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Abstract

In this paper, by combining techniques from Ricci flow and al-
gebraic geometry, we prove the following generalization of the clas-
sical uniformization theorem of Riemann surfaces. Given a com-
plete non-compact complex two dimensional Kahler manifold M
of positive and bounded holomorphic bisectional curvature, sup-
pose its geodesic balls have maximal volume growth, then M is
biholomorphic to C2. This gives a partial affirmative answer to
the well-known conjecture of Yau [Eli_-l:] on uniformization theorem.
During the proof, we also verify an interesting gap phenomenon,
predicted by Yau [ﬁfg], which says that a Kahler manifold as above
automatically has quadratic curvature decay at infinity in the av-
erage sense.

1. Introduction

One of the most beautiful results in complex analysis of one variable
is the classical uniformization theorem of Riemann surfaces which states
that a simply connected Riemann surface is biholomorphic to either the
Riemann sphere, the complex line or the open unit disc. Unfortunately,
a direct analog of this beautiful result to higher dimensions does not
exist. For example, there is a vast variety of biholomorphically distinct
complex structures on R?" for n > 1, a fact which was already known
to Poincaré (see [3], [11] for a modern treatment). Thus, in order
to characterize the standard complex structures for higher dimensional
complex manifolds, one must impose more restrictions on the manifolds.
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From the point of view of differential geometry, one consequence of
the uniformization theorem is that a positively curved compact or non-
compact Riemann surface must be biholomorphic to the Riemann sphere
or the complex line, respectively. It is thus natural to ask whether there
is similar characterization for higher dimensional complete Kéhler man-
ifold with positive “curvature”. That such a characterization exists in
the case of compact Kéahler manifold is the famous Frankel conjecture
which says that a compact Kéhler manifold of positive holomorphic bi-
sectional curvature is biholomorphic to a complex projective space. This
conjecture was solved by Andreotti-Frankel [12] and Mabuchi [21] in
complex dimensions two and three respectively and the general case
was then solved by Mori [27], and Siu-Yau [38§] independently. In this
paper, we are thus interested in complete non-compact Kahler man-
ifolds with positive holomorphic bisectional curvature. The following
conjecture provides the main impetus.

Yau Conjecture (Yau [41]). A complete non-compact Kihler man-
ifold of positive holomorphic bisectional curvature is biholomorphic to a
complex Fuclidean space.

Greene and Wu [[15] also proposed a weaker version of this conjecture
by assuming that the Kahler manifold has positive Riemannian sectional
curvature. In contrast to the compact case, very little is known about
this conjecture. The first result in this direction is the following isomet-
rically embedding theorem.

Theorem (Mok-Siu-Yau [23], Mok [24]). Let M be a complete
non-compact Kdhler manifold of non-negative holomorphic bisectional
curvature of complex dimension n > 2. Suppose there exist positive

constants Cy, Cy such that for a fized base point xo and some € > 0,
(i) Vol (B(xg,7)) > C11?", 0<r<+oo,

. Cs
(ii) R(z) < T4 (0. 2)

on M,
where Vol (B(zo,r)) denotes the volume of the geodesic ball B(xo,T)
centered at xo with radius v, R(x) denotes the scalar curvature and
d(xg,x) denotes the geodesic distance between xo and x. Then, M is
1sometrically biholomorphic to C™ with the flat metric.
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Their method is to consider the Poincaré-Lelong equation /—100u =
Ric. Under the condition (ii) that the curvature has faster than qua-
dratic decay, they proved the existence of a bounded solution u to the
Poincaré—Lelong equation. By virtue of Yau’s Liouville theorem on
complete manifolds with non-negative Ricci curvature, this bounded
plurisubharmonic function v must be constant and hence, the Ricci
curvature must be identically zero. This implies that the Kahler met-
ric is flat because of the non-negativity of the holomorphic bisectional
curvature. However, this argument breaks down if the faster than qua-
dratic decay condition (ii) is weakened to a quadratic decay condition.
In this case, although we can still solve the Poincaré-Lelong equation
with logarithmic growth, the boundedness of the solution can no longer
be guaranteed.

In [24], Mok also developed a general scheme for compactifying com-
plete Kéahler manifolds of positive holomorphic bisectional curvature.
This allowed him to obtain the following improvement of the above
theorem.

Theorem (Mok [24]). Let M be a complete non-compact Kdhler
manifold of complex dimension n with positive holomorphic bisectional
curvature. Suppose there exist positive constants C, Cy such that for a
fized base point xg,

(i) Vol (B(xg,7)) > C11?", 0<r<+oo,
.. Co

! < = M
(ii) 0 < R(x) < 15 (g, 7) on ,

then M s biholomorphic to an affine algebraic variety. Moreover, if in
addition the complex dimension n = 2 and
(iii) the Riemannian sectional curvature of M is positive,
then M is biholomorphic to C2.

To the best of our knowledge, the above result of Mok and its slight
improvements by To [B8Y], and Chen-Zhu [8] are the best results in
complex dimension two of the above stated conjecture. Here, we would
also like to recall the remark pointed out in [§] that there is a gap in
the proof of Shi [B4)] or [B5] (see [8] for more explanation) which would
otherwise constitute a better result than that of Mok [24].

In this paper, we consider only the case of complex dimension two.
Our principal result is the following:
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Main Theorem. Let M be a complete non-compact complex two—
dimensional Kdhler manifold of positive and bounded holomorphic bi-
sectional curvature. Suppose there exists a positive constant C1 such
that for a fixed base point xo, we have

(1) Vol(B(xg,r)) > Cyrt 0 <r < +oo,
then, M is biholomorphic to C2.

Before we describe the ideas of the proof of the main theorem, we
recall a curvature linear decay estimate which was first established by
the first and third authors in [g].

Theorem (Chen-Zhu [9]). Let M be a complete non-compact Kdihler
manifold with positive holomorphic bisectional curvature. Then, for any
xo € M, there exists a positive constant C such that

s\ /! 1
" Vo (B(zo,7))

where R(x) is the scalar curvature of M.

Recently in Theorem 4.2 of [29], Ni and Tam had generalized this
curvature linear decay estimate to complete Kéhler manifolds with non-
negative bisectional curvature.

The proof of the Main Theorem will be divided into three parts. In
the first part, we will show that M is a Stein manifold homeomorphic to
R2. For this, we evolve the Kihler metric on M by the Ricci flow first
studied by Hamilton. Note that the underlying complex structure of M
is unchanged under the Ricci flow, thus we can replace the Kéhler metric
in our main theorem by any one of the evolving metrics. The advan-
tage is that, in our case, properties of the evolving metric are improving
during the flow. Moreover, we know that the maximal volume growth
condition (i) as well as the positive holomorphic bisectional curvature
condition are preserved by the evolving metric. More importantly, by
a blow up and blow down argument as in [7] and using an observation
of Ivey in [20], we can prove that the curvature of the evolving met-
ric decays linearly in time. This implies that the injectivity radius of
the evolving metric is getting bigger and bigger and any geodesic ball
with radius less than half of the injectivity radius is pseudoconvex. We
can then construct an increasing one parameter family of exhausting
pseudoconvex domains on M. From this, it follows readily that M is a
Stein manifold homeomorphic to R4.

C
/ R(x)de < ——  for all 0 < r < 400,
B(zo,r) L+
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In the second part of the proof, we consider the algebra P(M) of holo-
morphic functions of polynomial growth on M and we will prove that its
quotient field has transcendental degree two over C. For this, we first
need to construct two algebraically independent holomorphic functions
in the algebra P(M). Using the L? estimates of Andreotti—Vesentini [i]
and Homander [19], it suffices to construct a strictly plurisubharmonic
function of logarithmic growth on M. Now, if the scalar curvature de-
cays in space at least quadratically, it was known from [23], [24] that
such a strictly plurisubharmonic function of logarithmic growth can be
obtained by solving the Poincaré-Lelong equation, as we mentioned
before. However, the decay estimate (ii)” is too weak to apply their
result directly. To resolve this difficulty, we make use of the Ricci flow
to verify a new gap phenomenon which was already predicted by Yau
in [42]. More explicitly, by using the time decay estimate of evolving
metric in the previous part, we prove that the curvature of the ini-
tial metric must decay quadratically in space in certain average sense.
Fortunately, this turns out to be enough to insure the existence of a
strictly plurisubharmonic function of logarithmic growth. Next, by us-
ing the time decay estimate and the injectivity radius estimate of the
evolving metric, we prove that the dimension of the space of holomor-
phic functions in P(M) of degree at most p is bounded by a constant
times p2. Combining this with the existence of two algebraically inde-
pendent holomorphic functions in P(M) as above, we can prove that the
quotient field R(M) of P(M) has transcendental degree two over C by a
classical argument of Poincaré-Siegel. In other words, R(M) is a finite
extension field of some C(fi, f2), where f1, fo € P(M) are algebraically
independent over C. Then, from the primitive element theorem, we
have R(M) = C(f1, f2,9/h) for some g, h € P(M). Hence, the map-
ping F : M — C* given by F = (f1, fa, g, h) defines, in an appropriate
sense, a birational equivalence between M and some irreducible affine
algebraic subvariety Z of C%.

In the last part of the proof, we will basically follow the approach of
Mok in [24] and [26] to establish a biholomorphic map from M onto
a quasi-affine algebraic variety by desingularizing the map F. Our
essential contribution in this part is to establish uniform estimates on
the multiplicity and the number of irreducible components of the zero
divisor of a holomorphic function in P(M). Again, the time decay
estimate of the Ricci flow plays a crucial role in the arguments. Based
on these estimates, we can show that the mapping F' : M — Z is
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almost surjective in the sense that it can miss only a finite number of
subvarieties in Z, and can be desingularized by adjoining a finite number
of holomorphic functions of polynomial growth. This completes the
proof that M is a quasi—affine algebraic variety. Finally, by combining
with the fact that M is homeomorphic to R*, we conclude that M
is indeed biholomorphic to C2 by a theorem of Ramanujam [31] on
algebraic surfaces.

