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POSITIVELY CURVED MANIFOLDS
WITH LOW FIXED POINT COHOMOGENEITY

Karsten Grove & Chang-Wan Kim

Abstract

Positively curved manifolds of fixed point cohomogeneity one
are classified up to equivariant diffeomorphism.

Introduction

The general program about classifying positively curved manifolds
with large isometry groups (cf. [10]) has recently enjoyed considerable
progress (see [28, 27] and also [20, 7]). Here, we will provide a solution
to one particular aspect of this program.

If G is a (connected) compact Lie group of isometries on a (closed) rie-
mannian manifold M , the dimension of the orbit space M/G, also called
the cohomogeneity, cohom(M,G), of the action, provides a natural
coarse measurement for the size of G. In particular, cohom(M,G) = 0
means that G acts transitively on M , i.e., M = G/H is homogeneous.
In this case, the fixed point set MG of G is clearly empty. When
MG �= ∅, the cohomogeneity is of course constrained by the dimen-
sion of MG ⊂ M , since also MG ⊂ M/G. Because of this, it is natural
to view

cohomfix(M,G) = dim M/G − dim MG − 1
as an alternative measurement for the size of G, when fixed points are
present. Note that, with this definition, cohomfix(M,G) = cohom(M,G)
when MG = ∅, and cohomfix(M,G) = cohom(S,G), where S is any
normal sphere to a component F ⊂ MG of maximal dimension, when
MG �= ∅. Clearly, cohomfix(M,G) = 0 simply means that G acts “as
transitively as it possibly can” whether or not G has fixed points. When
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MG �= ∅ and cohomfix(M,G) = 0, we, therefore, say as in [11] that
M is fixed point homogeneous (we have chosen to subtract 1 from the
definition of cohomfix(·, ·) given in [11] since it seems to cause less con-
fusion). When cohomfix(M,G) = k, we will also say that (M,G), or
simply M has fixed point cohomogeneity k. Although this formally in-
cludes all cohomogeneity k manifolds, we will throughout this paper use
the notion of fixed point cohomogeneity only when the fixed point set is
non-empty.

Fixed point homogeneous manifolds of positive curvature were clas-
sified up to equivariant diffeomorphism in [11]. Here, we will present a
similar classification of positively curved fixed point cohomogeneity one
manifolds. As a consequence, we get, in particular, the following

Theorem A. Any positively curved simply connected manifold of
fixed point cohomogeneity one is equivariantly diffeomorphic to an iso-
metric action on a compact rank one symmetric space.

With the exception of the Cayley plane, each of these spaces have many
such structures. For a complete description including the group actions,
and the cases where M is not simply connected, we refer to Section 2,
and in particular, to our main result Theorem 2.10.

Note that our result in a sense is optimal, since the simply con-
nected positively curved normal homogeneous Aloff–Wallach space W1,1

= SU(3)/S1
1,1 = (SU(3) SO(3))/U•(2) (cf. [26]) has an isometric circle

action with fixed point cohomogeneity two and non-empty fixed point
set.

We point out that Bredon in [2] investigated actions of fixed point
cohomogeneity one in a general curvature free setting.

Results of the above type are often useful in other aspects of the sym-
metry program since actions of these types often occur as sub-actions of
other large group actions (see e.g. [11] and [28]). Here are two extreme
situations stemming from a general action G×M → M . If H is the prin-
cipal isotropy group, then clearly cohomfix(M,H) = cohomfix(G/H,H)
is the fixed point cohomogeneity of the isotropy representation. If
an isotropy group K ⊂ G contains a normal subgroup L � G, then
cohomfix(M,L) = cohomfix(S⊥, L) is the fixed point cohomogeneity of
L on the spherical slice representation. This yields a usefully general
reduction theorem (see (1.4)) which extends the classification result of
[11].
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An important common feature among manifolds of fixed point coho-
mogeneity at most one, is that their orbit spaces are Alexandrov spaces
with non-empty boundary. Since in our case these orbit spaces also have
positive curvature, the Cheeger–Gromoll–Meyer soul theorem adapted
to orbit spaces (cf. (1.2) and (1.3)) plays a pivotal role in determining
their structure. In the first section, we recall the basic general prerequi-
sites in this context, and prove the reduction theorem alluded to above.
In Section 2, we briefly present the facts we need about cohomogeneity
one manifolds, and exhibit a collection of examples of fixed point coho-
mogeneity one manifolds with positive curvature. In addition, extending
of a result of Straume [25], we prove the following equivariant analogue
of the Smale–Hatcher theorem [23, 14] of independent interest.

Theorem B. Suppose G is a compact connected Lie group which
acts isometrically (hence linearly) by cohomogeneity one on a euclidean
sphere S. Then, the inclusion

OG(S) → DiffG(S)

of the group of G-equivariant linear maps into the group of G-equivariant
diffeomorphisms of S is homotopy equivalence.

This result is crucial for achieving our classification up to equivari-
ant diffeomorphism rather than just equivariant homeomorphism. We
point out that Morse theory applied to a suitable subspace of equivari-
ant homeomorphisms of S provides a natural deformation retract onto
OG(S). Section 3 is devoted to a description of all possible geometric
structures of orbit spaces of positively curved fixed point cohomogeneity
one manifolds. There are all together four different types. This is then
used in the final three sections to show that the examples exhibited in
section two provide a complete classification.

It is a pleasure to thank Burkhard Wilking for his interest in this
project, and for the help he has provided by sharing his most valuable
knowledge and insights with us. Thanks also goes to Eldar Straume
for informative discussions about his comprehensive work [24, 25]. The
paper was completed while the first named author was visiting the Uni-
versity of Aarhus and the second named author was visiting Rutgers
University. We wish to thank both institutions for their hospitality and
support.
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1. Basic setup and reduction

Throughout, M will denote a compact connected Riemannian mani-
fold, and beginning with (1.2), we also assume that M has positive
sectional curvature. Unless otherwise stated, G will be compact (con-
nected) Lie group acting (almost) effectively and isometrically on M .
Recall that each component of the fixed point set MG of G is a totally
geodesic submanifold of M . For x ∈ M , we let Gx ⊂ G denote the
isotropy (stabilizer) subgroup of G at x, and Gx � G/Gx the orbit
through x. As is customary, we refer to the induced action of Gx on the
tangent space TxGx (T�

x for short) to the orbit Gx, and on its orthog-
onal complement T⊥

x Gx (T⊥
x for short) as the isotropy representation,

and the slice representation, respectively. By the slice theorem, a tubu-
lar neighborhood of the orbit Gx ⊂ M is equivariantly diffeomorphic
to G ×Gx T⊥

x . In particular, each component of the set MK of orbits
of type (K), i.e., with isotropy group conjugate to K, is a (minimal)
submanifold, and TxMGx = T�

x + (T⊥
x )Gx .

When viewed as a point in the space M/G of orbits, we use the
notation x for the orbit Gx. The distance between orbits in M defines a
length metric on M/G, so that the projection π : M → M/G defined by
π(x) = x is a submetry, i.e., it maps every r-ball B(x, r) in M onto the
r-ball B(x, r) in M/G. In particular, M/G is a so-called Alexandrov
space with positive curvature (cf. [3] for general background). To avoid
cumbersome notation, we will frequently simply write A in place of
π(A) when A ⊂ M . For the tangent cone TxM (Tx for short) at x ∈ M ,
we have Tx � T⊥

x /Gx. This is also the euclidean cone on the space
of directions SxM � S⊥

x /Gx (Sx for short) to M at x. Note that we
have the splitting Tx = T�

x + T⊥
x , where T�

x � (T⊥
x )Gx is the tangent

space to the stratum, i.e., component of MGx , through x and T⊥
x �

((T⊥
x )Gx)⊥/Gx is called its normal cone.
For any orbit type (K), each component of MK/G = MK is a mani-

fold which by the slice theorem is locally totally geodesic in M . More-
over, the orbit map π : MK → MK is a locally trivial bundle with fiber
G/K and structure group N(K)/K, where N(K) is the normalizer of
K in G. The corresponding principal bundle is given by (MK)K →
(MK)K/(N(K)/K) = MK . Also, for each component N of MK , we
have that π−1(N) = π−1(N)∩MK and N = π−1(N)K/(N(K)/K). It
follows that the closure cl(N) ⊂ M can be described as
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cl(N) = cl(π−1(N)K)/(N(K)/K). Note that cl(π−1(N)K) consists of
components of MK each of which have orbit space cl(N) under the
subgroup of N(K)/K preserving the component. In particular,

Proposition 1.1 (Stratum lemma). The closure in M = M/G of
any connected component of orbits of a fixed type (K) is in its intrinsic
length metric an Alexandrov space.

