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MORSE THEORY ON HAMILTONIAN G-SPACES
AND EQUIVARIANT K-THEORY

Victor Guillemin & Mikhail Kogan

Abstract

Let G be a torus and M a compact Hamiltonian G-manifold
with finite fixed point set MG. If T is a circle subgroup of G with
MG = MT , the T -moment map is a Morse function. We will show
that the associated Morse stratification of M by unstable mani-
folds gives one a canonical basis of KG(M). A key ingredient in
our proof is the notion of local index Ip(a) for a ∈ KG(M) and
p ∈ MG. We will show that corresponding to this stratification
there is a basis τp, p ∈ MG, for KG(M) as a module over KG(pt)
characterized by the property: Iqτp = δq

p. For M a GKM mani-
fold we give an explicit construction of these τp’s in terms of the
associated GKM graph.

1. Introduction

Let M2d be a compact symplectic manifold, G an n-dimensional torus
and σ : G × M → M a Hamiltonian action. Assume the fixed point
set MG is finite. Let T be a circle subgroup of G with the property
that MT = MG, and let φ : M → R be the T moment map. This
function is a Morse function and all its critical points are of even index;
so, by standard Morse theory, the unstable manifolds of φ with respect
to a G-invariant Riemannian metric define a basis of H∗(M, R) and by
Poincare duality a basis for H∗(M, R) consisting of the Thom classes of
the closures of unstable manifolds. Moreover, these unstable manifolds
are G-invariant so they also define a basis for H∗

G(M) as a module
over H∗

G(pt).
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In K-theory the situation is a little more complicated. The critical
points of φ carry a natural partial order, which is defined by setting
p ≤ q if q is inside the closure of the unstable manifold of φ at p and then
completing this order by transitivity. So, for any unstable manifold U
of φ at p, one can consider the union

WU =
⋃

Uq

of unstable manifolds Uq for q ≥ p. It is known that there exist classes in
K-theory which are supported on this set. However, except in certain
special cases (e.g., algebraic torus actions), it is not known whether
there is a genuine (Thom) class in K-theory associated with U . (For
algebraic torus actions such classes can be defined using the structure
sheaf of the closure of U , see [4] for details.)

We will show in this paper, however, that there is another way of at-
taching to the Morse decomposition of M a basis of KG(M) which works
even in the case of non-algebraic torus actions. (As will be explained
later, in the algebraic case our classes will be different from those con-
structed using structure sheaves.) The key idea in our approach is a
notion of local index for a K-class a ∈ KG(M) at a critical point p of
φ. This is defined as follows: Let S be the stable manifold of φ at p,
and for small ε > 0 let Sε be the compact symplectic orbifold obtained
from S by the symplectic cutting operation of Lerman [13]. We recall
that Sε is obtained from the manifold with boundary

(1.1) S̃ε = {x ∈ S, φ(x) ≥ φ(p) − ε}

by collapsing to points the T -orbits on the boundary. In particular,
there is a projection ρ : S̃ε → Sε and an inclusion i : S̃ε → M ; so a
K-class a ∈ KG(M) defines a class κε(a) = ρ!i

∗a ∈ KG(Sε), where ρ!

is the pushforward map (we will define the map κε in more detail in
Section 5).

Now let the local index of a at p

Ip(a) ∈ KG(pt)

be the Atiyah–Segal index of κε(a), that is, the pushforward of κε(a)
with respect to the map Sε → pt. Recall that KG(pt) is just the rep-
resentation ring R(G) of the torus G, so that each local index is just a
virtual representation of G. One of the main results of this paper is the
following theorem.
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Theorem 1.1. Let p be a critical point of φ and U the unstable
manifold of φ at p. Then there exists a unique K-theory class τp ∈
KG(M) with the properties:

(i) Ip(τp) = 1,
(ii) Iq(τp) = 0 for all critical points q of φ except p,
(iii) The restriction of τp to a critical point q is zero unless q ∈ WU .

Moreover, the τp’s generate KG(M) freely as a module over KG(pt).