This paper contains eight sections. From Sections 2 to 4, we study
the Ricci flow and obtain several geometric estimates for the evolving
metric. In Section 5, we show that the two dimensional Kihler manifold
is homeomorphic to R* and is a Stein manifold. Based on the estimates
on the Ricci flow, a space decay estimate on the curvature and the
existence of a strictly plurisubharmonic function of logarithmic growth
are obtained in Section @. In Section 7, we establish uniform estimates
on the multiplicity and the number of irreducible components of the
zero divisor of a holomorphic function of polynomial growth. Finally, in
Section 8, we construct a biholomorphic map from the Kihler manifold
onto a quasi—affine algebraic variety and complete the proof of the
Main Theorem.

Finally, we remark that the main theorem can be slightly general-
ized to the case of non-negative bisectional curvature. The details had
already been carried out in the thesis (Theorem 0.9 of [6]) of the first
author.

2. Preserving the volume growth

Let (M, gaﬁ) be a complete, non-compact Kahler surface (i.e., a
Kéhler manifold of complex dimension two) satisfying all the assump-
tions in the Main Theorem. We evolve the metric g ] according to the
following Ricci flow equation

d9,5(x,t)
ﬁ )
— = —R_5(x,t xeM t>0,
9,5(,0) = g,5(z) x €M,
where R 5 (x, t) denotes the Ricci curvature tensor of the metric

9up(,t).

Since the curvature of the initial metric is bounded, it is known from
[83] that there exists some Tinax > 0 such that (2.1) has a maximal solu-
tion on M X [0, Tinax) with either Ti,,x = 400 or the curvature becomes
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unbounded as t — Thyax when Thax < +00. By using the maximum
principle, one knows that the Kéahlerity of 903 and the positivity of
holomorphic bisectional curvature (see Mok [25], Hamilton [16], or Shi
[86]) are preserved under the evolution of (2.1). In particular, the Ricci
curvature remains positive.

Our first result for the solution of the Ricci flow (2.1) is the following
proposition.

Proposition 2.1. Suppose (M, gaﬁ) s assumed as above. Then, the
maximal volume growth condition (i) is preserved under the evolution of

2.1, i.e.,
(2.2) Vol (By(z, 1)) > Cyrt forall »>0, zeM

with the same constant Cy as in condition (i). Here, Bi(x,r) is the
geodesic ball of radius r with center at x with respect to the metric
gaﬁ(-,t), and the volume Vol is also taken with respect to the metric

gaﬁ('u t) .
Proof. Define a function F'(z,t) on M x [0, Thax) as follows,

det (gaﬁ(x,t))

F(z,t) = log .
det (9013(3‘70))
By (2.1, we have

OF(2,t) a5, . O
T =4Jg (CC,t) : atga/@(x7t)

= —R(z,t) <0,

which implies that F(-,t) is non-increasing in time. Since R 5(z,t) = 0,
we know from (2.1) that the metric is shrinking in time. In particular,

(2.4) 9.5, t) < g,5(x,0) on M x [0, Tiax)-
This implies that

(2.3)

3 de =(x,
25)  FEIR(z, 1) = gaﬁ(:c,t)RaE(x7t) ) M
det (g,yg(x, 0))

< g (2, 0) R 5(w, 1)
= g7 (2,0) (Ry5(e,t) = R,5(2,0)) + R(x,0)
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= — Ao F(.’E,t) + R(CC, 0),

where A\ denotes the Laplace operator with respect to the initial metric
9u53(,0) and R(z,t) denotes the scalar curvature of the metric g, 5(z, t).

Combining (2.3) and (2.5) gives

eF(ac,t) 8F(yc, t)

(2.6) >

> NoF(z,t) — R(z,0) on M x [0, Tiax)-

Next, we introduce a cutoff function which will be used several times
in this paper. Now, as the Ricci curvature of the initial metric is positive,
we know from Schoen and Yau (Theorem 1.4.2 in [32]) or Shi [36] that
there exists a positive constant Cs depending only on the dimension
such that for any fixed point xg € M and any number 0 < r < 400,
there exists a smooth function ¢(z) on M satisfying

— (14 fotezo))

( dg(z,zq)
6703(14»40 - 0 ) S Sp(x) S . ’

(2.1 Vely (2) < (o)

C
| 1200l (2) < —Fo()

for all z € M, where dy(x, z¢) is the distance between z and xy with re-
spect to the initial metric g,5(x, 0) and |-|; stands for the corresponding

C° norm of the initial metric 95(,0).
Combining (2.6) and (2.7), we obtain

0 Fa,t)
5 /M o(x)e dVy

> [ (LoP(at) - Rw.0) pla)dVe
M
> 5 [ Fatp@av - [ R ojpa,

where dVp denotes the volume element of the initial metric g, 5(,0).
The integration by parts in the second inequality is justified because for
any t < Tmax, the boundedness of the curvature implies the boundedness
of Fand VF.
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Recall that F(-,t) is non-increasing in time and F'(-,0) = 0. We
integrate the above inequality from 0 to ¢ to get

(2.8) /M o(z) (1 - eF(x’t)> vy

Cst
<S8 [ @) e@dh+t [ RE0p@d%,
T JMm M
Since the metric is shrinking under the Ricci flow, we have
By(zg,r) D By(zo,7) for t>0, 0<r<-+oo,
and
(2.9) Vol (B (xg, 1))
> Vol (By(xg, 1))
_ / F@d gy,
Bo(zo,r)
= VOlo(Bo(.’Eo,T)) —|—/ eF(:v,t) — 1) dVp.
Bo(zo,r)
Then, by (2.7) and (2.8), the last term in (2.9) satisfies
(2.10) / (eF (@) _ 1) vy
Bo(zo,r)
> 6203 / (eF(aC,t) _ 1) (P(x)d‘/()
M

>

036203t
2 /M F(x,t)p(x)dVy

—6203t/ R(z,0)p(x)dVy.
M

To estimate the two terms of the right-hand side of (2.10]), we consider
any fixed Ty < Tiax- Since the curvature is uniformly bounded on M x
[0, Tp], it is clear from the equation (2.3) that F(z,t) is also uniformly
bounded on M x [0, Tp].
Set
A= Sup{’F(xvt)Hx eEM, te [OaTO]}

and

1
M(r) =su R(x,0)dVp.
( ) aZI: Vol (BO (.21?0, a)) /Bo(aco,a) ( ) ’




528 B.-L. CHEN, S.-H. TANG & X.-P. ZHU

Then, the decay estimate (ii)” implies that M(r) — 0 as r — 4o00. By
using the standard volume comparison theorem and (2.7), we have

(2.11) / R(z,0)p(x)dVy
/Rx() ) v

d, (arar )
—/ R(z,0)e (1+ : O)
Bo(zo,r)

o(z.z0)
+ / Riz,0)e” ) vy
k=0 Bo(w0,25 1)\ Bo (z0,2kr)

d = —2k (ok+1 4
S/Bo(:vo,r) R(z,0) Vo—i—Ze (2 )

k=0

an

Volg (Bo(zg,1)) /
. R(x,0)dV,
Volo (Bo (o, 2517)) J By (wo,26+17) (0¥

< Cy-M(r) - Voly (Bo(zo,7)) »

and similarly

(2.12) /M o(@)dVi

< / ef(lero(zT,zo))dVO
Bo(zo,r)

+ > _(1+d0(x,x0))
e T

k=0

/
Bo(z0,2* 1)\ Bo(zo,2%r)

< Voly (Bo (o, +Ze*2 (2k+1) Vol (Bo(o, 7))

< C4 Vol (Bo(o, )) ;

where C} is some positive constant independent of 7.
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Substituting (2.10)—(2.12) into (2.9) and dividing by r*, we obtain
Vol (By(zo,7)) - Volg(Bo(zo,7))  C3e23 ATy <C’ Volo(Bo(xo,r))>
- 4

rd ré r2 rd

lo(B

— 26, (C4M(’I”) . M)

C3e2%3 ATy - C4Cy
2

> Cl - - 6203T00401 : M(T)

r

by condition (i). Then, letting r — 400, we deduce that
lim Vol; (Bi(zo, 7))

T—~+00 7”4

> (.

Hence, by using the standard volume comparison theorem, we have
Vol; (By(z,r)) > Cirt forallz e M, 0<r < 400, t € [0,Tp).

Finally, since Ty < Tmax is arbitrary, this completes the proof of the
proposition. q.e.d.

3. Singularity models

In Sections § and 4, we will continue our study of the Ricci flow (2.1).
We will use rescaling arguments to analyse the behavior of the solution
of (2.1) near the maximal time Tjyax.

First of all, let us recall some basic terminologies. According to
Hamilton (see for example, definition 16.3 in [1§]), a solution to the
Ricci flow, where either the manifold is compact or at each time ¢ the
evolving metric is complete and has bounded curvature, is called a sin-
gularity model if it is not flat and is of one of the following three types.
Here, we have used Rm and |Rm/| to denote the Riemannian curvature
tensor and its corresponding norm with respect to the evolving metric.

Type I: The solution exists for —oo < ¢ < € for some 0 < Q < 400
and

Q
< —
]Rm\_Q_t

everywhere with equality somewhere at ¢ = 0;
Type II: The solution exists for —oco < t < +00 and

|[Rm| <1

everywhere with equality somewhere at ¢t = 0;
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Type III: The solution exists for —A < ¢t < +o00 for some 0 < A <
+o00 and 1
[Rml < 27
everywhere with equality somewhere at ¢t = 0.

The singularity models of Type I and II are called ancient solutions
in the sense that the existence time interval of the solution contains
(—OO, 0] :

Next, we recall the local injectivity radius estimate of Cheeger, Gro-
mov and Taylor [B]. Let N be a complete Riemannian manifold of
dimension m with A < sectional curvature of N < A and let r be a pos-
itive constant satisfying r < ﬁ if A > 0, then the injectivity radius of
N at a point x is bounded from below as follows,

Vol(B(z, 1))
Vol(B(z,r)) + Vi (2r)’

where V"(2r) denotes the volume of a ball with radius 2r in the m
dimensional model space V," with constant sectional curvature A. In
particular, it implies that for a complete Riemannian manifold N of
dimension 4 with sectional curvature bounded between —1 and 1, the
injectivity radius at a point x can be estimated as

1 Vol(B(z, 1))
3.1 injy(z) > = - 2
(3.1 N 25 B ) + v
for some absolute positive constant V. Furthermore, if in addition, N
satisfies the maximal volume growth condition
Vol (B(z,7)) > Cirt, 0 <7 < 400,

then, (3.11) gives
(3.2) injy(z) >G>0
for some positive constant 3 depending only on C; and V.