Recall that when K = H is the principal isotropy group, then MH is
connected and cl(MH)H = cM is a manifold called the core of M (or
principal reduction) and N(H)/H = cG is called the core group. We
will make strong use of the fact that M = M/G is isometric to cM/cG,
which we will also denote by cM (cf. [1, 22, 12]).

If (K) is a maximal orbit type among non-principal orbits, then the
slice representation (modulo its kernel) acts either transitively, or freely
on the normal sphere to a component of MK . In the first case, the
corresponding stratum is part of the boundary ∂M of M , and we call
its closure a face of the boundary. The boundary of M is a finite union
of faces, ∂i, each of which have non-empty boundary themselves as long
as they are in a component of ∂M with more than one face. In contrast
to what is known for general Alexandrov spaces, we point out that also
∂M with its induced length metric is an Alexandrov space. We will not
make use of this fact here, however.

We will now formulate two versions of the soul theorem adapted to
the setting of positively curved orbit spaces (for general Alexandrov
spaces see also [19]). For this purpose, we will use CX to denote the
cone on X.

Theorem 1.2 (Boundary soul lemma). Suppose M = M/G has non-
empty boundary. Then

(i) there is a unique point so ∈ M , the soul of M , at maximal distance
to ∂M , and Sso

is homeomorphic to ∂M ;
(ii) there is a homeomorphism C(∂M ) → M which is the identity on

∂M , and takes the cone point to so;
(iii) a stratum of M is either contained in ∂M , or in the interior

int M = M − ∂M . In the latter case, it is either the interior
minus cone point of a cone on strata contained in the boundary,
the interior of a line through so with end points at boundary strata
points, all of int M , or so by itself;
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(iv) M is equivariantly diffeomorphic to the union of a tubular neigh-
borhood of the soul orbit Gso, and a neighborhood of π−1(∂M ).

In the second version, it is only a face of the boundary, which plays
the “Riemannian” role of the boundary of a convex set.

Theorem 1.3 (Face Soul Lemma). Suppose M/G = M has non-
empty boundary with more than one face, and let ∂i ⊂ ∂M be a face.
Then

(i) there is a unique point si ∈ ∂M , at maximal distance to ∂i, and
Ssi

is homeomorphic to ∂i;
(ii) there is a homeomorphism C(∂i) → M which is the identity on ∂i

and takes the cone point to si;
(iii) a stratum of M is either contained in ∂i, or in M − ∂i. In the

latter case, it is either the interior minus cone point of a cone on
strata contained in ∂i, or si by itself;

(iv) M is equivariantly diffeomorphic to the union of a tubular neigh-
borhood of the face soul orbit Gsi, and a neighborhood of π−1(∂i).

The first version was presented in [11] with a slightly different formu-
lation. Its proof is based on critical point theory for distance functions
(cf. [13, 9]), and the fact that the distance function to the boundary is
strictly concave (cf. [5]). The proof of the second theorem is basically
the same and uses no new ingredients other than the observation due to
Wilking that the distance function to a face is strictly concave as well.
For this, it is important to note that the angle between any two faces
is at most π/2, which is a simple fact about cohomogeneity one actions
on spheres (cf. Section 2).

Separately and together, these two theorems provide a powerful tool
in the study of positively curved manifolds with isometric group ac-
tions, since orbit spaces of such manifolds frequently have boundary.
We mention that in [28], it is proved, for example, that if the action has
non-trivial principal isotropy group, then the orbit space has boundary,
and that a positively curved k-dimensional orbit space with boundary
and l + 1 faces is the join of a k − l − 1 dimensional space and an l
simplex. We also point out that by the stratum lemma (1.1), we can
analyse each face with non-empty boundary the same way we analyse
M itself.

We conclude this section with a general extension of the result ob-
tained for fixed point homogeneous manifolds in [11]. Although it will
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become apparent that only simple special cases of what was done in
[11] would suffice for our purposes, the extension unifies and eases the
exposition.

Recall, that if M is a positively curved manifold and cohomfix(M,G′)
= 0, G′ ⊂ Iso(M), then M is G′-equivariantly diffeomorphic to (M,G′),
G′ ⊂ Iso(M), where M is a compact rank one symmetric space with
its standard metric, or a quotient of it by a finite group Π ⊂ S3, which
acts freely on M and preserves a pair of dual symmetric subspaces in
M (see [11]). We will refer to any such model M as a Π-CROSS.

Lemma 1.4 (Reduction lemma). Let G × M → M be an isometric
action on a positively curved manifold M , with G a (connected) compact
Lie group. Suppose G′ � G is a connected normal subgroup of G, which
acts fixed point homogeneously on M . Then, M is G-equivariantly dif-
feomorphic to a Π-CROSS, M with G ⊂ Iso(M).

Proof. Let F ′ be a maximal dimensional component of MG′
so that

G′ acts transitively on the normal spheres S′ of F ′. Recall from [11]
(cf. (1.2)) that there is a unique orbit F ∗ = G′/K ′ at maximal distance
to F ′, and that M − (F ′ ∪ F ∗) consists of principal orbits G′/H ′ � S′.
Moreover, M/G′ is a cone on F ′, which in turn is diffeomorphic to the
space of directions S∗/K ′ at the cone point, where S∗ is the normal
sphere to F ∗ at a point with isotropy K ′.

When dim F ′ > 0, H ′ acts trivially on S∗ and K ′/H ′ = Γ ⊂ S3 acts
freely. Moreover, in this case M (as well as F ′) is

• a sphere, when Γ = {1};
• a space form with fundamental group Γ, when Γ is finite (F ′ can

also be a circle in this case);
• a complex projective space, when Γ = S1;
• the Z2 quotient of an odd dimensional complex projective space,

when Γ = Pin(2); or
• a quaternionic projective space, when Γ = S3.

If F ′ is a point, then K ′/H ′ = S∗, M/G′ is an interval, and M is
either a sphere, a real projective space, a complex projective space, a
quaternionic projective space, or the Cayley plane. It is only in this
case CaP 2 = F4 /Spin(9) arises and then G = Spin(9).

It is clear that the group Ĝ = G/G′ acts isometrically on M/G′ with
quotient M/G. It is also clear that Ĝ preserves both F ′ and the cone
point. When F ′ is a point, i.e., cohom(M,G′) = 1, it is clear that G
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has the same orbits as G′, and it is not hard to complete the proof of
the lemma in these cases. When dim F ′ > 0, we see in particular, that
F ∗ = G′/K ′ = G/K is also a G-orbit at maximal distance to the G-
invariant manifold F ′, and that the slice representation of K induces an
isometric action on S∗/Γ, a Π = Γ/Γ0 quotient of a CROSS. It is also
clear that there is a G-invariant smooth dist(F ′, ·) gradient like vector
field on M which is radial near F ′ and F ∗.

Let M be a Π-CROSS model for M , with G′ ⊂ Iso(M ) and corre-
sponding dual pairs F

′ and F
∗. From [11], there is a G′-equivariant

diffeomorphism f : M → M induced via the slice theorem by a G′-
equivariant bundle equivalence between the normal bundles of F ∗ ⊂ M
and F

∗ ⊂ M , each of which can presented as G′×K ′D∗. By assumption,
the normal bundle of F ∗ ⊂ M is also described in terms of the extended
G-action as G ×K D∗. Note that the slice representation of K induces
an isometric action on the space of directions S∗/K ′ = (S∗/Γ0)/Π = F

′.
From the description of Iso(M ) (see e.g. [21]), it then follows that the
transplanted G-action on the normal bundle to F

∗ ⊂ M extends to an
isometric action on M . Moreover, by construction, the G′-equivariant
diffeomorphism f is also G-equivariant in the complements of F ′ and
F

′ and hence globally. q.e.d.