Let I : KG(M) → KG(MG) be the map which takes the value Ip, at
p. This we will call the total index map. As explained in Remark 5.1
the total index is not an R(G)-module homomorphism but it is a homo-
morphism with respect to the subring, R(G/T ), of R(G). Theorem 1.1
implies the following:

Corollary 1.2. The total index map, I, is an R(G/T ) module iso-
morphism.

Remark 1.3. Notice that we can define local indices even if the
fixed point set of the action is not finite. Namely, let F be a connected
component of MG, not necessarily consisting of one point. Then if S is
the stable manifold of φ at F we can still define Sε, the projection ρ, the
inclusion i, and the map κε. Moreover, there is a fibration P : Sε → F
whose fibers are weighted projective spaces. So, we can define the local
index at F

IF : KG(M) → KG(F )
to be P!κε, the composition of the pushforward P! with κε. Then the
total local index map

I : KG(M) → KG(MG)

is well defined and is an R(G/T )-module homomorphism; so, it is nat-
ural to pose the following question whose answer, we believe, depends
on whether or not φ is K-theoretically perfect.

Question. When is I an isomorphism?

Remark 1.4. Notice that local indices can also be defined in the
setting of equivariant cohomology. Namely, for a ∈ H∗

G(M), we let Ip(a)
be the pushforward (or integral) of κ′

ε(a), where κ′
ε : H∗

G(M) → H∗
G(Sε)

is defined in exactly the same way as κε. It will be clear from the
proof of Theorem 1.1 that its analogue for equivariant cohomology is
also true, and that the cohomological analogues of the τp’s are just “the
equivariant Poincare duals” of the closures of the unstable manifolds.
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The other main result of this paper is a constructive version of Theo-
rem 1.1 for GKM spaces, that is, an explicit computation of the classes
τp. We start by recalling some facts about GKM spaces. The one-
skeleton of M

(1.2) {x ∈ M, dim G · x = 1}
is a union of symplectic submanifolds of M . The action σ is defined to
be a GKM action and M a GKM space if each connected component
of the one-skeleton is exactly of dimension 2. It is easy to see that if σ
is GKM the fixed point set MG has to be finite. Let

V = {p1, . . . , p�}
be the points of MG. To each connected component e◦i of (1.2) let ei be
its closure, and let

E = {e1, . . . , eN}
be the set of ei’s. We claim:

(i) ei is an imbedded copy of CP1,
(ii) ei − e◦i is a two element subset of V ,
(iii) for i �= j the intersection ei∩ej is empty or is a one-element subset

of V ,
(iv) for p ∈ V the set {ei ∈ E, p ∈ ei} is d-element subset of E.

For the proof of these assertions see, for instance, [7]. These assertions
can be interpreted as saying that V and E are the vertices and edges of
a d-valent graph Γ.

One can describe the action of G on the one-skeleton (1.2) by means
of a labeling function which labels each oriented edge of this graph by an
element of the weight lattice Z∗

G of G. Explicitly, let e be an edge of Γ
joining a vertex p and a vertex q. To e we can associate two oriented
edges ep and eq pointing from p to q and from q to p respectively. As
a geometric object e is a G invariant imbedded CP1 with fixed points
at p and q; if we denote by αep the weight of the isotropy representation
of G on the tangent space to e at p (and by αeq = −αep the weight
of the isotropy representation at q) we get a labeling function α which
describes how each connected component of the one-skeleton is rotated
about its axis of symmetry by G.

GKM theory is concerned with reconstructing, in so far as possible,
the geometry of M from the combinatorics of the pair (Γ, α). It is
known for instance that the ring structure of H∗

G(M) and KG(M) are
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determined by (Γ, α). (See [6, 1, 5, 11, 18] for versions of this result.
We will explain below how KG(M) is determined by (Γ, α).) It was also
shown in [9] that if T is generic circle subgroup of G, and τ ∈ H∗

G(M)
the cohomology class dual to an unstable manifold of T , the restriction
of τ to MG is completely determined by (Γ, α). In this paper, we will
prove analogous results for KG(M).