Now, return to our setting. Let (M, g aﬁ) be a complete, non-compact
Kahler surface satisfying the same assumptions as in the Main Theorem

and let g,5(,t) be the solution of the Ricci flow (2.1) on M x [0, Tinax)-
Denote

injy(z)>r

Rpax(t) = sup R(z,t).
xeM

We have shown in Proposition 2.1 that the solution gaﬁ(-,t) satisfies
the same maximal volume growth condition (i) as the initial metric.
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Since condition (i) is invariant under rescaling of metrics, by a simple
rescaling argument, we get the following injectivity radius estimate for
the solution g,5(-, ),

B
Rmax (t)

Then, by applying a result of Hamilton (see Theorems 16.4 and 16.5 in
[18]), we know that there exists a sequence of dilations of the solution
which converges to one of the singularity models of Type I, IT or I11. We
will analyse this limit in Section .

We conclude this section with a lemma which will be very useful
in our analysis of the Type I and Type II limits. We remark that in
the case of compact shrinking Kéhler—Ricci solitons with non-negative
isotropic curvature condition, the lemma is proved by Ivey [20]. The
following argument adapts that in [20].

(3.3) inj(M, g,5(-1)) = for t € [0, Tynax)-

Lemma 3.1. Suppose (M, 9op(+: 1)) is a complete ancient solution
to the Ricci flow on a non-compact Kdhler surface with non-negative
and bounded holomorphic bisectional curvature for all time. Then, the
curvature operator of the metric ﬁaﬁ(', t) is non-negative definite every-

where on M x (—00,0].

Proof. Choose a local orthonormal coframe {wi,ws,ws,ws} on an

open set U C M so that w1 + vV —1lws and w3 + v/ —1lwy are (1,0) forms
over U. Then, the self-dual forms

p1 = w1 Awa + w3 N\ wy, P2 = w2 Awz + w1 A wy,
Y3 = w3 Awi +wa Awy

and the anti-self-dual forms

Y1 = w1 Awa — w3 A wy, P9 = w2 A w3 — w1 A wy,
Y3 = w3z Awi —wa Awy

form a basis of the space of 2 forms over U. In particular, ¢1,1, 19
and 13 give a basis for the space of (1,1) forms over U.

On a Kahler surface, it is well known that its curvature operator has
image in the holonomy algebra u(2) (C so(4)) spanned by (1,1) forms.
Thus, the curvature operator M in the basis {¢1, v2, @3, 11,192,193} has
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the following form,

a 0 O b1 bQ bg
0 00 0 0 0
0 00 0 0 0
M= by 0 O ’
b 0 0O A
bs 0 0

where A is a 3 X 3 symmetric matrix. -

Let V be a real tangent vector of the Kéhler surface M. Denote by
J the complex structure of the Kahler surface M. It is clear that the
complex 2-plane V' A JV is dual to (1,1) form ugy 4+ v11)1 + vet)e + v31bs
satisfying the decomposability condition u? = v? 4+ v3 +v3. Then, after
normalizing u to 1 by scaling, we see that the holomorphic bisectional
curvature is non-negative if and only if

(3.4) a+b-v+b-w+ wAw >0,
for any unit vectors v = (vi,v2,v3) and w = (wy, wo, w3) in R3, where
b is the vector (by,be,b3) in M.

Denote by a1 < as < ag the eigenvalues of A. Recall that tr A = a by

the Bianchi identity, so if we choose v to be the eigenvector of A with
eigenvalue az and choose w = —v, (3.4) gives

(3.5) a1 + as > 0.

In particular, we have as > 0.
To proceed further, we need to adapt the maximum principle for
parabolic equations on compact manifold in Hamilton [I6] to M. Let

(@i) iy (1) = nf_ai(z,t) , i=1,2,3
xeM
and
K = sup |Rm(z,t)].

(,£)€M x (—00,0]
By assumption, the ancient solution ﬁaﬁ(-, t) has bounded holomorphic
bisectional curvature, hence K is finite. Thus, by the derivative estimate
of Shi [B3] (see also Theorem 7.1 in [1§]), the higher order derivatives
of the curvature are also uniformly bounded. In particular, we can
use the maximum principle of Cheng—Yau (see Proposition 1.6 in [10])
and then, as observed in [18], this implies that the maximum principle
of Hamilton in [16] actually works for the evolution equations of the
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curvature of %B(-, t) on the complete non-compact manifold M. Thus,
from [16], we obtain

% > ((a1) pyin)” + 2 (02) i (03) i
> 3 ((a1) in)”

by (8.5). Then, for fixed tg € (—00,0) and t > t,

1
(@1) i () = —=
- (a1) i (o) = 3 (t = to)
S 1
T K 1-3(t—ty)
Letting ty) — —oo, and observing that (a1)min(t) is non-decreasing, we
get

(3.6) a1 >0  forall (z,t) € M x (—o0,0]

ie., A>0.
Finally, to prove the non-negativity of the curvature operator M, we
recall its corresponding ODE from [16],

dM ) 0 0
o M +<o A#)’

where A7 > 0 is the adjoint matrix of A.
Let m; be the smallest eigenvalue of the curvature operator M. By
using the maximum principle of Hamilton ([16] or [18]) again, we have

d (’ml) i 2
min >
a2 m)

min *
where (m1),;, (t) = inf my(z,t). Therefore, by the same reasoning in
the derivation of C_B-;éiv)fﬂgve have
(3.7) mi >0 forall (z,t) €M x (—o00,0].
So, M > 0 and the proof of the lemma is completed. q.e.d.

4. Time decay estimate on curvature

Let (M, g aﬁ(x)) be a complete non-compact Kéahler surface satisfying
all the assumptions in the Main Theorem and (M, g,5(-,t)), t € [0, Tiax)
be the maximal solution of the Ricci flow (2.1) with g,5() as the initial
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metric. Clearly, the maximal solution is of either one of the following
types.

Type I: Tinax < 400 and sup (Tiax — t) Rmax(t) < +00;

Type II(a): Tiax < +00 and sup (Tax — t) Rmax(t) = +00;

Type II(b): Tihax = +00 and sup t Ryax(t) = +o0;

Type III:  Tiax = +oo and sup t Rpax(t) < 400.

In Section d, we have proved that the maximal solution satisfies the
following injectivity radius estimate

- p
(- > 7

m) (Mv gaﬁ( ’ t)) = Rmax(t) on [07 Tmax)
for some 3 > 0. By applying a result of Hamilton (Theorems 16.4 and
16.5 in [18]), we know that there exists a sequence of dilations of the
solution converging to a singularity model of the corresponding type.
Note that since the maximal solution is complete and non-compact, the
limit must also be complete and non-compact. The following is the main
result of this section which says that this limit must be of Type III or
equivalently, the maximal solution must be of Type III.

Theorem 4.1. Let (M,g,5(x)) be a complete non-compact Kdhler
surface as above. Then, the Ricci flow (2.1) with 9o5() as the initial
metric has a solution g5 (x,t) for allt € [0,+00) andx € M. Moreover,
the scalar curvature R(x,t) of the solution satisfies

C
(4.1) 0 < R(zx,t) < 1% on M x[0,+00)
for some positive constant C.

Proof. We prove by contradiction. Thus, suppose the maximal so-
lution is of Type I or Type II and let (M,ﬁaﬁ(x,t)) be the limit of a
sequence of dilations of the maximal solution which is then a singularity
model of Type I or Type II respectively. After a study of its proper-
ties, we can blow down the singularity model and apply a dimension
reduction argument to obtain the desired contradiction.

Now, recall that the maximal solution satisfies the maximal volume
growth condition (i) by Proposition 2.I. Since condition (i) is also in-
variant under rescaling, we see that the singularity model (M, §a3(:1:, t))
also satisfies the maximal volume growth condition, i.e.,

(4.2) Vol (Et(:c,r)) > Cyrt forall 0<r<-+oo and z€ M,
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where Vol; (E(m,r)) denotes the volume of the geodesic ball Et(x,r)

of radius 7 with center at z with respect to the metric g 5(-, ).

It is clear that the limit %B(-, t) has non-negative holomorphic bisec-
tional curvature. Thus, from Lemma 3.1, the curvature operator of the
metric ﬁaﬁ(-, t) is non-negative definite everywhere.

Denote by R(-,t) the scalar curvature of 9oz (-5 1) and di(x,20) the

geodesic distance between two points z,xg € M with respect to the
metric g 5(-,t). We claim that at time ¢ = 0, we have

(4.3) limsup R(z,0)d(x, o) = +oo

do(z,20)—~+00

for any fixed xq € M.

Suppose not, that is the curvature of the metric Eaﬁ(" 0) has quadlizitic
decay. Now, by applying a result of Shi (see Theorem 8.2 in [36]),
we know that the solution g,5(-,t) of the Ricci flow exists for all ¢ €
(—o00, +00) and satisfies
(4.4) lim sup { é(x,t)‘ x € ]\7} = 0.

t——+00

On the other hand, by the Li-Yau-Hamilton inequality of Cao [4], we
have

|5

(4.5) >0  on M x (—o0,+00) .

Thus, combining (4.4) and (4.5), we deduce that

R=0 for all (x,t) € M x (—o0,+00)
and hence g,3(-,t) is flat for all ¢ € (—oc0,+00). But, by definition, a
singularity model cannot be flat. This proves our claim (4.3).

With the estimate ({.3), we can then apply a lemma of Hamilton
(Lemma 22.2 in [18)]) to find a sequence of points z; € M, a sequence
of radii r; > 0 and a sequence of positive numbers d;, j = 1,2,..., with
d; — 0 such that

(a) R(x,0) < (1+ d;)R(x;,0) for all z in the ball By(z;,7;) of radius

rj centered at x; with respect to the metric g 5(-,0);

(b) r]z]jz(:cj,O) — +00;

(C) if Sj = do(xjuxO), then )\] = Sj/’r‘j — 400;
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(d) the balls Eo(xj,rj) are disjoint.
Denote the minimum of the holomorphic sectional curvature of the
metric g,5(+,0) at z; by hj. We claim that the following holds

h .

(4.6) £ = = J

R(CC]', O)

Suppose not, there exists a subsequence ji — +00 and some positive
number € > 0 such that
h .