Remark 1.5. If Ĝ = G/G′ acts fixed point homogeneously on F ′

with F ⊂ F ′Ĝ a component of maximal dimension, then G acts by fixed
point cohomogeneity one on M , and the action of G on the normal
space to the fixed point set F is reducible. All but four fixed point co-
homogeneity one actions on a positively curved manifold with reducible
action on the normal space to the fixed point set F are of this type.
Note that when G is connected, so is Ĝ, and we have the following
description of the orbit space M = M/G = (M/G′)/Ĝ:

(1) if Γ = {1}, then M has two smooth faces;
(2) if Γ = Pin(2), F ′ � CP 1/Z2, and Ĝ = S1, then M is a triangle

with two right angles and one π/4 angle;
(3) if Γ = S3, F ′ � HP 1, and Ĝ = S1, then M is 4-dimensional,

has one smooth face, and one face with a unique interior singular
point, with space of directions the 3-dimensional disc D3(1/2) with
curvature 4;
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(4) in all other cases, M is either a triangle with three right angles,
or it has two faces and a geodesic I of singular points joining the
faces perpendicularly at unique singular points of the faces.

In all cases described here, the angle between the faces meeting along
F is π/2.

We will see in Section 3, that except for the possibility of having an
angle π/3, π/4, or π/6 between the two faces meeting along F in the
first and last orbit spaces described above, and for the possibility that
M has one face, this yields a complete description of all possible orbit
spaces of positively curved manifolds of fixed point cohomogeneity one.

2. Examples and equivariant sphere diffeomorphisms

Since the linear cohomogeneity one actions on spheres (classified in
[15] and [24]), and cohomogeneity one actions on related manifolds play
a central role in our investigations, we will briefly recall the general
structure of such manifolds.

We are only interested in those connected Riemannian cohomogeneity
one G-manifolds V , where V = V/G is an interval. If V has length 2a,
to be written |V | = 2a, we parameterize it as [−a, a]. Let c be a normal
geodesic perpendicular to all orbits. We denote by H the principal
isotropy group Gc(0) at c(0), which is equal to the isotropy groups Gc(t)

for all t �= ±a, and by K± the isotropy groups at c(±a) = x±. In terms
of this, we have

(2.1) V = G ×K− D− ∪G/H G ×K+ D+ = V− ∪V0 V+,

where D± denotes the normal disc to the orbit Gx± = G/K± = B± at
x±, and the gluing is done along V0 = V−∩V+ = G/H with the identity
map. It is important to note that S± = ∂D± = K±/H, and that the
diagram of groups

G

K−

j−
����������

K+

j+
����������

H

i−

���������� i+

����������

(2.2)
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which we also record as H ⊂ {K−,K+} ⊂ G, determine V .
Suppose there are groups L ⊂ {L−, L+} ⊂ G, where H � L, K± � L±

are normal subgroups such that Γ = L/H → L±/K± are isomorphisms.
Then, the free actions by Γ on the G-orbits induce a free action on V
commuting with G, and W = V/Γ is a cohomogeneity one G-manifold
with diagram

G

L−

j−
����������

L+

j+
����������

L

i−

���������� i+

����������

(2.3)

Now, suppose H � Ĥ ⊂ G with Ĥ/H = Z2, and that K+ = wK−w−1

with w ∈ Ĥ−H. Then, the action of Ĥ/H on G/H induces a fixed point
free involution on V , which preserves the middle V0 and interchanges
the two sides V± of V . Moreover, the involution commutes with the
G-action on V and the induced cohomogeneity one G-action on the
quotient V/Z2 has the diagram

G

K−

j−
����������

Ĥ

j
���������

H

i−

���������� i

���������

(2.4)

The principal case of interest here is when V = S is the unit sphere in
a euclidean space, and the action G×S → S described by (2.2) is linear.
Recall that in this case |S| = θ is one of the numbers π, π/2, π/3, π/4, or
π/6 (cf. also [17] for the general case of isoparametric hypersurfaces in
spheres). Here, |S| = π if and only if G fixes a pair of antipodal points
and acts transitively on their equatorial sphere, and |S| = π/2 if and
only if G acts reducibly and without fixed points. The simplest class
of reducible representations are those called splitting, i.e., G = G1 ×G2

and the representation is an outer direct sum Φ = Φ1 ⊕ Φ2. Since
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one of the factors is allowed to be trivial, this includes the first and
not so important case for us. In the remaining reducible cases, the
representation is an inner direct sum, i.e., G = ∆G ⊂ G × G and
Φ = (Φ1 ⊕ Φ2)|∆. We point out that from the classification (see [24]),
one finds that all but four of these cases, and of course, all the splitting
cases have normal subgroups which act fixed point homogeneously on
S (cf. (1.5) and Section 1). Including the irreducible representations,
one also easily finds the following exhaustive list of possibilities for core
groups cG (see also [24, 25]):

• If cG is finite, then cS = S1, and cG = Dq a dihedral group with
q = 2, 3, 4, or 6, and correspondingly θ = π/q.

• If cG is connected, then cS = S3, S5, or S7, and cG = T2, S1 × S3

or U(2), or S3 × S3, respectively. In all cases, at least one singular
isotropy group say cK+ (S1 in the first case and SU(2) = S3 in
the remaining cases) is a normal subgroup of cG which acts fixed
point homogeneously on cS. In particular, the action is reducible
and θ = π/2.

• If cG is neither finite nor connected, then cG/cG0 = Z2, and the
identity component cG0 of cG is either T2 from before, or else S1

or S3 with suspension actions on S2 or S4, respectively. In the
latter, two special cases θ = π/2, whereas θ = π/4 in the first
scenario.

Moreover, cG/cG0 = Z2 and cG0 = S3 only happens for connected G,
when the action of G is splitting.

When V = S, the two situations described above in (2.3), and (2.4),
are rather restrictive:
In the first case (2.3), the identity component Γ0 of Γ must be either
{1},S1, or S3 and the corresponding action is the Hopf action. When Γ0

is trivial, the group of components Π = Γ/Γ0 is Γ itself, and W = S/Π
is a cohomogeneity one space form with fundamental group Π. Since
also the normal spheres of the singular orbits are described by L±/L =
K±/H, we get from the classification of transitive actions on spheres,
that Π = L±/K± is a finite subgroup of S3. In case Γ0 = S1, the action
of G is complex, and W = S/Γ is either a complex projective space, or
the Z2 quotient of a complex odd dimensional projective space. Finally,
when Γ0 = S3, the G-action is quaternionic, Γ = Γ0 and W = S/Γ is a
quaternionic projective space.



12 KARSTEN GROVE & CHANG-WAN KIM

The second case (2.4) is only exhibited in those cohomogeneity one
actions on S with θ = π/3. In those cases, the antipodal map will
interchange the two singular orbits, and the induced action on the cor-
responding real projective space is of the above type.

Example 2.5 (Type L). Let S be a euclidean sphere and G×S → S
a linear cohomogeneity one action with diagram (2.2). For any euclidean
sphere F = S∗ (including S0), the sum of the trivial action of G on S∗
with the G-action on S defines an action on the sphere M = S∗ ∗S with
fixed point cohomogeneity one.

Example 2.6 (Type SL). Let G × S → S be as before and G ×
S/Γ → S/Γ the cohomogeneity one action with diagram (2.3). For any
euclidean sphere S∗ on which Γ acts freely, the sum of the trivial action
of G on S∗ with the G-action on S induces a fixed point cohomogeneity
one G-action on M = (S∗ ∗ S)/Γ with fixed point set F = S∗/Γ.

Example 2.7 (Type PL). Let G×S → S be a linear cohomogeneity
one action with |S| = π/3 and G×S/Z2 → S/Z2 the cohomogeneity one
action on the real projective space with corresponding diagram (2.4).
For any euclidean sphere S∗, the sum of the trivial action of G on S∗
with the G-action on S induces a fixed point cohomogeneity one G-
action on the real projective space M = (S∗ ∗ S)/Z2 with fixed point
set F = S∗/Z2.

In addition to these examples, there are fixed point cohomogeneity
one actions that do not arise from any of these simple sum actions on
spheres with fixed point cohomogeneity one.

Example 2.8 (Type T ). Let G′×S′ → S′ be the standard action of
Sp(n) on S4n−1 inducing a transitive isometric action on CP 2n−1/Z2,
and on HPn−1. Consider the corresponding fixed point homogeneous
action of G′ on CP 2n+1/Z2, and on HPn+1 with fixed point set CP 1/Z2,
and HP 1, respectively. Then, G = S1 ×G′ ⊂ Sp(n + 2), with S1 em-
bedded diagonally in S1 × Sp(1) ⊂ Sp(1) × Sp(1) acts with fixed point
cohomogeneity one on CP 2n+1/Z2, and on HPn+1 with fixed point set
a point {p} ∈ CP 1/Z2 and S2 ⊂ HP 1, respectively. The normal sphere
S to the fixed point set is S1 ∗ S′.