Let us recall how the ring structure of KG(M) is determined by (Γ, α).
One knows that the restriction map

(1.3) KG(M) → KG(MG)

is an injection, so KG(M) is a subring of the much simpler ring

(1.4) KG(MG) =
�⊕

i=1

KG(pi)

Since KG(pt) = R(G), an element of the ring (1.4) is just a map

(1.5) χ : V → R(G)

and one has:

Theorem 1.5. [1, 11] For each e ∈ E connecting p, q ∈ V the ho-
momorphisms

e2π
√
−1αep : G → S1 and e2π

√
−1αeq : G → S1

have the same kernel. Denote this kernel by Ge. Then the element (1.5)
of KG(MG) is in the image of (1.3) if and only if for every e ∈ E

(1.6) re(χp) = re(χq)

p and q being the vertices of e and re the restriction map R(G) → R(Ge).

For GKM manifolds, one can also translate some aspects of Morse
theory into the language of graphs. Recall that φ is the moment map
on M with respect to the circle T action. Think of each edge e of the
graph connecting vertices p and q as two oriented edges ep and eq. Then
if φ(p) > φ(q), we say that the edge ep going from p to q is descending
and eq from q to p ascending. If U is the unstable manifold of φ at p,
then every fixed point, q, inside W G

U is the terminal point of a path on Γ
starting at p and consisting of ascending edges; and this gives one a way
of describing WU in terms of Γ. In particular, we will present below an
explicit formula for the image of τp under the imbedding (1.3), which
expresses the restriction of τp to q ∈ MG as a sum of combinatorial
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expressions associated with the ascending paths in Γ going from p to q.
(An analogous formula for the cohomological counterpart of τp can be
found in [9].) Our results will follow from the following theorem, which
allows one to compute local indices in terms of restrictions of K-theory
classes to fixed points and vice versa.

Theorem 1.6. For p ∈ V = MG, let e1, . . . , em be the descending
edges with initial vertex at p. Let the edge ei connect p to qi and be
labeled by the weight αi. Then for any a ∈ KG(M) we have

Ip(a) =
m∑

i=1

π̃ir̃i

(
aqi

(1 − ζ)
∏

j �=i

(
1 − e2π

√
−1αj

))(1.7)

+
ap∏m

i=1(1 − e2π
√
−1αi)

,

where aq is the restriction of a to q, ζ is the generator of the char-
acter ring R(T ), r̃i is the restriction R(G × T ) → R(Gei × T ) and
π̃i : R(Gei × T ) → R(G) is the Gysin map defined in (4.3).

We conclude this introduction with a section-by-section summary of
the contents of the paper. In Section 2, we prove Theorem 1.1 by
adopting certain arguments from classical Morse theory to the setting
of equivariant K-theory. In Section 3, we prove an algebraic counterpart
of Theorem 1.6, namely, an analogue for the ring R(G) of the “Lagrange
interpolation formula” of [9]. More specifically, let T be a circle subtorus
of G and H ⊂ G a complementary subtorus, so that G = T × H. Let
R̂(G) be the ring of finite sums

∑
k ckz

k where ck is in the quotient ring
Q(H) of R(H). Let w : T → S1 be an isomorphism. Via the splitting
G = T × H, we can extend w to a homomorphism of G onto S1 by
setting w equal to 1 on H. Let ξ be the infinitesimal generator of T
(chosen so that it corresponds under w to the standard generator ∂

∂θ

of S1). The interpolation in question is with respect to weights αi ∈ Z∗
G,

i = 1, . . . ,m. Letting Gi be the kernel of the homomorphism

e2π
√
−1αi : G → S1

it describes to what extent an element f of R(G) is determined by its
restrictions to the R(Gi)’s. More explicitly, it asserts:

Theorem 1.7. Assume the weights αi are pairwise linearly indepen-
dent and αi(ξ) �= 0. For an element f of R(G), define fi ∈ R̂(G),



MORSE THEORY ON HAMILTONIAN G-SPACES 351

i = 1, . . . ,m, by

(1.8) fi(z) = πiri

(
f(w, h)

(1 − z
w )
∏

j �=i(1 − e2π
√
−1αj )

)
,

where ri is the restriction map R(G) → R(Gi), and πi is the Gysin map
R(Gi) → R(H) associated with the projection Gi → G/T ∼= H (see (3.3)
for definitions). Then

(1.9) f0 =
f∏m

i=1(1 − e2π
√
−1αi)

−
m∑

i=1

sgn(αi(ξ))fi

is an element of R(G).