(4.7) Ejp = =2—>¢ forall k=1,2,...
R(zj,,0)

Since the solution g, 5(-,¢) is ancient, it follows from the Li-Yau-

—0 as j — 4o0.

Hamilton inequality of Cao [4] that the scalar curvature R(z,t) is point-
wisely non-decreasing in time. Then, by using the local derivative esti-
mate of Shi [33] (or see Theorem 13.1 in [18§]) and (a), (b), we have

~ 2 ~ 1 ~
(4.8) sup VRm(x,O)‘ < C5R?*(z4,0) <T + R(xj,0)>
~ r
:vGBo(acjk,r]-k) Jk

< QC5ES($]‘, 0)7
where Rm is the curvature tensor of §a3 and C5 is a positive constant
depending only on the dimension.

For any = € By(zj,,r;,), we obtain from (4.7) and (4.8) that the
minimum of the holomorphic sectional curvature hp,in(z) at z, satisfies

(4.9)  hmin(z) > hj, — /2C5RY? (), 0)do (2, xj, )

> R 0) (== VEGh -\ Re 0 do(ozy) )

> é(xjkv 0)

N ™

if
€

%(x7xjk) < — :
2,/2C5 - \/ R(x,.,0)

Thus, from (a) and (4.9), there exists kg > 0 such that for any k > kg
and

$E§0

5
'Tjku — 3
24/ 205 Y R(acjk, 0)
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we have
(4.10)

€'~ ~
QR(acjk, 0) < holomorphic sectional curvature at x < 2R(z;,,0).

We have proved that the metric §a3(-,0) has non-negative definite
curvature operator. In particular, the sectional curvature is non-negative.
Then, by the generalized Cohn—Vossen inequality in real dimension 4
[14], we have

(4.11) / 0 < X < +00

where © is the Gauss-Bonnet—Chern integrand for the metric g,5(-,0)

and x (M ) is the Euler number of the manifold A which has finite

topology type by the soul theorem of Cheeger—Gromoll.
On the other hand, from the proof of Theorem 1.3 of Bishop—Goldberg
[2] (see p. 523 of [2]), the inequality (4.10) implies that

(4.12) O(x) = C(e) R*(x),,0)

~ €
for all z € By | zj,, —
2y/2C5 - \/ R(xj, ,0)

where C(g) is some positive constant depending only on . Now, by

combining (4.2), (b), (d), (1.11) and (1.12), we get

—I—oo>x Z/ ©
k=ko ¥ Po(@ JMWW

> ~ g
£) Z RQ(xjkvo)'Cl oo
k=ko 2\/ 205 . R(.lejk,())
> 0184
=)y 2
2 64C2

k=ko
= —’—OO’

which is a contradiction. Hence, our claim (4.6) is proved.
Now, we are going to blow down the singularity model (M, ﬁaﬁ(:c, t)).
For the above chosen z;, r; and d;, let x; be the new origin O, dilate the
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space by a factor \; so that é(xj, 0) become 1 at the origin at ¢t = 0, and
dilate in time by A? so that it is still a solution to the Ricci flow. The
balls Eo(xj,rj) are dilated to the balls centered at the origin of radii
T = r?ﬁ(xj, 0) — 400 (by (b) ). Since the scalar curvature of g 5(z, )
is pointwise non-decreasing in time by the Li—Yau-Hamilton inequality,
the curvature bounds on Eo(acj, r;) also give bounds for previous times
in these balls. And the maximal volume growth estimate (4.2) and
the local injectivity radius estimate of Cheeger, Gromov and Taylor [5]
imply that
HIJﬂ (xjagaﬁ('ao)) > #7
R(xj ) 0)

for some positive constant 3 independent of j.

So, we have everything to take a limit for the dilated solutions. By
applying the compactness theorem in [17] and combining (4.2), (4.6),
(a) and (b), we obtain a complete non-compact solution, still denoted
by (M, Jup(, 1)), for t € (—o0,0] such that

y

(e) the curvature operator is still non-negative;

(f) R(z,t) <1, forall z € M, t € (—o0,0], and R(0,0) =1

g) Vol (Et(x 'r)) > Cyriforallz € M, 0 < r < +oo;

h) there exists a complex 2—-plane V' A JV at the origin O so that at
t = 0, the corresponding holomorphic sectional curvature vanishes.

(
(

If we consider the universal covering of M, the induced metric of
ﬁag(-, t) on the universal covering is clearly still a solution to the Ricci
flow and satisfies all of above (e)—(h). Thus, without loss of generality,
we may assume that M is simply connected.

Next, by using the strong maximum principle on the evolution equa-
tion of the curvature operator of g,3(-,¢) as in [16] (see Theorem 8.3
of [16]), we know that there exists a constant K > 0 such that on the
tlfrp/e interval —co < t < —K, the image of the curvature operator /gf
(M, g,5(-1)) is a fixed Lie subalgebra of so(4) of constant rank on M.
Because M is Kihler, the possibilities are limited to u(2), so(2) x so(2)
or s0(2).

In the case u(2), the sectional curvature is strictly positive. Thus, this
case is ruled out by (h). In the cases so(2) x so(2) or so(2), according to

[16], the simply connected manifold M splits as a product M = %; x Xa,
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where 31 and Y9 are two Riemann surfaces with non-negative curvature
(by (e)), and at least one of them, say ¥, has positive curvature (by
().

Denote by 5723)(, t) the corresponding metric on ;. Clearly, it follows

from (g) and standard volume comparison that for any x € ¥, ¢t €
(=00, —K), we have

(4.13) Vol By, (z,7) > Cer? for 0 <r < 400,

where both the geodesic ball By, (x,r) and the volume are taken with

respect to the metric ESB)(, t) on X1, Cg is a positive constant depending
~(1)

only on C. Also, as the curvature of gag(:c, t) is positive, it follows from

Cohn—Vossen inequality that

(4.14) / RW(z,t)doy < 8,
P

where R (z, 1) is the scalar curvature of (21’523) (z,t)) and doy is the

volume element of the metric 57;%)(:1:, t).
(1)

Now, the metric ¢"Z(x,t) is a solution to the Ricci flow on the Rie-
ga,@

mann surface 31 over the ancient time interval (—oo, —K). Thus, (#.13)
and ({.12) imply that for each t € (—oo, —K), the curvature of 5&% (x,1)
has quadratic decay in the average sense of Shi [86] and then the a pri-
ori estimate of Shi (see Theorem 8.2 in [36]) implies that the solution

57;%)(:1:, t) exists for all ¢t € (—oo, +00) and satisfies

(4.15) tliin sup{ﬁ(l)(x,t)‘ T € 21} =0.
Again, by the Li-Yau-Hamilton inequality of Cao [4], we know that

E(l)(x, t) is pointwisely non-decreasing in time. Therefore, we conclude
that

RUD(z,t)=0  on % x (—o0,+00).
This contradicts with the fact that (31, g,5(-,¢)) has positive curvature

for t < —K. Hence, we have sought the desired contradiction and have
completed the proof of Theorem #. 1. q.e.d.
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5. Topology and steinness

In this section, we use the estimates obtained in the previous sections
to study the topology and the complex structure of the Kahler surface
in our Main Theorem. Our result is shown in the following theorem.

Theorem 5.1. Suppose (M, gag) 1s a complete non-compact Kahler
surface satisfying the assumptions in the Main Theorem. Then, M is
homeomorphic to R* and is a Stein manifold.

The proof of Theorem 5.1 is exactly the same as in [§]. For the
convenience of the readers, we give a sketch of the arguments and refer
to the cited reference for details.

Sketch of proof. We evolve the metric g,,5(x) by the Ricci flow (2.1).
From Theorem #_1!, the solution gaﬁ(ac, t) exists for all ¢ € [0, +00) and
satisfies

(5.1) R(z,t) < on M x [0,400)

1+t

for some positive constant C. Also, Proposition 2.1 tells us that the
volume growth condition (i) is preserved under the Ricci flow. By using
the local injectivity radius estimate of Cheeger—-Gromov—Taylor, this
implies that

(52) i (Mog,50:0) 2 C:1+0)3  for 1€ [0,400)
with some positive constant C7.
Since the Ricci curvature of g, 5(x, ) is positive for all 2 € M and t >
0, the Ricci flow equation (2.1) implies that the ball By (xo, %(1 + t)%)
of radius %(1 —i—t)% with respect to the metric g 5(-,¢) contains the ball
1
By(zo, %(1 +t)2) of the same radius with respect to the initial metric
9,7, 0). Combining this with (5.2), we deduce that
(M, 29) =0 forany p>1
and
g(M,00) =0 for 1<¢g<2,

where 7,(M, 00) is the gth homotopy group of M at infinity.
Thus, by the resolution of the generalized Poincaré conjecture on four
manifolds by Freedman [13], we know that M is homeomorphic to R*.
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Next, the injectivity radius estimate (p.2) also tells us that, for ¢
large enough, the exponential maps provide diffeomorphisms between
big geodesic balls By (o, %(1 + t)%) of M with big Euclidean balls on
C2. The curvature estimate (5.1) and the standard comparison theorem
implies that the distance function is plurisubharmonic in B (zo, ¢;(1 +
t)%) for some constant ¢ independent of ¢ (see (7.3)). Since the metric is

shrinking , the balls By(xq, ¢;(1 +t)%) form an increasing one parameter
family of exhausting pseudoconvex domains in M. Then, by the theorem
of Docquier-Grauert (see Theorem(5.2) in [B87]), M is Stein .

6. Space decay estimate on curvature
and the Poincaré—Lelong equation

Let (M, gaﬁ) be a complete non-compact Kéahler surface satisfying all
the assumptions in the Main Theorem. The main purpose of this section
is to establish the existence of a strictly plurisubharmonic function of
logarithmic growth on M. To this end, we first prove a curvature decay
estimate at infinity of the metric 9B

Theorem 6.1. Let (M, gaﬁ) be a complete non-compact Kdhler sur-
face as above. Then, there exists a constant C > 0 such that for all
x e M, r>0, we have

1
(6.1) /B R g dy < Clog(247).