Finally, note the cohomogeneity two actions on CPn and on HPn in
(2.6) above only intrinsically can have an analog on CaP 2. Indeed, we
have
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Example 2.9 (Type ET ). On the Cayley plane CaP 2 = F4 /Spin(9),
the sub-action by G = Spin(8) ⊂ Spin(9) is of cohomogeneity two and
has three fixed points. Also, the sub-actions by SU(4) = Spin(6) ⊂
Spin(7) ⊂ Spin(8) are of fixed point cohomogeneity one with fixed point
sets S2 and S1, respectively. The two latter do not have analogs on CPn

or HPn.

We can now formulate our main result.

Theorem 2.10. Any fixed point cohomogeneity one manifold with
positive curvature is equivariantly diffeomorphic to a manifold of one of
the above four types.

This yields a complete classification based on the classification of
linear cohomogeneity one actions on spheres in [24].

The following more detailed version of Theorem B will play an im-
portant role for getting the classification result above up to equivariant
diffeomorphism.

Theorem 2.11. Let G be a connected compact Lie group which acts
linearly by cohomogeneity one on a round sphere S. Then, the group
DiffG(S) of G-equivariant diffeomorphisms of S has the subgroup OG(S)
of G-equivariant linear maps as a weak deformation retract.

Proof. Let f : S → S be a G-equivariant diffeomorphism. Clearly, f
induces a diffeomorphism [f ] : S → S.

Assume first that [f ] preserves the end points of the interval S =
[−θ/2, θ/2] individually. There is then a canonical G-equivariant isotopy
from f to f̂ , where [f̂ ] is the identity map, i.e., we can assume from the
outset that f preserves all G-orbits individually. As in [25], we denote
the group of such diffeomorphisms by DiffG

I (S). These are described
by paths n : S → N(H) with n(±θ/2) ∈ N(H) ∩ N(K±), so that
f(c(t)) = n(t)c(t), where c : S → S is a minimal geodesic perpendicular
to all orbits, Gc(t) = H, t �= ±θ/2 and Gc(±θ/2) = K±. Since any path
in H induces the identity map, it is really the induced map, also called
n : S → cG = N(H)/H, which determines f . Then n starts at the
subgroup cB− = (N(K−) ∩ N(H))/H ⊃ (K− ∩ N(H))/H = cK− and
ends at the subgroup cB+ = (N(K+)∩N(H))/H ⊃ (K+∩N(H))/H =
cK+. Also, cB± ⊂ N(cK±) ⊂ cG. Clearly, f is linear if and only if n is
constant. To avoid smoothing problems near the non principle orbits,
we first make an isotopy so that n is constant near the end points of the
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interval. This can clearly be done uniformly on any compact family of
such diffeomorphisms.

From the considerations above, we get immediately that if the core
group cG is finite, then f is linear, and no further deformations are
needed. In the remaining cases, we also use our knowledge of cG, and
of cB± from [25]. Of particular importance to us is the fact, that when
the core group has positive dimension, then either dim cB− = dim cG
or dim cB+ = dim cG in all but one case (see [25] page 37). In the
exceptional case, G = SU(4) with the representation ρ6 + [µ4]R, the
core group is cG = U(2), cB− = SU(2), and cB+ = U(1)2.

We now equip cG with its standard bi-invariant metric. It is then
apparent in all cases, that there are no non-trivial geodesics in cG con-
necting the totally geodesic subsets cB± perpendicularly, and the trivial
geodesics correspond to the points of cB−∩ cB+ ⊂ cG, i.e., to the linear
G-maps of S. By classical Morse theory for the energy function E on
the path space of paths n considered here (cf. [16]), this means that
there are no critical points for E other than the trivial null-curves in
cB−∩ cB+ ⊂ cG. Thus, the integral curves for the negative of the gradi-
ent of E provides a canonical retraction of this path space to the trivial
paths in cB− ∩ cB+ ⊂ cG. For any map Sk → DiffG

I (S), it is now clear
how this allows us to deform it to a map into OG(S) without changing
it on the closed set that maps into OG(S).

Suppose now that [f ] interchanges the end points of S. Since f pre-
serves isotropy groups, and SK± ⊂ G/K± except for the cases where
cG = D3, it follows that indeed cG = D3. But in those cases, the an-
tipodal map A commutes with the G action and takes one singular orbit
to the other. We then apply the above considerations to f ◦ A and we
are done. q.e.d.

It is the following application of this result that we will use later.

Corollary 2.12. Let E→B and E→B be two Riemannian G-vector
bundles locally G-equivalent to the trivial G-bundle R

n×R
dimS+1 → R

n,
where G acts trivially on the base factor, and linearly by cohomogeneity
one on the unit sphere S ⊂ R

dimS+1. Then, any G-equivariant fiber pre-
serving diffeomorphism φ : SE → SE between the sphere bundles is G-
isotopic to the restriction of a G-bundle isomorphism. In particular, φ
extends to a fiber preserving G-diffeomorphism between the total spaces.
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Proof. Since by assumption φ takes fibers to fibers, it induces a dif-
feomorphism between the base manifolds. Without changing this dif-
feomorphism, we can use the above theorem to construct isotopies with
support inside any small ball of B, so that the resulting diffeomorphism
of sphere bundles is linear on the concentric ball with, say, half the
radius. It is important that this isotopy does not alter φ where it is
already linear. Since the fibers where an equivariant diffeomorphism is
linear is a closed set, our claim follows by a simple maximal extension
argument. q.e.d.

3. Orbit space structures

In this section, we will determine the possible structures for M =
M/G. Although the case where the fixed point set MG is finite, or
equivalently dimM = 2, is somewhat special, we will treat this case
together with the general case dim MG > 0 to the extent possible.

Let F be a component of the fixed point set of maximal dimension.
Then, by assumption F ⊂ M = M/G has codimension 2, and hence G
acts by cohomogeneity one on the normal sphere S = Sx at any point
of x ∈ F . If (2.2) is the cohomogeneity one diagram for G×S → S, we
see in particular that ∂M �= ∅. In fact, a neighborhood of F in M is a
bundle over F with fiber T⊥

x = C(S/G) = CS, and hence any x ∈ F
as well as any x± ∈ M corresponding to orbits near F with orbit type
(K±) belong to ∂M . We denote the face(s) of ∂M containing the latter
orbits by ∂±. Near F , each of these faces is a manifold with totally
geodesic boundary F , and the boundary of a small neighborhood of F
in ∂M is a two-fold cover F ′′ of F . F ′′ can also be identified with the
boundary of space of normal directions to F in M .

From now on, we will refer to F ⊂ ∂M as the edge E of M (when
dim M = 2, the edge may contain one additional point). As we shall see,
only a short list of types of orbit spaces M can occur. For convenience,
we will list and baptize them here

• M is called a lens if its boundary has two smooth faces.
In particular, the faces are discs, the edge their boundary sphere,
and M has no interior singular points. (The two-dimensional ver-
sion of a lens is a biangle)
The orbit spaces of examples of type L in (2.5) are lenses (Fig-
ure 1).
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Figure 1. Type L

• M is called a singular lens if its boundary has two faces, and there
is a geodesic I of singular points, called the spine of M , joining
the two face soul points s± and making an angle π/2 with the
faces.
In particular, the spaces of directions at the face soul points, are
spherical cones on the spaces of face directions. (The correct two-
dimensional analog of a singular lens is a triangle with two right
angles at the “spine”, i.e. the face. ∂0 opposite the “edge” F .)
The orbit spaces of examples of type SL in (2.6) are singular lenses
(Figure 2).

G
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K−

L I E

∂+

∂−

dimM > 2

�

�

�

F

∂−

∂0

∂+

dim M = 2

Figure 2. Type SL

• M is called a top if its boundary has two faces, one of which is
smooth and the other singular.
In particular, the faces are discs (one non-smooth), the edge their
boundary sphere, and M has no interior singular points. The
space of directions at the singular face soul point, say s− called
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the vertex, is a hemisphere of constant curvature 4. The two-
dimensional version of a top is a triangle with two right angles at
the “edge” consisting of two points, and vertex angle π/q.
The orbit spaces of examples of type T and ET in (2.8) and (2.9)
are tops (Figure 3).