In Section 4, we will apply the Atiyah–Segal localization theorem to
equivariant K-classes on twisted projective spaces to obtain a formula
for the equivariant index of such a class, and in Section 5, we will apply
this formula to the twisted projective space, Sε, and show that the
formulas (1.7) and (1.9) are essentially the same formula viewed from
different perspectives, i.e., are the topological and algebraic versions of
this formula. More specifically, we will show that if p is a vertex of
the GKM graph Γ, f the restriction to p of an element a of KG(M)
and the αi’s the weights associated with the descending edges of Γ with
initial vertex at p, then the f0 in (1.9) is just the local index Ip(a). We
will then use this result to prove Theorem 1.6.

In Section 6, we will obtain explicit formulas for the τp’s in terms of
their restrictions to the fixed points. These will be proved by a repeated
iteration of (1.7), or equivalently of (1.9). (We recall that Iq(τp) = 0 if
p �= q and Ip(τp) = 1; so (1.7) gives one an effective way of computing τp

at q in terms of the values of τp at the points in MG lying below q in
WU .) In Section 7, we give a more general definition of the notion of
“local index”, for which many of the results above still hold with minor
modifications. This new definition involves choosing, for each p ∈ MG,
a circle subgroup, Tp, depending on p, and replacing the space, Sε, by
the space obtained by cutting the stable manifold, S of φ at p by Tp.
If these spaces are manifolds, i.e., don’t have orbifold singularities, the
formulas (1.7) and (1.9) become considerably simpler (for instance the
Gysin maps in these formulas are all identity maps). In particular these
formulas are now very similar to the analogous formulas in equivariant
cohomology. (See [9].) As an application of these results, we discuss this
generalized index map for the Grassmannian and explain some tie-ins of
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our results with recent work of Lenart [12] on Schur and Grothendieck
polynomials.

2. Morse theory and equivariant K-theory

We will deduce Theorem 1.1 from the series of lemmas below. These
lemmas are K-theoretic analogs of classical results in equivariant Morse
theory [2].

As before, M is a compact symplectic manifold with a Hamiltonian G
action, T is a generic circle subgroup of G with MT = MG and φ is
the moment map of the T action. For a critical point p of φ, that is,
p ∈ MG, pick a G-invariant complex structure on the tangent space Tp

at p compatible with the symplectic structure. Then Tp splits into the
negative and positive components T−

p and T+
p on which the circle T acts

with negative and positive weights respectively. Let Λ−
p be the virtual

vector space
∑

(−1)kΛk(T−
p ) with its given G action. By definition,

this is an element of R(G) ∼= KG(p). Moreover, if α1, . . . , αm are the
(possibly repeating) weights of the G action on T−

p , then, as a virtual
character of G

(2.1) Λ−
p =

∏
i

(1 − e2π
√
−1αi).

Recall that Kn
G(M) is the compactly supported K-group, KG,c(M ×

Rn) and that KG(M) = K0
G(M). Moreover, by Bott periodicity

Kn
G(M) ∼= Kn+2

G (M).

For a critical point p, let φ(p) = c. Assume there is only one critical
point p in φ−1(c). (We may do so without loss of generality since there is
always a small G-invariant perturbation of φ which is a Morse function
with the same stable and unstable manifolds and which satisfies the
above property.) For a small ε > 0, let

M+
p = {x ∈ M |φ(x) ≤ c + ε} and M−

p = {x ∈ M |φ(x) ≤ c − ε}.

Lemma 2.1. The K-theory long exact sequence for the pair (M+
p ,

M−
p ) splits into short exact sequences

(2.2) 0 → K∗
G(M+

p ,M−
p ) → K∗

G(M+
p ) → K∗

G(M−
p ) → 0.
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Proof. Let S be the stable manifold at p and S− = S ∩ M−
p . Then

there are isomorphisms

K∗
G(p) T→ K∗

G(S, S−) H→ K∗
G(M+

p ,M−
p ),

where T is the Thom isomorphism and H comes from homotopy equiv-
alence.