Proof. Let g,5(x,t) be the solution of the Ricci flow (2.1) with 9.5()
as the initial metric. From Theorem 4.1, we know that the solution
exists for all times and satisfies

(6.2) R(z,t) < Ty on M x [0,400)

for some positive constant Cfg.
Let

det (gaﬁ(aj, t)

F(z,t) =log
det (gaﬁ(:c, 0)

N—— | ——
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be the function introduced in the proof of Proposition 2.1 Since
det (973(7 t))

after taking trace with the initial metric gaﬁ(-, 0), we get

—8a5ﬁ log = Raﬁ("t) — Raﬁ("o)’

(6.3) R(-0) = 8oF (1) + 6°7 (L 0) R (1)

where A is the Laplace operator of the metric g,5(-,0).

Since (M, g,5(+,0)) has positive Ricci curvature and maximal volume
growth, it is well known (see [82]) that the Green function Gy(x,y) of
the initial metric g,5(-,0) exists on M and satisfies the estimates

cit Cy
6.4 9 < @G xz, <
(6.4) d3(z,y) ~ olz-9) d3(z,y)
and
Cy
6.5 VyGo(z,y)|y <
( ) | Y 0( )|0 d%(:c,y)

for some positive constant Cy depending only on Cf.
For any fixed 79 € M and any « > 0, we denote

Qo ={z € M| Go(Tp,z) > a }.

Note that for & > 8 > 0, we have Q, C Qg. By (6.4), it is not hard to
see

1 1
—1\ 3 1
(66) By | 7o, <CL> c Q, C By <f0, (@) 2> .
[0 [0

Recall that F' evolves by

OF (z,t)
ot
Combining with (6.2), we obtain

= —R(z,t) on M x [0,+400).

(6.7) 0> F(x,t) > —Cjplog(1l +1) on M x [0,400).
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Multiplying (6.3) by Go(Zo, *) — o and integrating over ,, we have

(6.8) / R(z,0) (Go(To, 2) — o) da

[e3

= (AoF(z,t)) (Go(To, x) — o) dx

Qa

/ g 51 (Gol@o, 2) — a) da
Qa

/ Fo,p260E02) b ey
00 ov

—|—/Qag ( )(Go(%o, ) Oz)d$

< Cio <1 + C a2 Vol (0924 )) log(1 +t)

+ [ @0 R 5, 0Go (w0, 0)da,
Qa

by (6.4) and (6.7). Here, we have used v to denote the outer unit normal
of 0Q,.

From the coarea formula, we have

a

1 [2 5 T
—/ Vol (8QT)dr§25a§/ / IV Go(@o, 2)|y do |dv|
« « o,

for some positive constant C1; by the standard volume comparison.
Substitute this into (6.8) and integrate (6.8) from « to 2«, we get

(6.9)

5
R(.CI?, 0) (Go(f@, .Cl?) — 204) dx < Chp (1 + 092 CH) log(l + t)
QQa

4 / 6% (2, 0)R 5z, ) Go (To, )
Qq
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It is easy to see that
/ R(z,0)Go (T, z)dx < 2/ R(z,0) (Go(To, x) — 2c0) d
Q4a QQa

and by the equation Ricci flow (2.1), we also have
t _
| [ o @08 5060 @0, x)dzd
0 JQq
= g 2 xz, 9.,3\%, — 9,3\, 0(Zo, z)ax
; “(,0) (9,5(2,0) — g,5(2,1) ) Go(To, x)d
<2 Go(f@, x)dx

Qo

Thus, by integrating (6.9) in time from 0 to ¢ and combining the above
two inequalities, we get for any ¢ > 0,

/ R(CC, O)Go(fo,.’l/‘)d.’ﬂ
Q4o<
5 4
<2Ch (1 +C§ Cn) log(1 +1t) + m Go(To, z)dx.

Qo

Finally, substituting (6.4) and (6.6) into the above inequality, we see
that there exists some positive constant C75 such that for any Ty € M,
t>0andr >0,

1 7”2)
6.10 R(x,0)———dx < Cio|log(l+t)+— | .
(610) /Bo@o,m ( )d2(~’vo,w) " ( Bl HH+3

Choose t = 72, and we get the desired estimate. q.e.d.

Now, we can use the estimate (6.1) to solve the following Poincaré-
Lelong equation on M

(6.11) V—100u = Ric

to get the strictly plurisubharmonic function mentioned at the beginning
of this section.

As in [23] or [28)], we first study the corresponding Poisson equation
on M

(6.12) Au=R.
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After we solve the Poisson equation (.12) with a solution of logarithmic

growth, we will see that it is indeed a solution of the Poincaré—Lelong
equation with logarithmic growth.

To solve (6.12), we first construct a family of approximate solutions

u, as follows.
For a fixed o € M and r > 0, define u,(x) on B(xo,r) by

() = / (G(zo, ) — G(z.y)) R(y)dy,
B(zo,r)

where G(z,y) is the Green function of the metric g 5 on M. It is clear
that

ur(zg) =0 and Aup(z) = R(zr) on B(xg,r).

For x € B(xo, 5), we write

up(x) = / + /
B(zo,r)\B(z0,2d(z,z0)) B(zo,2d(z,x0))

(G(wo,y) — G(z,y)) R(y)dy
=11 + I5.

From (B.1), we see that

(6.13) |I5] < Cislog (2 4 d(x, ) on B (xo, g)

for some positive constant C3 independent of xg, x and r.
To estimate I, we get from (6.5) that for y € B(zo, )\ B(z0,2d(z,20)),

|G(w0,y) — G(z,y)| < d(z,20) - sup IV.G(z,y)|
2€B(z0,d(z,x0))

1
< Cod(z, xp) - sup
z€B(zo,d(x,z0)) dS(zu y)

d(x, zg)

< 8Cyg—-—""=L.
= T @By, o)
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Thus, by (b.1), we have

R(y)
(6.14) 1| < 8Cod(x, o) / EELC
B(zo,r)\B(z0,2d(x,z0)) d3(y7 LIZ‘())
= 1
S Sng(:C, CCO) Z W
k=1 s L0

. / R(y)
Blwo,25+Hd(z,20))\ B(zo,2kd(x,z0)) 4 (Y5 T0)

< 8090i 23,{ log (2 + 2k (z, xo))
k=1

< Cralog (2 + d(=, x0))

for some positive constant C1y.
Hence, by combining (§.13) and (p.12), we deduce

(6.15) luy ()| < (Cy3 + Chq)log (2 + d(z, x0))

for any r > 2d(x, x¢).
On the other hand, by taking the derivative of u,(z), we get

(6.16)

[V, (z)|
<o [
<ol [ wptie [ aw
(z,1) k=1 B(x,2K)\B(x,2k 1)
< Cy (015 + i 2k—:Clog (2+ 2’f)>
o k=1

Here, we have used (6.1) and (6.5), C15 and Cjg are positive constants
independent of r. Therefore, it follows from the Schauder theory of
elliptic equations that there exists a sequence of r; — 400 such that
uy, (z) converges uniformly on compact subset of M to a smooth function
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u satisfying

u(zg) =0 and Au=R on M,
(6.17) |u(z)| < (Ciz + Cia)log (2 + d(z,x¢)) for x € M,
[Vu(z)| < Cis for x € M.

Thus, we have obtained a solution u of logarithmic growth to the Poisson
equation ($.12) on M. In the following, we prove that u is actually a
solution of the Poincaré-Lelong equation (B.11).

Recall the Bochner identity, with Au = R

1
(6.18) 5 O 1Vuf = IV2u|® + (Vu, VR) + Ric (Vu, Vu)

> |V?ul” + (Vu, VR) .

For any r > 0 and any To € M, by multiplying (b.18) by the cutoff
function in (2.7%) and integrating by parts, we get

1
/ ‘VQu‘ngdx < —/ IVul? - |Ag| da —|—/ ‘V2u‘ - Rpdx
M 2 M
+/ |Vu|- R - |Vo|dzx
M
< s Cs

5 T2 M(pdx+§/M|V u| pdx

1 C
+ —/ R%pdx + Cig - (sup R) . —3/ wdz.
2/m M T JMm

Thus,

(6.19) /M ‘V2u|2 edx

1 1
< ((3’30126 3 +2C16C5 (Sjl\l/lp R) ;) /M odx + /M R%pdx.
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By (6.1, (2.7) and the standard volume comparison, we have

(6.20)

/ R2tpdx
M
_ d(xz,xq)
< (SupR)/ R(z)e (1+ o )dx
M M
< (supR)
M

. / R(z)dz + Z e 2 / R(z)dz
B(io,r) k=0 B(io,?kJrlT)\B(Eo,ri)

< Cypr? log (2+7)

and

d(xz,ZTq)
(6.21) / godxg/ e_(1+ TO )dx
M M

< / e+ e / dz
B(Zo,r) k=0 B(To,2k 1)\ B(To,2Fr)

< Cyrrt
for some positive constant C17 independent of r and T.
Substituting these two inequalities into (6.19), we have

1 1 log(2+ r))

2 12
(6.22) |V?ul” dz < Cis <r_2 ot

T4 B(EQ,T‘)
for some positive constant Cg independent of r and T.

Since the holomorphic bisectional curvature of 9,7 is positive, it was
shown in [23] that the function |\/ —100u — Ric!2 is subharmonic on M.
Then, by the mean value inequality and (p.20), (6.22), we have

v/ —100u — Ric 2 Tg) < @ v/ —100u — Ric 2 x)dx
4
r B(EQ,T‘)

< 2 / (IV2uf* + B?) da
B(foﬂ‘)

rd

1 1 log(2
SCzo(--f——-i—M)

rZ r r2
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for some positive constants Chg, Coy independent of r and Ty. Since
Tog € M and r > 0 are arbitrary, by letting r — 400 we know that

V—100u=Ric  on M.
In summary, we have proved the following result.

Proposition 6.2. Suppose (M, gaﬁ) is a complete non-compact Kahler
surface satisfying all the assumptions in the Main Theorem. Then, there
exists a strictly plurisubharmonic function u(x) on M satisfying the
Poincaré-Lelong equation (5.11) with the estimate

lu(z)| < Clog (2 + d(x, zg)) forall x € M

for some positive constant C.

7. Uniform estimates on multiplicity and the number
of components of an “algebraic” divisor

Let (M, g aﬁ) be a complete non-compact Kéahler surface satisfying all
the assumptions in the Main Theorem. In this section, we will consider
the algebra P(M) of holomorphic functions of polynomial growth on M.
We first construct fi, fo in P(M) which are algebraically independent
over C.