E

∂−

∂+

s−

dim M > 2

�

�

�

∂− ∂0

∂+

dimM = 2

1

Figure 3. Type T and ET

Note that an isometric face preserving Z2 quotient of a lens, whose
restriction to the edge is free (equivalent to the antipodal map), is a
singular lens, with edge a real projective space. Also, an isometric face
interchanging Z2 quotient of a lens, or a singular lens, fixing the edge,
is a lens, or a singular lens.

• M is called a projective lens if it is an isometric face interchang-
ing Z2 quotient of a lens, whose restriction to the edge is free
(equivalent to the antipodal map).
In particular, a projective lens has only one face, exactly one in-
terior singular point so, and edge a real projective space. The
space of directions at the soul point is a real projective space of
curvature 1. The two dimensional version of a projective lens is a
loop with one interior singular point with vertex angle π.
The orbit spaces of examples of type PL in (2.7) are projective
lenses.

In view of this, it is may be surprising that a projective singular lens
and a singular top will not arise as the orbit space of an action (by a
connected group) of fixed point cohomogeneity one.
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To see that the above structures are the only possible ones for orbits
spaces of positively curved manifolds with fixed point cohomogeneity
one, we proceed by analyzing the core, cM ⊂ M with its induced action
by the core group cG = N(H)/H. This suffices since M is isometric to
the orbit space cM/cG, which we will denote by cM . Note that cG is
also the core group of the linear cohomogeneity one action (2.2) of G
on S. In particular, since the core cS of S is connected, so is cM .

We will now determine cM and cM corresponding to the different
possibilities for cG exhibited in Section 2.

Lemma 3.1 (Polar action). Suppose cG is finite, i.e., cG = Dq, with
q = 2, 3, 4, or 6. Then, |π1(cM)| ≤ 2 and the universal cover cM̃ is
diffeomorphic to Sn+2.

If cM is simply connected, then cM = M is a lens with edge angle
π/q.

If π1(cM) = Z2, then cM = M is either a singular lens with edge
RPn and edge angle π/q, q even, or a projective lens with edge RPn

and edge angle π/3.

Proof. When cG is finite, the action of G on M is polar (cf. [18]) with
section cM , and the component F of cM cG of maximal dimension has
codimension two in cM . From the description of M c = M/cG near F ,
it follows that cG = Dq is a dihedral group generated by two involutions
I±, where < I± > are the isotropy groups corresponding to the faces
∂±. Let F± be the codimension one fixed point sets of I± containing
F . Then, either both hypersurfaces F± ⊂ cM are two-sided, or they are
both one-sided.

In the first case, cM is the union of two discs with common boundary
F+ (or F−) by the soul theorem. Moreover, since the reflection I+ (resp.
I−) provides a canonical identification between the two smooth discs,
the argument from [6], which in general is incomplete, shows in this case
that cM must be diffeomorphic to the standard sphere. The intersection
of two “hemispheres” determined by F± is easily seen to be isometric to
cM/cG. In fact, the action of Dq on cM is equivalent to the standard
linear action of Dq on the sphere Sn ∗ S1 � F ∗ S = cM fixing Sn, and
hence cM = M is a lens. Note that E = MG ⊃ F consists of two points
when dim M = 2.

In the second case, it follows from the soul theorem that cM is double
covered by Sn+2 � cM̃ , and that the inverse images F ′ ⊂ F ′± ⊂ cM̃ of
F ⊂ F± ⊂ cM are standard spheres Sn ⊂ Sn+1

± ⊂ Sn+2. Note that
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each of I± fix a unique point s∓ ∈ cM at maximal distance to F±. If
A : cM̃ → cM̃ is the non-trivial element in the deck group π1(cM), we
let (s′∓, A(s′∓)) be the corresponding unique pairs of points in cM̃ at
maximal distance to F ′±. If Ĩ± : cM̃ → cM̃ are lifts of I±, we note that
Ĩ± is either a reflection R± in F ′±, or a “rotation” S± fixing (s′∓, A(s′∓))
and acting by A on F ′±. In either case, A commutes with both of Ĩ±,
and cM/cG = cM̃/cG

′, where cG
′ is the group generated by Ĩ−, Ĩ+, and

A. Since AS± = R±, we see that cG
′ = < R−, R+, A >, and hence

cM = (cM̃/ < R−, R+ >)/Z2, where cM̃/ < R−, R+ > is a lens from
the first case.

If the involution preserves the two faces of the lens cM̃/ < R−, R+ >,
it will clearly fix a line between the face souls and act as the antipodal
map on the edge Sn. We conclude that cM = M is a singular lens with
edge RPn. Note that in this case, the isotropy groups of cG correspond-
ing to the face souls, i.e., the fixed points s∓ of I±, are D2, and hence
in particular q is even. Conversely, it is not hard to see that when q is
even the involution will preserve the faces of the lens.

If the involution interchanges the faces of the lens cM̃/ < R−, R+ >,
it will clearly fix its soul point, and act as the antipodal map on the
edge Sn. We conclude that cM = M is a projective lens with edge RPn.
Note that this case corresponds exactly to q odd. q.e.d.

Remark 3.2. The above Lemma actually gives a partial answer to
the question of what positively curved manifolds with fixed point coho-
mogeneity one are, when the definition is extended to finite groups G.
Since here MG ⊂ M has codimension two, it follows that G is either a
cyclic group, or a dihedral group. In the latter case, we just determined
both M and the action. However, when G is cyclic, M does not have
boundary and the situation is rather open, except for what follows from
Wilking’s connectedness lemma [27].

When cG is not finite, i.e., dim cG > 0, we note that its identity
component cG0 acts on the core cM with fixed point cohomogeneity
one or zero, and that cM = (cM/cG0)/Z2.

Lemma 3.3 (Non-polar action I). Suppose cohomfix(cM, cG0) = 1.
Then cM is either a sphere, a space form with fundamental group Γ ⊂
S3, a complex or quaternionic projective space, or the Z2 quotient of an
odd dimensional complex projective space.
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Moreover, M = cM is either a lens with edge Sn, a singular lens (in-
cluding a triangle) with edge either Sn/Γ, CPn/2, HPn/4, or CPn/2/Z2

when n/2 is odd, or a top with edge S2 or S0(and vertex angle π/4).
The angle between the faces is π/2, or π/4 in case cG is disconnected.
In the exceptional top cases, cM is either HP 2, or CP 3/Z2, respectively,
and cG is one of S1 × S3, or U(2).

Proof. By assumption cG0 is one, the groups T2 = S1 × S1, S1 × S3 or
U(2), or S3 × S3 with a reducible cohomogeneity one action on cS. Since
one of the singular isotropy groups, say cK

′
+ ⊂ cG0 of the cG0-action

on cS, is a normal subgroup (S1 in the first case and S3 = SU(2) in the
remaining cases), it follows that it acts fixed point homogeneously on
cM , and we therefore know what both cM and cM/cK

′
+ are from (1.4).

Moreover, cG0/cK
′
+ = S1 or S3 acts on cM/cK

′
+ preserving the cone

point and the boundary, on which it acts fixed point homogeneously
(cf. (1.5)). For (cM/cK

′
+)/(cG0/cK

′
+) = cM/cG0 = cM

′, we therefore
explicitly have the following cases:

When cG0 = T2, cM
′ is either a lens with edge Sn, or a singular lens

with edge either Sn/Zq or CPn/2, corresponding to cM being either
Sn+4, Sn+4/Zq, or CP

n
2
+2. When cM

′ is a triangle (in the second case
q = 2), all angles are π/2.

Similarly, when cG0 is S1 × S3, or U(2), cM
′ is in general either a lens

with edge Sn, or a singular lens with edge either Sn/Zq or CPn/2. In
addition, there are two exceptional cases, where cM

′ is a top with edge
S2, or a triangle (a two-dimensional top with vertex angle π/4). The
general cases correspond to cM being either Sn+6, Sn+6/Zq, or CPn/2+3.
In the exceptional cases, cM is HP 2, or CP 3/Z2, respectively.