To show that the long exact sequence splits, it is enough to show that
the maps

J : K∗
G(M+

p ,M−
p ) → K∗

G(M+
p )

are all injective.
Let ιp be the inclusion of p into M+. It is well known that for ∗ = 0,

the map
ι∗p ◦ J ◦ H ◦ T : K0

G(p) → K0
G(p)

is a multiplication by Λ−
p and hence injective, since by (2.1) Λ−

p is not
a zero divisor in R(G). Therefore, the map J must also be injective for
∗ = 0.

For ∗ = 1, notice that by the Thom isomorphism

K1
G(S, S−) = K0

G,c(R),

where the action of G on R is trivial. Since the non-equivariant K-
space, K1(pt) = K0

c (R) is known to be trivial, it is easy to conclude
that K0

G,c(R) is trivial as well. Indeed, by splitting each vector bundle
on R into bundles for which the action of G on the fibers is given by a
single weight, we reduce the calculation of K0

G,c(R) to the calculation
of K0

c (R). This implies that K1
G(S, S−) is trivial, and that J is injective,

and hence finishes the proof. q.e.d.

Corollary 2.2. The restriction

KG(M) → KG(MG)

is injective.

Proof. For every critical point p, it is enough to show that if the
restriction

(2.3) KG(M−
p ) → KG(M−

p ∩ MG)

is injective then

(2.4) KG(M+
p ) → KG(M+

p ∩ MG)

is also injective.
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The long exact sequence of the pair (M+
p ∩ MG,M−

p ∩ MG) obvi-
ously splits into short exact sequences. By Lemma 2.1, the short exact
sequence (2.2) maps into the corresponding short exact sequence for
(M+

p ∩ MG,M−
p ∩ MG). The restriction

KG(M+
G ,M−

G ) → KG(p)

is an injection, since Λ−
p is not a zero divisor. So, the injectivity of (2.3)

together with the five-lemma implies the injectivity of (2.4). q.e.d.

Recall that the elements of MG are partially ordered with p ≤ q if
q lies in the closure of the unstable manifold at p. Completing this
relation by transitivity, one gets a partial order on MG. The proof of
the following lemma is postponed until Section 5, where we will deduce
it from the Atiyah–Segal localization theorem for weighted projective
spaces.

Lemma 2.3. Assume τ ∈ KG(M) restricts to zero at every q ∈ MG

with q < p. Then
τ(p) = Ip(τ)Λ−

p

where τ(p) is the restriction of τ to p.

Lemma 2.4. For every critical point p of φ, there exists an element
τ of KG(M) which restricts to zero at every q ∈ MG with φ(q) < φ(p)
(in other words, τ is supported above p), such that Ip(τ) = 1.

Proof. By Lemma 2.3, it is enough to construct a K-class, τ , sup-
ported above p whose restriction to the point p is Λ−

p . By Lemma 2.1,
such an element exists in KG(M+

p ). Moreover, by induction such an
element exists in KG(M+

q ) for every q with φ(q) > φ(p). Indeed, be-
cause of the short exact sequence (2.2) for the pair (M+

q ,M−
q ) if such an

element exists in KG(M−
q ) it can be lifted to an element in KG(M+

q ).
q.e.d.

Proof of Theorem 1.1. Let p1, . . . , pr be the points of MG ordered such
that φ(p1) ≥ φ(p2) ≥ · · · ≥ φ(pr). Let us prove by induction on k
that classes τpk

satisfying (1.1), (1.1) and (1.1) exist. For k = 1, this
follows from Lemmas 2.3 and 2.4. Assume we can construct classes
τp1, . . . , τpk−1

satisfying these properties. By Lemma 2.4, we can choose
a class τ supported above p with Ipk

(τ) = 1. By Lemma 2.3, we conclude
that Ip�

(τ) = 0 for every � > k. Choose the largest � < k with Ip�
(τ) �= 0.

Then change τ to τ − Ip�
(τ)τp�

. It is clear that the new τ satisfies
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Ip�
(τ) = δ�

k for m ≥ �. Hence by induction, we can find a class τpk
such

that Ip�
(τpk

) = δm
k for all m, implying (1.1) and (1.1).