In the previous section, by solving the Poincaré—Lelong equation, we
have obtained a strictly plurisubharmonic function v on M of logarith-
mic growth. As shown in [24], the existence of non-trivial functions in
the algebra P(M) then follows readily from the L? estimates of the 9
operator on complete Kéhler manifold of Andreotti-Vesentini [i1}] and
Hoérmander [19]. For completeness, we give the proof as follows.

Let € M and {(z1,22)] |21]* + |22|* <1} be local holomorphic
coordinates at x with z;(x) = z2(x) = 0. Let n be a smooth cut-
off function on C? with Suppn CC {|z1|> +|22|* <1} and n = 1 on
{|z1]> + |22|> < 1 }. Then, the function

1
nlog |z| = n (21, 22) log (|21 ]* + [22[*) 2
is globally defined on M and is smooth except at z. Furthermore,
the (1,1) form 99 (nlog |z|) is bounded from below. Since u is strictly
plurisubharmonic, we can choose a sufficiently large positive constant
C such that

v =Cu+6nlog]|z|



550 B.-L. CHEN, S.-H. TANG & X.-P. ZHU

is strictly plurisubharmonic on M. Then, for any non-zero tangent
vector & of type (1,0) on M, we have

(V=109v + Ric, EAE) > 0.

Now, 0 (nz;), i=1,2 , is a d closed (0,1) form on the complete Kéhler
manifold M. Using the standard L2-estimates of d operator (cf. Theo-
rem 2.1 in [24]), there exists a smooth function wu; such that

Ou; = A(nz;), i=1,2

and

1 _
/ ui|? eVdx < —/ ‘8(7723)‘2 e Ydz,
M cJm

where ¢ is a positive constant satisfying
(V=189v + Ric,E AE) > cl€f?,

whenever ¢ is a tangent vector on Suppn. First of all, this estimate
implies that wu; is of polynomial growth by standard elliptic estimates,
as the weight function v is of logarithmic growth. Secondly, because
of the singularity of 6log |z| at x, it forces the function w; and its first
order derivative to vanish at x. Therefore, the holomorphic functions
f1 = u1 —nz and fo = ug — nzy define a local biholomorphism at .
Clearly, they are algebraically independent over C. This concludes our
construction.

For later use, we also point out here that, as a consequence of the
above argument, the algebra P(M) separates points on M. In other
words, for any x1,29 € M with x7 # x9, there exists f € P(M) such
that f(z1) # f(z2).

Before we can state our main result in this section, we need the
following definition. For a holomorphic function f € P(M), we define
the degree of f, deg(f), to be the infimum of all ¢ for which the following
inequality holds

|f(z)| < Clq) (14 di(x, x0)) for all z € M,

where xg is some fixed point in M and C(q) is some positive constant
depending on gq.

Our main result in this section is the following uniform bound on the
multiplicity of the zero divisor of a function f € P(M) by its degree.
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Proposition 7.1. Let (M, gaﬁ) be a complete non-compact Kdihler
surface as above. For f € P(M), let

V)= Y LoB1og 1P

be the zero divisor, counting multiplicity, determined by f. Then, there
exists a positive constant C, independent of f, such that

mult ([V],z) < Cdeg(f)
holds for all x € M.

Proof. Recall that the Ricci flow (2.1) with 9,5() as initial metric has
a solution g 5(,t) for all times ¢ € [0, +00) and satisfies the following
estimates

(7.1) R(gjj) < 1L—|-t
and
(7.2) in (M, go5(-1)) > Cr(1+1)3

on M x [0, +00).
Let d; be the distance function from an arbitrary fixed point g € M
with respect to the metric gaﬁ(-, t). By the standard Hessian comparison

theorem (see [32]), we have, for any unit real vector v orthogonal to the
radial direction 0/0d,

/at /a1
7tdt < Hess (df) (v,v) < a , when d; < E‘ /i_
tan (\/%-dy) tanh (\/ Ld,) 4V o

Here, a is some positive constant depending only on the constants C'
and C7 in (7.1) and (7.2). Hence, for any unit vector v, we have

a1

VUl < Hess (d?) (7,7) + Hess (d2) (J7, Jo
o (/B) = ess (d7) (0,0) + Hess (d7) (Jv, J0)

O 2/%d
tanh (\/—d )
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whenever d; < %,/ail. Since M is Kahler, the above expression is

equivalent to

25N
_ Vit thtwt < ,/_mgdg
tan (\/ %dt)
- 2,/ % d;

w.
~ tanh (\/2d;)
In particular, we have
1 — 9 T |t
. —Wt S — S AW, whnenever t S 4/ —.
(7.3) 5 <V—-100d; <4 h d<4
aq

Here, wy is the Kéhler form of the metric g 5(-,1).
We next claim that(we are grateful to Professor L.F. Tam for this
suggestion.)

(7.4)  /—100logtan o dt >0, whenever dtgf i
t 2 4 (&5}

In fact, after recalling, we may assume that the sectional curvature of
9op(+5 1) is less than 1 and /S = 1. Then, by the standard Hessian
comparison, we have

Hess () (1,0) = —— (o2 — (0, 2
ess (dg) (v,v 2 and, v} v,adt t

for any vector v and d; < 7. Thus, by a direct computation,

s (1t () 10 s (it () 0

1

(tan d;) tan (%)
0,

Y

(1 + tandy) |v]?

Y

which is our claim (ir.4).



A UNIFORMIZATION THEOREM 553

Now for any 0 < b < a < g,/ ail, it follows from Stoke’s theorem that

0<+v—1 / [V]/\@@logtan(\/jét>

{b<dt<a}
= /- / V] A Olog tan (1/ ; CS)
{di=a}
—v-1 / [V] A @log tan (, / %%) .
{di=b}

Then, it is not hard to see that for 0 <b <a < g,/ ail,

\/ 1 v—-1 =
VIAD (df) > 5 / VIAD(d}) .

{di=a} {di=b}

Using Stoke’s theorem on the right-hand side of (7.5) and letting
b — 0, it follows from the inequality of Bishop—Lelong that

\/_

{di=a}
for some positive absolute constant as.
Then, by (7.3), (7.5), (7.6) and Stoke’s theorem, we have
(7.7)

1
—2 [V] A Wt
a” JBy(%0,a)\ Bt (Fo,2)

1

(7.5)

(7.6)

VIAD(df) > aomult ([V],Z)

VI A V=100 (dF)

Bi(To,a)\Bt(To,%)

>

4a

aye 5 (a1 5 (@2
= <a2/{dt:a}[V]/\8(dt) . /{dt [V]/\@(dt)>

4-(%)" Jra=g}
—1 1 2\ 1 2
T8 <$ /{dt=a} VIno (@) 2. (%) /{dt_g} vine (dt)>




554 B.-L. CHEN, S.-H. TANG & X.-P. ZHU

> vl
8a {dt:a}

%mult (IV],%o)

Vina(d;)

Y

™ t
fOI'O<CL<§ Ot—l

For the function f € P(M), let Ty be a point close to Tp such that
f(zg) # 0. By definition, for any § > 0, there exists a constant C'(d) > 0
such that

(7.8) If(2)] < C(5) (1 + ddeeV ”‘S(x,zo)) on M.
By equation (2.1) and estimate (7.1), we have
09.5(-+1)
C
> 4
=1 r tgag( 7t)7

which implies that
gaﬁ('70) < (1+ t)Cgag(-,t) for any ¢ > 0.

Hence, (i7.8) becomes
c _ 1deg(f)+0
(7.9 |f(2)| < C®) {1 + [(1 + t)fdt(x,xo)} } on M.
We now fix t = %4K +8 for each positive interger K. Set

ok () = / —6) (@, ) Adlog [ ()] - w2(y),
Bt(ffo,QK)

where G,gK) is the positive Green function with value zero on the bound-
ary OBy(To,2%) with respect to the metric g op(5 1) The function

log | f |2 — vg is then harmonic on By(Zo,2%). From the maximum prin-
ciple and (7.9), we have

(7.10) 1og(\f(§0)\2)—v;<(%o)§ sup  log|f ()|’
T€IB(T0,2K)

< CioK (deg(f) + 6) + C'(9)

for some positive constants C1g, C’(0) independent of K, f, and .
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On the other hand, since the volume growth condition (i) is preserved
for all times, by virtue of (6.4) (cf. Proposition 1.1 in [24]), we have

~ 1 1 2 9
—vi(Tn) > — — ;1o x)|” - wi(x
K( 0) = Cy /Bt(iozK) df(:c,:co) t g|f( )| t( )

1o [ 1)?
> — — Alogfx2-w2x.
Co ]Z:; <23) /Bt(fc‘o,2d)\Bt(5o,2j1) tlog |f(@)[" - wi (@)
Then, by (7.7) and the fact that 7y is arbitrarily close to Ty,
(7.11) — v (Tp) > Cao K mult ([V], 7o)

for some positive constant Coy independent of K, f and Tg.
Therefore, by combining (7.10) and (7.11) and letting K — +oc and
then § — 0, we obtain

mult ([V],Zg) < Co deg(f),

where C9; is some positive constant independent of f and Zo.  g.e.d.

A modified version of the proof of Proposition i7.I' gives the uniform
bound on the number of irreducible components of [V].

Proposition 7.2. Suppose (M, gag) is a complete non-compact Kahler
surface as assumed in Proposition i7.1. Let f be a holomorphic function
of polynomial growth,

J—1 _ )
V] = —5—09log /]

m
be the corresponding zero divisor determined by f. Then, the number of

irreducible components of [V] is not bigger than C deg(f) for the same
positive constant C as in Proposition 7. 1.

Proof. Let g, 5(-,t) be the evolving metric to the Ricci flow with g,,5(-)
as the initial metric and [V4], [V2], ..., [Vi] be any [ distinct irreducible
components of [V]. Fix a constant a > 0 such that the intersection of
the smooth points of [V;] with By (T, a) is non-empty for each 0 < i <.

Choose t = %4K 842 for each positive integer K. As the manifold
M is Stein by Theorem 4.1, each [V;] must be non-compact. Hence, for
7=1,2,..., K, we have

[Vi] N (Bi(Fo, 27 a) \ Be(To, 27 'a)) # 0
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and there exists a point x; € [V;] with d;(z;, %) = 227~ a in the middle
of By(To,2 a) \Bt (T, 27~ 'a). The triangle inequality says
By(zj,2%a) C (By(To,27a) \B(T0,2"a)).