Finally, when cG0 = S3 × S3, cM
′ is either a lens with edge Sn, or

a singular lens with one of the following edges: (1) Sn/Γ, where Γ ⊂
S3 is a finite subgroup acting freely and linearly on Sn, (2) CPn/2,
(3) CPn/2/Z2 where n/2 is odd, or (4) HPn/4. These orbit spaces
correspond to cM being either Sn+8, Sn+8/Γ, CP

n
2
+4, CP

n
2
+4/Z2 (n/2

odd), or HP
n
4
+2.

If cG is connected, this completes the proof.
Now suppose cG is not connected. Then, cG0 = T2, and the induced

involution on cM
′ fixes the edge E and interchanges the faces. From

the above, we know then that cM = cM
′/Z2, where cM

′ is a lens, or a
singular lens (including the triangle case), and the involution must be
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a reflection in a hyperplane through the interior of cM
′ reflecting the

spine I ′. Clearly, cM is again either a lens or a singular lens with angle
π/4 between the faces. Note that the face of cM corresponding to the
fixed point set of the reflection, is the closure of the set of orbits with
isotropy group Z2. q.e.d.

Lemma 3.4 (Non-polar action II). Suppose cohomfix(cM, cG0) = 0.
Then, cM is either a sphere, a real projective space, or it is one of the
exceptional spaces S3/Zq, or CP 2.

In the general cases, M = cM is either a lens with edge Sn, or a
singular lens with edge RPn (including a triangle).

In the exceptional cases, M = cM is either a two-, or three-dimensional
top, and cG0 = S1.

In all cases, the angle between the faces at the edge is π/2.

Proof. By assumption cG0 is either S1 or S3 with the suspension ac-
tions on cS = S2 or S4, and cG/cG0 = Z2. Moreover, cG0 = S3 only
when the G-action is splitting, and hence cG = S3 ×Z2. In both cases,
cG0 acts on cM with fixed point cohomogeneity zero, and hence cM

′ =

cM/cG0 is homeomorphic to the cone CF̂ , where F̂ = ∂cM
′ ⊂ cM

′ is
the component of cM cG0 containing F . Moreover, only the soul point
so is possibly singular, and SsocM

′ = S⊥
so

/(cG0)so is diffeomorphic to
F̂ . Since F ⊂ F̂ has codimension one, it follows as before from the soul
theorem, that F̂ or a two-fold cover of it is the standard sphere Sn+1.

First, assume that cM
′ has no interior singular points, i.e., it is a

smooth disc. The induced involution is then a reflection in a codimen-
sion one disc with boundary E = F (or E is F union a point when
n = 0). In particular, cM = M is a lens with angle π/2 between the
faces.

Next, let us consider the exceptional cases, where F̂ is a sphere, but
the soul point is singular. Metrically, the only possibilities for the space
of directions at the soul point are S1/Zq � S1, CP 1 � S2, or HP 1 � S4,
corresponding to cM = S3/Zq, or S5/Zq, cM = CP 2, or cM = HP 2,
respectively (see [11]). We note that the three- and four-dimensional
cores have cG0 = S1, and the five- and eight-dimensional cores have
cG0 = S3. Again, the induced involution is a reflection in a codimension
one cone on the boundary F (or F union a point, when F is a point).
In particular, this easily rules out the five-, and eight-dimensional cores,
and in the remaining two cases cM

′/Z2 = cM is a top of dimension two,
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three. In the two-dimensional case, the angles at the two fixed points
of cG are π/2, and the vertex angle is π/q.

It remains to consider the situations, where F̂ is not a sphere, i.e.,
π1(F̂ ) = Z2 and its universal cover is diffeomorphic to Sn+1 with n ≥ 1.
Because F ⊂ F̂ is one-sided, the induced involution on cM

′ restricted
to F̂ will fix F and one additional point s at maximal distance from
F . Since the involution also fixes the soul point so ∈ cM

′ at maximal
distance to F̂ , it will fix a geodesic I from s to so. In other words, cM
will always have interior singular points and two faces.

In the general case, where Sso
cM ′ = RPn+1, we get that cM =

cM
′/Z2 is a singular lens with edge RPn and angle π/2 between faces.

Moreover, the spaces of directions at the face souls are metrically spher-
ical cones on RPn.

As in the “spherical” case above, exceptional cases may be pos-
sible here as well, if so metrically is more singular, but, of course,
π1(SsocM

′) = Z2 and SsocM
′ is two-fold covered by Sn+1. It is easy to

see that the only possibility is that SsocM
′ = CP 1/Z2 � RP 2, corre-

sponding to (cG0)so = Pin(2) ⊂ cG0 = S3 and cM = CP 3/Z2 according
to [11]. Since, however, cG = S3 ×Z2, this is easily seen to be impossi-
ble. q.e.d.

We point out that it is not a priori clear if the above exhaustive list
of potential cores, are actually all realized as the core of a fixed point
cohomogeneity one manifold with positive curvature and connected G.

4. Lenses and projective lenses

In this section, we will classify positively curved manifolds of fixed
point cohomogeneity one, whose orbit space is either a lens or a pro-
jective lens. We note that only in these cases do the exceptional edge
angles π/3 and π/6 occur.

We begin with a sphere recognition result:

Theorem 4.1 (Lens case). Suppose M is a lens with edge E � Sn.
Then, M is equivariantly diffeomorphic to Sn ∗ Sm, where S = Sm and
the action is of type L.

Proof. By assumption, each face ∂± is diffeomorphic to the disc Dn+1

with common boundary sphere E � S′ = Sn. Also, M = C∂+ =
CCE = E ∗ I. We can achieve this description in a particular way.
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First, choose a smooth gradient like vector field for dist(∂+, ·) which
is radial near its maximum s− ∈ ∂−, is the unit normal field to the
hypersurfaces parallel to ∂+ near ∂+ and away from E, and on ∂− near
E is the unit normal field to the hypersurfaces parallel to E near E.
Now, let I be an integral curve from say s+ ∈ ∂+ to s− ∈ ∂−. Note that
the normal bundle to I in M is trivial. I together with each integral
curve on ∂− spans a two dimensional surface, which is normal to I and to
the integral curve, and near whose endpoints agrees with radial normal
slices. To achieve this description globally, first choose piecewise smooth
trivializations of tubular neighborhoods of ∂− and of I slightly away
from E and from the endpoints of I with the desired properties, and
then apply, e.g., standard center of mass mollifier smoothing techniques.
We finally modify the gradient like vector field for dist(∂+, ·) so that near
I, E and ∂−, it is tangential to this family of two-dimensional surfaces.
With such a choice, each two-dimensional sector of the tangent space
at s− spanned by I and a tangent vector to ∂− sweeps out a triangular
region in M with one vertex at a point of E and the other two vertices
the endpoints of I. We now change our viewpoint and view each of
these triangles as cones on I. In M , the corresponding set is a disc
equivariantly diffeomorphic to the normal disc of E at the point.

We now claim that M is equivariantly diffeomorphic to the stan-
dard sphere S′ ∗ S, where G acts trivially on S′ and by cohomogeneity
one on S. First, note that π−1(I) ⊂ M is an invariant submanifold
equivariantly diffeomorphic to S. Moreover, a tubular neighborhood of
this submanifold is equivariantly diffeomorphic to the product S × D′,
where G acts trivially on the D′ factor. The same is obviously true for
the submanifold S ⊂ S′ ∗ S, and we thus have a G-diffeomorphism Φ
between these two tubular neighborhoods. However, the boundary of
each of these tubular neighborhoods are also the boundaries of tubular
neighborhoods of E ⊂ M and of S′ ⊂ S′ ∗S. The boundaries of each of
these latter tubular neighborhoods are G-locally equivalent to the triv-
ial G-bundle R

n×S (cf. e.g. [8]), and the restriction φ of Φ to the total
spaces S(E) and S(S′) of these bundles is a G-diffeomorphism. From our
choice of gradient like vector field, it follows that φ preserves the fibers,
and we can use (2.12) to see that φ extends to a G-diffeomorphism be-
tween the tubular neighborhoods D(E) and D(S′), and hence together
with Φ gives the desired G-diffeomorphism between M and S′∗S. q.e.d.
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Note that without a careful choice of gradient like vector field in the
above proof, the equivariant diffeomorphism φ would not preserve fibers,
but will only induce a pseudo-isotopy E × [−θ/2, θ/2] � S(E)/G →
S(S′)/G � S′ × [−θ/2, θ/2]. For dim E ≥ 5, one could then appeal to
the work of Cerf [4] that this map is isotopic to an isotopy to complete
the proof.

