≤ Ce−γy, then we can replace
c(s)B by a continuous family B(s) of diagonal matrices, and moreover
a more precise error bound on X(k) − eB(s)µkyvk holds. Since we do not
need this better result, we do not prove it here.



THE COMPACTIFICATION OF THE MODULI SPACE 273

Proof. We follow the treatment in Levinson [27, pp. 115–117]. The
only additional thing to prove is the continuity of solutions in s. Assume
µi the eigenvalues of B are arranged so that

Reµ1 ≥ Reµ2 ≥ · · · ≥ Reµn.

Fix k ∈ {1, . . . , n}. Choose q = q(k) so that

Reµk = Reµq > Reµq+1

(or q = n if this is impossible). Define X0
i = δike

c(s)µky, and define Xm
i

recursively by

Xm+1
i (s, y) = δike

c(s)µky −
∫ ∞

y
eµi(y−σ)Rji (s, σ)Xm

j (s, σ) dσ (i ≤ q),

Xm+1
i (s, y) =

∫ y

a
eµi(y−σ)Rji (s, σ)Xm

j (s, σ) dσ (i > q).

The index j is summed from 1 to n, but no sum is taken over i. If for
some m, Xm

i = Xm+1
i , then this Xm

i solves (65) as long as the integrals
involved converge absolutely.

Now, it is clear that X0
i is continuous in (s, y). By induction, the

same is true for Xm
i for all m. As in [27],

|Xm+1
i −Xm

i | ≤ 2−m
∣∣∣ec(s)µky

∣∣∣ ,
and so the series (for X−1

i = 0)

Xi =
∞∑

m=−1

(Xm+1
i −Xm

i )

is majorized by a geometric series. Also X = (Xi) solves (65). In partic-
ular, Xm converges locally uniformly to X in (s, y) and X is continuous
in (s, y). This X is the X(k) in the proposition.

The bound on the error term in [27] is of the form

|bi(s, y)| ≤ e−εy|R|L1 + 2
∑
j

∫ ∞

y
2

|Rji (s, σ)| dσ

for a uniform positive constant ε. This shows the required uniform
bound on |b(s, y)|. The rest of the proposition follows as in [27]. q.e.d.
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