Applying a slight variant of (7.7) to [V;], we have

1 a9
T Doy a0 > Gl ().
t(xj,27 " “a
] @2
- 8 .

!
Since Y [V;] is only a part of the divisor [V], we get
i=1

1

Qg
— Alogfx2'w2x > —1.
T sy BV @) 2 5

The subsequent argument is then exactly as in the proof of Proposi-
tion i7.I. In the end, we have

Cook -1 < —log (|f (50)|2) + CioK (deg(f) + 8) + C'(6).

Letting K — +o00 and then § — 0, we get the desired estimate. q.e.d.

8. Proof of the main theorem

In this section, we will basically follow the approach of Mok [24],
[26] to accomplish the proof of the main theorem. Let M be a Kihler
surface as assumed in the Main Theorem. Recall that P(M) stands for
the algebra of holomorphic functions of polynomial growth on M. Let
R(M) be the quotient field of P(M). By an abuse of terminology, we
will call it the field of rational functions on M.

In Section 7, we showed that there exist two functions f, fo € P(M)
giving local holomorphic coordinates at any given point x € M, and that
the algebra P(M) separates points on M. Moreover, we obtained the
following basic multiplicity estimate

(8.1) mult ([V],z) < Cdeg(f)
for all z € M and f € P(M), where

V)= Y LoB1og 1P
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is the zero divisor of f and C' is a constant independent of f and z.
Thus, by combining these facts with the classical arguments of Poincaré
and Siegel, we have (cf. the proof of Proposition 5.1 in [24])

(8.2) dim ¢ H, < 10°Cp?,

where H), denotes the vector space of all holomorphic functions with
degree < p, and the field of rational functions R(M) is a finite exten-
sion field over C(f1, f2) for some algebraically independent holomorphic
functions fy, fo € P(M) over C. By the primitive element theorem, we
can then write

R(M) = C (fl,fz, é)

fa
for some f3, fq € P(M).
Now, consider the mapping F : M — C* defined by

F = (f1, f2, f3, fa) -

Since R(M) is a finite extension field of C(f; f2), f3 and fy satisfy
equations of the form

p—1
f§+ng(flaf2)f§ = 07
j=0
q—1 ‘
Qi )1 =0,
§=0
where Pj(wi,wz), Q;(wi,ws) are rational functions of wi, wq. Af-
ter clearing denominators, we see that fi, fa, f3, f1 satisfy polynomial
equations

P(f17f27f37f4):0 and Q(f17f27f37f4)20'
Let Zy be the subvariety of C* defined by

P(w17w27w37w4) =0 }

Q (w1, w2, w3, wy) = 0
and let Z be the connected component of Zy containing F'(M). It is
clear that dim cZ = 2.

In the following, we will show that F' is an “almost injective” and
“almost surjective” map to Z and we can desingularize F' to obtain a
biholomorphic map from M onto a quasi-affine algebraic variety by ad-
joining a finite number of holomorphic functions of polynomial growth.

Zy = {(wl,wg,wg,w4) cct
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First of all, we claim that Z is irreducible and F'is “almost injective”,
i.e., there exists a subvariety V' of M such that F|ypy : M\V — Z is an
injective locally biholomorphic mapping. Indeed, take V' to be the union
of F~1(Sing (Z)) and the branching locus of F', here Sing(Z) denotes the
singular set of Z. It is clear that F' is locally biholomorphic on M\V'.
That F is also injective there follows from the fact that P(M) separates
points and f1, ..., fi generate P(M). To see the irreducibility of Z, note
that M\F~!(Sing(Z)) is connected and hence F(M\F~1(Sing(Z)) is
irreducible (as its set of smooth points is connected). Since F(M) C
F(M\F~!(Sing (7)), by the definition of Z, it must be irreducible.

Next, we come to the “almost surjectivity” of F, i.e., there exists an
algebraic subvariety T of Z such that F'(M) contains Z\T. The method
of Mok [24] in proving the almost surjectivity of F is to solve an ideal
problem for each x € Z\Tj missed by F', where T is some fixed algebraic
subvariety of Z containing the singular set of Z. The solution of the
ideal problem gives a holomorphic function f, € P(M) with degree
bounded independent of x which will correspond to a rational function
on C* with pole set passes through x. Then, the almost surjectivity
of F follows. Otherwise, one could select an infinite number of linearly
independent f,’s contradicting the finite dimensionality of the space of
holomorphic functions with polynomial growth of some fixed degree, c.f.

(83).

In [24], Mok used the solution u of the Poincaré-Lelong equation
as the weight function in the Skoda’s estimates for solving the ideal
problem. In his case, because of his curvature quadratic decay condition,
the growth of u is bounded both from above and below by the logarithm
of the distance function on M. This does not work in our case because
we do not have the luxury of the lower bound of u. However, thanks to
the Steinness of M by Theorem 5.1, we can adapt the argument of Mok
in [26] to choose another weight function by resorting to Oka’s theory
of pseudoconvex Riemann domains.

Before we carry out the above procedures in proving the almost sur-
jectivity of F', we first need to construct a non-trivial holomorphic (2, 0)
vector field of polynomial growth on M.

Consider the anticanonical line bundle, K=!, on M equipped with
the induced Hermitian metric, its curvature form Q(K~1!) is then simply
the Ricci form of M. Let w be the strictly plurisubharmonic function
of logarithmic growth obtained in Proposition b.2. For any given point
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To € M, let {z1,22} be local holomorphic coordinates at Ty. Choose a
smooth cutoff function n supporting in this local holomorphic coordinate
chart with value 1 in a neighborhood of Ty. We study the following 0
equation for the sections of K~! on M,

= = 0 0
8.3 0S =0 (n=—N—
( ) < 82’1 82’2 )
Clearly, we can choose k£ > 0 large enough such that

ky/=100u + QK1) + 3v/=100 (nlog (|21 + |22]2)) > 0

Then, by the standard L? estimate of 0 operator on Hermitian holo-
morphic line bundles (cf. Theorem 1.2 in [26]), Equation (8.3) has a
smooth solution S(z) satisfying the estimate

(84) / |S|2 e—ku—?)nlog(\m|2+\Z2|2)w2

2
< AN —
C/ ‘ ( 821 4 822>

e—k:u—?)nlog(\zl|2+\z2|2)w2
< 400

for some positive constant C. Recall the Poincaré—Lelong equation for
the section S(z) of the anticanonical line bundle K—1,

V-1 _= 1

¥ 9dlog|S|* = [V]— —Ric on M,

27 2

where [V] is the zero divisor of S(z) (cf. [26]). Thus, log|S|* + u is
subharmonic and so is |S|? e* = exp(log |S|* 4+ ). Since M has positive
Ricci curvature and maximal volume growth, we can apply the mean

value inequality of subharmonic functions (8.4), and the fact that u has
logarithmic growth to show that S(x) is of polynomial growth. Set

0 0

Then, v is a non-trivial holomorphic (2,0) vector field over M with
polynomial growth we desired.

Now, for any f;, f; € {f1, f, f3, fa} with df; Adf; # 0, we can choose
the point T in the above construction of v so that the holomorphic
function f;; defined by

(8.5) fij = (v, dfi Ndf;)
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is a non-trivial holomorphic function of polynomial growth. Here, we
have used the fact that ||df; A df;| grows at most polynomially by the
gradient estimate of harmonic functions of Yau [40]. It is obvious that
the zero divisor of df; A df; is contained in the zero divisor of f;;, for
which we denote by Vj. Since M is Stein, the same is also true for
M\Vp.

Denote by m;; : Z — C? the projection map given by (wy,ws, w3, wy)
— (w;, w;). Then, the map

p:7rijoF:M\V0—>C2

realises the Stein manifold M\Vj as a Riemann domain of holomorphy
over C2%. Let 6(z) be the Euclidean distance to the boundary as in
Oka [80]. Then, —logd is a plurisubharmonic function on M\V; by a
theorem of Oka [30]. &(z) will be used in the weight function of the
Skoda’s estimate mentioned above. It is essential to estimate it from
below in terms of the intrinsic distance d(z,xg) on M.

Lemma 8.1. There exist positive constants p and C' such that
8(w) = C|fij (@) (d(w, o) + 1) 77

Proof. Let v;, vj be two holomorphic vector fields on M\Vy defined
by

(U, df) = O, k,l=1,j.

By the Cramer’s rule, we have

g < \dfi| + |df;] < v| (|dfi| + [df;)
|df; A df | fii]
(d(xva) +1)k1
C
=2 @)

for k = 4,7 and some positive constants Cyo, k.
Since f;; is of polynomial growth, |V f;;] is also of polynomial growth
by the gradient estimate of Yau, i.e.,

on M\Vp,

max { fi;(z), |V fij(x)|} < Coz (d(x,x0) + l)k2 on M,
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for some positive constants Cy3 and ky. Take x € M\Vjp, then for any
y€ B (:1: £ (@)] /3023 (d(z, z0) + 1)k2), we have

| fij ()]
3Cys (d(w, z0) + 1)*2

(8:6)  fij(®)| = |fij(x)] — Cos (d(w, z0) +2)* -

1
2 5 i)l
This implies
B (,1fij(@)] /3Cas (d(w,0) + 1)) € M\Vy
and

(d(z, z0) + )™
fij(x)]

for all y € B (=, |f35(2)| /3Css (d(w,z0) + 1)), k=i, ].
By the definition of d(x), it suffices to prove

(8'8) p (B (:C, |fZJ(CC)| /6023 (d(x7 1’0) + 1)k2 ))
D Be2 (,o(x), Coy ‘fz](x)‘2 /(d(x,xo) + 1)k1+k2) ’

(8.7) ok (y)] < 2C%

for some positive constant Coy. Here, Bgz(a,r) denotes the Euclidean
ball in C? with center a and radius 7.
Consider the real vector field

£ = o; (2Re (v3)) + a; (2Re (v5)) + B; (2Im (v;)) + 55 (2Im (vy))
= (o = V=18;) vi + (a; — V=18;) vj + (o + V=15;) ¥;
+ (o5 +V=15)) 7

with |a;|® + |e|* 4 |8i])* + |8;]* = 1. Clearly, ¢ also satisfies (8.7). Let
7¢(7) be the integral curve in M defined by £ and passes through z, i.e.,