We now proceed to consider the only one face case, where as we have
seen in the proof of the polar lemma (3.1), that the core group cG is the
dihedral group D3, and hence G× S → S is one of the four exceptional
actions where S has length π/3.

Theorem 4.2 (Projective lens case). Suppose M is a projective lens
with edge RPn. Then, M is equivariantly diffeomorphic to the real
projective space Sn ∗ Sm/ < −id >, where S = Sm and the action is of
type PL.

Proof. First, let us consider the case dim M > 2, where, by assump-
tion, we know that π1(∂M ) = Z2. Let α : S1 → F = E, and suppose
it represents the trivial element in π1(M). We claim that α is then
also trivial in π1(∂M ). Let A : D2 → M be an extension of α. Since
by assumption the soul orbit Gso has codimension at least 3, it fol-
lows by transversality that we can assume that A(D) does not meet
Gso and hence by (1.2) it can be arranged that π(A(D)) ⊂ ∂M . By
a similar argument, we see that π1(F ) → π1(M) is onto and hence
π1(M) = π1(F )/ker = Z2.

Let M̃ be the two-fold universal cover of M . Allowing G to act
almost effectively on M , we can assume that the action lifts to M̃ and
that clearly M is the Z2 quotient of M̃ . This means that M̃ is a lens and
hence M̃ is a sphere with the action described above. In addition, the
“spine” I in M̃ constructed above can be assumed to be invariant under
the involution with quotient I ′ ⊂ M . Consequently, the corresponding
cohomogeneity one manifold P in M is diffeomorphic to the deck group
quotient of S. From its group diagram, we see that the deck group
restricted to the “spine manifold” S is the antipodal map. Combining
this with the initial fact that the deck group restricted to the two-fold
cover F̂ of F is also the antipodal map, we get that M is the real
projective space with an action of type PL as claimed.

It remains to consider the two dimensional case. Let I ′ be a min-
imal geodesic from the singular soul point to ∂M , and pick another
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geodesic from the soul point to the point F . This way, M is the union
of two geodesic triangles with two sides in common. This description
yields that M is the union of the disc with boundary S, and a tubular
neighborhood of the cohomogeneity one manifold P corresponding to I.
Again, it follows from the group diagram that P is the real projective
space and the projection map from the boundary of its tube is the quo-
tient map by the antipodal map. Thus, M is the real projective space
S0 ∗ S/ < −id > with the induced action of type PL. q.e.d.

5. Singular lenses

In this section, we will classify the large subclass of positively curved
fixed point cohomogeneity one manifolds corresponding to the ones hav-
ing orbit space a singular lens.

We begin by describing all common features and setting up appro-
priate notation.

Denote the isotropy groups corresponding to the face soul points s±
and to the interior points of the spine I by L± and L, respectively
(when M is a triangle, we use the same notation, where now I = ∂0

is the face opposite the point edge E = F , and s± its endpoints) (see
Figure 2). Since I is perpendicular to the faces ∂±, we see that the slice
representation of L± is reducible and has three orbit types. In fact, it
acts on the unit sphere S′± of one subspace corresponding to the face ∂±
with only one orbit type (K±), and transitively with isotropy group L on
the unit sphere of its orthogonal complement. In particular, π−1(I) = P
is a G-invariant cohomogeneity one submanifold of M with diagram
(2.3). We also note that the slice representation of L restricted to the
unit sphere S′ of the orthogonal complement to P has only one orbit
type (H). A simple space of directions argument yields S′

+/L+ = S′/L =
S′−/L− and that this manifold by the soul lemma is diffeomorphic to
F . Since S′± and S′ are all normal spheres to P ⊂ M , it follows that
L+/K+ = L/H = L−/K−.

We conclude from the above, that either L± and L act transitively on
S′± and S′ respectively, corresponding to the case where M is a triangle,
or else K± ⊂ L± and H ⊂ L are all normal subgroups, and the quotient
group Γ acts freely on the sphere S′± = S′. In the latter situation, the
identity component of Γ is either {1}, S1, or S3 and consequently E = F
is a finite quotient of either a sphere, a complex projective space, or a
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quaternionic projective space. We will let Π = (L/H)/(L/H)0 denote
the group of components of Γ = L/H.

To recover the structure of M , we proceed as in the proof of (4.1) by
providing a more detailed description of the structure of M . For this
purpose, we first note, that I ⊂ M has trivial “tubular neighborhood”
I ×C(S′/L) � I ×CF . Moreover, we can choose a gradient like vector
field for say dist(∂+, ·) as in the proof of (4.1), and as a result, write
M = F ∗ I as a union of triangular surfaces with common base I and
vertices in F , and respecting the normal structure near F , and the
trivialization near I.

For simplicity, we now separate the discussion into two scenarios cor-
responding to the edge being simply connected or not.

Theorem 5.1 (Singular lens case I). Suppose M is a singular lens
with simply connected edge E. Then, M is equivariantly diffeomorphic
to a projective space with an action of type SL, or to the Cayley plane
with the Spin(8)-action of type ET.

Proof. From our discussion above, we see that our assumption implies
that E is either a point, a complex, or a quaternionic projective space.

If E is a point, and thus M a triangle with right angles at the base
I = ∂0, we see that S is the boundary of a tubular neighborhood of P .
It follows that the equivariant projection S → P is one of the standard
Hopf maps of the sphere to a projective space, including the quotient
map by the antipodal map, and the exceptional Hopf map S15 → S8. In
all but the last case, M is a projective space with an action of type SL.

In the last exceptional case, it follows from the classification of lin-
ear cohomogeneity one actions on spheres, that the Hopf map S =
S15 → S8 = P is equivariant only under the cohomogeneity one ac-
tion of G = Spin(8), the sub-action of the transitive Spin(9) action on
S15. The induced action of Spin(8) on S8 = P is the suspension ac-
tion with kernel Z2. Consequently, M is equivariantly diffeomorphic to
CaP 2 = F4 /Spin(9) with the sub-action of Spin(8) ⊂ Spin(9) ⊂ F4.
We note that all angles in the triangle M are π/2, and that each vertex
correspond to a fixed point of G = Spin(8). In particular, this case
could/should be viewed at an exceptional top case (see Section 6).

Now, assume that E is a complex or a quaternionic projective space
of positive dimension. As we saw above, this is equivalent to Γ = L/H
being either S1 or S3 respectively, and as a consequence, also, P is a pro-
jective space of the same type. Let us say that the complex, respectively
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quaternion dimensions of E and P are k′ and k. The remaining part of
the proof proceeds along the exact same lines in both cases. By construc-
tion, we can pick k′+1 of the triangular surfaces as above, such that the
angle between any two along I is π/2. This corresponds to k′+1 complex
(resp. quaternionic) G-invariant line sub-bundles of the normal bundle
to P ⊂ M , each isomorphic to the canonical line bundle and any two
being perpendicular to one another. In particular, a tubular neighbor-
hood of P in M is G-diffeomorphic to a tubular neighborhood of P k in
P k+k′+1 with the action induced by the linear action on CS′×CS, which
is trivial on the first factor and the cone on (2.2) on the second factor.
As in the proof of (4.1) the above construction yields a fiber preserving
G-equivariant diffeomorphism between the boundaries of tubular neigh-
borhoods of F in M and of P k′

in P k+k′+1, and the proof is completed
as there. q.e.d.

Theorem 5.2 (Singular lens case II). Suppose M is a singular lens
with non-simply connected edge E. Then, M is equivariantly diffeo-
morphic to a space form with fundamental group Π ⊂ S3, or to the
Z2 quotient of an odd dimensional complex projective space with action
induced from a type L, or SL action on its universal cover.

Proof. From what we have seen, our assumption means that E is
either S1, a space form with fundamental group Π ⊂ S3, or the Z2

quotient of an odd dimensional complex projective space. Since E is
also the quotient of the normal sphere S′ to P ⊂ M by the group Γ,
S′ = S1 and Γ = Zq in the first case. Therefore, P is a lens space, and
by transversality π1(P ) = π1(M). When E is not a circle, i.e., it has
dimension at least two, we use transversality to see that π1(E) = π1(M).
Hence, in all cases we have π1(M) = Π.