(8.9) dr
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We have
W = (&,df;) = a; — V-1,
W20 (e apy) = oy - VT8,

and

(8.10) [fi0e(r) = fil@)” + 1 fj 0 %(7) = ()" =72

Note that (8.10) implies that v¢(7) cannot always stay in

B (w,1fi5(@)| /6Cas (d(w,20) + 1)*2 ),

otherwise, F' = (f1, f2, f3, f4) would become unbounded in this ball.
Denote by 7 the first time when ~¢(7) touches the boundary

0B (. 1fi5(@)| /6Cas (d(z,z0) + 1)),
it is easy to see that

| fij ()]
6C4s (d(z, z) + 1)F2

< the length of ¢ on [0, 79]

< a0y [ L
0

| fij(2)]
_ T (d(xva) + 1)k1
=207 | fij ()]
Thus,
2

T .
Y = 90 Casb (d(z, o) + 1)1 T

Note that the integral curve 7¢ projects to straight line passing
through f(x) by p. Thus, when (o, ay, 5, 3;) runs through the unit
sphere in C2, the collection of integral curves Ve inside

B (@,1fij(@)] /6Cas (d(z,w0) + 1))
will project, by p, onto the Euclidean ball

302 (p(:c), |fZ](-T)|2 /2022026 (d(CC,CC()) + 1)k1+k2) ]

This proves (8.8) and hence the lemma. q.e.d.
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Now, we are ready to prove the almost surjectivity of the holomorphic
map F : M — C* For each 1 < i,j < 4, since fij is a holomorphic
function of polynomial growth and R(M) is generated by fi,..., f1, we
can write

fij(@) = Hyj (f1(2), f2(2), f3(2), fa(z)) on M

for some rational function H;; on C%. Let T} be the union of the singular
set of Z and the zero and pole sets of all H;;, 1 < 4,5 < 4. For any
be Z\(F(M)UTy), there exist fixed {i,j} C {1,2,3,4} such that the
projection m;; : Z — C? is non-degenerate at b. Since Z is algebraic,
the number of points contained in 77231 o m;;j(b) is less than some fixed
integer K depending only on Z. By interpolation, there is a polynomial
hy of degree < K on C* such that hy(b) = 1, and hy(w) = 0 for all
w e (7TZ-;1 o7;;(b))\{b}. We now solve on M\Vj the ideal problem with
unknown holomorphic functions g; and g;,

(8.12) (fi = bi) gi + (f; —bj) gj = (hy o F)*,
where b = (bl, b2, b3, b4).
Let

¥ = —nylog§ + nalog(1 + |fil* + | f;]),
where the integers ny, no > 0 will be determined later. Clearly, ¢ is a
strictly plurisubharmonic function on M\V;. By the estimate of Skoda
(cf. Theorem 1.3 in [26]), given any o > 1, there exists a solution

{9i,9;} to (8.12) such that

(o + las*) e
(8.13) / 70 prdVg
2 2
M\ (!fz‘ = bil” + |5 = bj )
hb OF‘)8 e ¥ "
< Ca / sas1P AVE,

vy (=0l + 155 = byl
provided the right-hand side is finite. Recall that p = m;; o ' and here

2
prdVyg = + (g) dfy Ndf; N df Ndf

denotes the pull back of the Euclidean volume element of C*%.
Let {C1,C2,- .-, G} = m; Yor;(b) (m < K) be the preimages of ;;(D)
with (3 = b. And let U, (1 < k < m) be disjoint small neighborhoods
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of ¢ (1 <k < m). The integral on the right-hand side of (8.13) can be

decomposed into three parts i
RHS = ( / +> / + / )
FY () 5 FNUR) Y (M\VO)\UR F =1 (U)

hyo F)¥e ¥ B
: ( ) 5ol AVE

(|fi —bil* +|f; - bj|2)
= Il =+ IQ =+ Ig .

m

1

For Iy, since hy(b) = 1 and d(z) < (|fZ —bi]* + |fj — bj|2> * we can
choose n; > 2(2a + 1) and Uy small enough so that the integral I is
finite.

For I, since hy((x) = 0 for 2 < k < m, we can choose « such that
2(2a + 1) < 8 (e.g., a = 1.4). Then, the integral I5 is also finite.

For I3, we choose ny > 10 + 8K + ny, where hy is of degree < K.
Then, I3 can be estimated as

1
I3 < 025/ —dVp < 4+o0.
c2 (1+[w[)"

Hence, we have obtained a solution {g;, g;} of the ideal problem (8.12)
such that

(lgil” + 1gs*) e
(8.14) /
M\Vy (|fz - bi|2 + |f] - bj|2>
Recall from Lemma 8.1 and (8.5), we have

8(z) > C'|fij(@) (d(z,20) + 1) 77

50 AVE < +o0.

and
* \/__1 ’ P If
prdVi = + <T dfs A df; NTF; AT
. fl?
~ oA
> Che | fij ()] 2

(d(x,z0) 4+ 1)*
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for some positive constants Cog and k3. Substituting these two inequal-
ities into (8.14), we get

(lgil” + 19 ) 1 P72
(8.15) / - w? < +o0,
(d(z, 30) + 1)

M\Vo

where k4 is some positive constant independent of b and 4, j. Then,
both g; f;}lﬂ and g; fg-l“ are locally square integrable. They can thus
be extended holomorphically from M\Vy to M. By the mean value
inequality of subharmonic functions, we deduce also that they are of
polynomial growth with degree bounded by some positive number k5
independent of b.

Now, recall that R(M) = C(f1,f2,f3/f4), the holomorphic functions
gifg-lJrl and gjfglJrl are thus rational functions of f1, fo, f3 and f4.
Hence, we can regard the equation (8.12) as an equation on the variety
Z C C*, namely

(wi = 0:) gif7 4 (wj = by) g5 [T = HF -
Since hy, is a polynomial with hy(b) = 1 and the point b lies outside of

the zero and pole sets of H;;, either gz-fiT]L-lJrl or gjf[;-lﬂ, when regarded

as rational function on C#, must have a pole at b. Denote this function
by G°. Thus, G° is a rational function on Z with G°(b) = oo and
GY o F is a holomorphic function on M with degree < k5. If Z\(F(M)U
Tp U pole sets of GV) is empty, then we are done. Otherwise, pick any
by € Z\(F(M) U Ty U pole sets of G°) and repeat the same procedure
to obtain a rational function G!' on Z with G'(b;) = oo and G' o
F' a holomorphic function on M with degree < ks. Proceeding this
way, we obtain a sequence of points {b, by, by, ...} and rational functions
{G° G',G?,...} such that G*(b;,) = oo and G! regular at by for [ < k.
So, {G°,G*,G?,...} must be linearly independent over C. Moreover,
all of G¥ o F' are holomorphic functions with degree < k5. Hence, by
(8.2), the above procedure must terminate in a finite number of steps.
In other words, there exists an algebraic subvariety T of Z such that
F(M) > Z\T.

Moreover, F' establishes a quasi embedding from M to a quasi—affine
algebraic variety. Indeed, let W = F~!(T). By the definition of Ty and
the construction of 7', we know that W O V', where V is the union of
the branching locus of F and F~!(Sing(Z)), and W is the zero divisor of
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finitely many holomorphic functions of polynomial growth. Therefore,
F maps M\W biholomorphically onto Z\T.

Finally, to complete the proof of our Main Theorem, we have to show
that the mapping F' can be desingularized by adjoining a finite number
of holomorphic functions of polynomial growth and taking normalization
of the image.

We have constructed the mapping F': M — Z into an affine algebraic
variety which maps M\W biholomorphically onto Z\T. Now, we use
normalization of the affine algebraic variety Z to resolve the codimension
1 singularities of F. Let Reg(Z) denote the Zariski dense subset of Z
consisting of its regular points. It is well known that the normalization
Z of Z can be obtained by taking Z to be the closure of the graph of
{Q1,Q2,...,Qm} on Reg(Z) where Q; is a rational function which is
holomorphic (or regular in the terminology of algebraic geometry) on
Reg(Z). The lifting of FF : M — Z to F : M — Z is then given by
{f1,f2,f3,f1,Q1 0 F,...,Qp o F} where, as was shown in proposition
8.1 of Mok [24], for each i, Q; o F' can be holomorphically extended to
the whole manifold M as a holomorphic function of polynomial growth.

Write Fy = F : M — Z and denote Fy : M — Z the normalization
of Fy. For any smooth point 2 on the subvariety W, by using the L?
estimates of the d operator as in Section i, one can find two holomorphic
functions gl, ¢2 of polynomial growth which give local holomorphic
coordinates at z. Adding g., g2 to the map ﬁo, we get a new map
Fi = (Fo, 05,93 : M — Z; C C6+m, which is non-degenerate at x.
Write the normalization of F} as F1 M — 21 and continue in this way
to get holomorphic mappings F; : M — Z; and their normalizations
F; : M — Z; such that

~ D ~

VVosféWH'é #W?é

where W is the locus of ramification of F

Note that W contains no isolated point because Z is normal. More-
over, by Proposition 7.2, W has only finite number of irreducible com-
ponents because W is the zero divisor of finitely many holomorphic
functions of polynomial growth. This implies that the above proce-
dure must terminate in a finite number of steps, say [. Thus, we get
a biholomorphism F} from M onto its image Fl(M ) C Z,. The argu-
ment in our proof of the almost surjectivity shows that INV}(M ) can miss
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at most finitely many irreducible subvarieties of Zl, say fl(l), . ,Tv q(l).

If E(M )N fl.(l) # (), then it must intersect i(l) in a non-empty open
set because Fj is open. We arrange T(l) so that E(M )N f(l = () for
1<i<pand F(M)N T(l) £ () for p+1 < i < q. Note thatFl(M)

a Stein subset of Zl because M is Stein by Theorem b.1' and Fl maps
M biholomorphically onto its image. By Hartog’s extension theorem,
every holomorphic function on ZZ\U1<Z<QT( ) extends to Zl\U1<Z<pT(l)
Hence, we get a biholomorphic map from M onto a quasi—affine alge-
braic variety. Finally, recall that a classical theorem of Ramanujam [81]
in affine algebraic geometry says that an algebraic variety homeomor-
phic to R* is biregular to C2. Combining this result of Ramanujam
with Theorem 5.1, we deduce that M is actually biholomorphic to C2.
Therefore, we have completed the proof of the Main Theorem.
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