Allowing G to act almost effectively, we can assume that G acts by
fixed point cohomogeneity one on the universal cover M̃ of M , with fixed
point set Ê a Π-fold cover of E. Clearly, M̃ is a lens when E and P

are lens spaces, and M̃ is a singular lens with edge a complex projective
space, when E and P are Z2 quotients of such spaces. Consequently, M̃
is either a sphere, or a complex projective space, with G-action of type
L or SL, respectively, and inducing the G-action on their sub-covers
M = M̃/Π of type SL as claimed. q.e.d.
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6. Tops

In this final section, we will classify the more exceptional positively
curved fixed point cohomogeneity one manifolds, i.e., those whose orbit
spaces are tops.

First, observe that a common feature for all these cases is that the G-
action on the normal space to F is reducible. From the classification of
such actions, we know that all but four of them satisfy the assumption
of the reduction lemma (1.4). We will refer to them as general type
and exceptional type, respectively. We also note from the proof of (1.4)
(see (1.5)) that for actions of general type, only the two- and four-
dimensional tops exhibited in (3.3) can occur. In these situations, a
special case of (1.4) yields:

Theorem 6.1 (General tops). Suppose M is a top with edge E ⊃ F ,
and the representation of G on F⊥ is of general type. Then, M is
equivariantly diffeomorphic to HPn+1, or to CP 2n+1/Z2 with an action
of type T.

It remains to consider the cases, where M is a top with edge E ⊃ F ,
and the representation of G on F⊥ is of exceptional type. According
to the classification in [24], there are only four such representations
G → SO(dim S + 1) which we list here:

• G = Spin(8) with representation ρ8 + ∆± on R
8 + R

8 = R
16,

• G = Spin(7) with representation ρ7 + ∆7 on R
7 + R

8 = R
15,

• G = Spin(6) = SU(4) with representation ρ6 + ∆6 = ρ6 + [µ4]R
on R

6 + R
8 = R

14,
or, the maximal action orbit equivalent to the latter SU(4) = Spin(6)
action

• G = U(1) × SU(4) with representation ρ6 + [µ1 ⊗C µ4]R on
R

6 + R
8 = R

14.
We point out that the representations of Spin(6) ⊂ Spin(7) ⊂ Spin(8)
all come as subrepresentations of the first one, fixing a two-, or a one-
dimensional subspace of R

8. In particular, if Spin(8) acts by fixed point
cohomogeneity one on M , so does Spin(7), and if Spin(7) does, so does
Spin(6). To understand M , it therefore suffices to consider Spin(6) =
SU(4). Before analyzing this situation, we point out that the principal
isotropy groups H for the above actions are G2 for Spin(8), SU(3) for
Spin(7), SU(2) for Spin(6), and U(1) × SU(2) for U(1) × SU(4). The
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corresponding core groups cG are D2 = Z2 × Z2 , Pin(2), U(2), and
T2 respectively (cf. e.g. [24]). In particular, we see from (3.3) that
the orbit space by U(1) × SU(4) is not a top. By (3.1) the orbit space
by Spin(8) is a top only if it is a triangle with three right angles. By
(3.4) a top orbit space by Spin(7) may be either three-dimensional, or
two-dimensional with vertex angle π/q. Here, the two-dimensional top
is ruled out, since by (3.3) the sub-action by Spin(6) must have a three-
dimensional lens or singular lens as orbit space because its core group
is connected. Either of those possibilities are incompatible with a two-
dimensional top. Finally, if an orbit space by Spin(6) is a top, it must
be either four-dimensional, or two-dimensional with vertex angle π/4
according to (3.3). Here again, it turns out that the two-dimensional
top can be ruled out and we will prove the following:

Theorem 6.2 (Exceptional top). Suppose M is a top with edge E ⊃
F , and the representation of G on F⊥ is of exceptional type. Then, M is
equivariantly diffeomorphic to CaP 2 with the action of G = Spin(k), k =
6, 7, or 8 of type ET.

Proof. The action of G = Spin(6) = SU(4) on S = S13 has the
following cohomogeneity one diagram

SU(4) = Spin(6)

SU(3)

j−
�������������

Spin(5)

j+
��������������

SU(2) = Sp(1)
i−

��											 i+

��













(6.3)

Suppose first that M is a two-dimensional top with vertex angle π/4,
and hence the core of M14 is CP 3/Z2 by (3.3). It follows from the orbit
structure of M and of cM , that the invariant manifold corresponding
to the face ∂+, i.e., to the closure of orbits of type (Spin(5)) is RP 6. A
simple transversality argument then shows that M is not simply con-
nected, and in fact π1(M) = Z2 by Synge’s theorem. (One could also
use Wilking’s connectedness lemma [27] on the inclusion cM → M to
get that M is not simply connected.) As a consequence, we also get a
fixed point cohomogeneity one action of Spin(6) on the universal cover
M̃ with finite fixed point set. It is then clear that M̃ is a triangle
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with three right angles. In particular, the action of Spin(6) on M̃ is of
type SL, which is impossible according to the group diagram above and
(5.1).

We now know that M is a four-dimensional top with E = F � S2,
and hence dimM = 16. Clearly, the smooth face, ∂+ of M is the
closure of orbits of type (Spin(5)), and the singular face, ∂− is the
closure of orbits of type (SU(3)). The vertex point of ∂− corresponds
to the isolated face soul orbit which then must have isotropy group
U(3) in order for the space of directions to be D3(1/2). Note that
the collection of orbits corresponding to ∂+ is a manifold N (actually
S2 ∗S5), and M is equivariantly diffeomorphic to the union of a tubular
neighborhood of N with a tubular neighborhood of the face soul orbit
Gs− = SU(4)/U(3).

One has the exact same orbits space structure and isotropy groups
for the sub-action of SU(4) = Spin(6) ⊂ Spin(7) ⊂ Spin(8) ⊂ Spin(9)
on the model space CaP 2 = F4 /Spin(9). In particular, the tubular
neighborhoods of the face soul orbits in M and in M = CaP 2 are
equivariantly diffeomorphic by the slice theorem. As in the proof of the
reduction lemma (1.4), the restriction of this diffeomorphism Φ to the
boundaries S(N) and S(N) of tubular neighborhoods of N ⊂ M and
of N = S2 ∗ S5 ⊂ CaP 2 = M yields an equivariant diffeomorphism φ
between the total spaces of the sphere bundles S(N) → N and S(N) →
N with fiber S7. In contrast to the proof of the reduction lemma, the
equivariance does not imply that φ preserves fibers, except for the fibers
over the edge. Of course, φ takes principal orbits to principal orbits,
but the restrictions of S(N) → N and S(N) → N to corresponding
principal orbits G/H = Spin(6)/Sp(1) is given by G/H → G/K+ and
G/H → G/nK+n−1, where K+ = Spin(5) = Sp(2) and n ∈ N(H).
For such a particular principal orbit, fibers are mapped to fibers if and
only if n ∈ N(H) ∩ K+. Thus, the failure of taking fibers to fibers
is given by a map η : D3(1/2) → N(H)/(N(H) ∩ K+) = S1, where
D3(1/2) is the space of directions at the face soul orbits, and η maps
the boundary S2(1/2) to {1}. Since π3(S1) = 0, we can thus construct
a G-isotopy of φ which at the end is a G-diffeomorphism φ′, which
takes fibers to fibers. Because the isotropy groups K+ along N and N
act transitively on the normal sphere fibers, we conclude as in [11] (cf.
(1.4)) that φ′ is linear on fibers and hence extends to a G-diffeomorphism
between the tubular neighborhoods of N and N . This then yields the
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desired extension of Φ to a G-equivariant diffeomorphism between M
and M = CaP 2.

The same statement for the bigger groups Spin(7) ⊂ Spin(8) follows in
exactly the same way. Note that the two-, three-, and four-dimensional
tops M/Spin(8) ⊂ M/Spin(7) ⊂ M/Spin(6) sit as cross sections inside
one another. q.e.d.

We conclude by pointing out that the exceptional representation of
U(1) × SU(4) can only be realized as the representation on the normal
space to the fixed point set F of a fixed point cohomogeneity one action
on a positively curved manifold M , when M is either a sphere or a
real projective space. This easily follows from its cohomogeneity one
diagram together with the fact that M is either a lens or a singular lens.
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