To show that such τpk
satisfies (1.1), assume that for every m < �

either pm ≥ pk, or τpk
(pm) = 0. We will now show that if p� � pk, then

τpk
(p�) = 0. Notice that every p < p� is among the points p�+1, . . . , pr

satisfying p � pk so that τpk
(p) = 0 by the above assumption. Hence

τpk
(p�) = 0 by Lemma 2.3.
To prove uniqueness of the classes τp, it remains to be shown that

if both τp and τ ′
p satisfy (1.1)–(1.1), then they must be equal. Set

δ = τp − τ ′
p. Then δ is a K-theory class whose local indices are all zero.

By Corollary 2.2, if δ were not zero, there would exist a critical point q
such that the restriction of δ to q is non-zero. Pick such q with mini-
mal φ(q). Then by Lemma 2.3, the local index Iq(δ) is not zero.

Finally, we need to show that the τp’s generate KG(M) freely as
a KG(pt) module. We first prove that every a ∈ KG(M) can be ex-
pressed as a linear combination of τp’s with coefficients in R(G). To do
so, order the points of MG as above. We will prove by induction on k
that if a restricts to zero at pk+1, . . . , pr, then a is a linear combination
of τp1, . . . , τpk

. Clearly this holds for k = 1. To prove the induction step
for k > 1, notice that if a is supported above pk the class a − Ipk

(a)τpk

restricts to zero at pk, . . . , pr and by the induction assumption is a linear
combination of τp1, . . . , τpk−1

. This proves the induction step. It remains
to be shown that no non-trivial linear combination, γ =

∑
ckτpk

, with
ck ∈ R(G) is zero. Because of Corollary 2.2, it is enough to show that γ
restricts non-trivially to MG whenever one of the ck’s in not zero. Pick
the largest k with ck �= 0. Then by Lemma 2.3, the restriction of δ to
pk is not zero. This finishes the proof of Theorem 1.1. q.e.d.

Proof of Corollary 1.2. The injectivity of I follows from the fact that
a ∈ KG(M) must be equal to a′ ∈ KG(M) whenever Ip(a) = Ip(a′) for
all p ∈ MG, which is true, since by the argument used in the proof of
Theorem 1.1 the class a − a′ must vanish.

To prove surjectivity we must show that for any choice of ip ∈ R(G)
there exists a class a ∈ KG(M) with Ip(a) = ip. Order the points of MG

as in the proof of Theorem 1.1. Take a =
∑r

k=1 ckτpk
with

ck = ipk
− Ipk

(
r∑

�=k+1

c�τp�

)
.
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Then it is easy to see that Ip(a) = ip for every p. q.e.d.

3. Lagrange interpolation

We recall the statement of the classical Lagrange interpolation for-
mula for the ring of polynomials in one variable and then describe how
to generalize this formula to the representation ring R(G).

Let f(z) =
∑N

k=0 ckz
k be a polynomial in z with complex coefficients.

Given d distinct complex numbers, ai ∈ C, i = 1, . . . , d one has

Lemma 3.1.

(3.1) f0(z) =
f(z)∏

i(z − ai)
−
∑

i

ci

z − ai

is a polynomial of degree N − d, where

(3.2) ci =
f(ai)∏

j �=i(ai − aj)
.

Proof. The function

g(z) =

∑
i f(ai)

∏
j �=i(z − aj)∏

j �=i(ai − aj)

is a polynomial of degree at most d − 1 which takes the same values
as f(z) at the points z = ai, so f(z)− g(z) is divisible by

∏
i(z − ai).

q.e.d.

A slightly more complicated variant of this identity is the following.
Let k1, . . . , kd be positive integers. Given d non-zero complex num-
bers ai, satisfying a

kj

i �= aki
j for i �= j, define the “Gysin map” πi, which

acts on rational functions in two variable z and w by

(3.3) πi(h(z,w)) =
1
ki

ki∑
�=1

h(z,wi,�)

summed over the roots wi,� of zki − ai. Then, we have the following:

Lemma 3.2.

(3.4) f0(z) =
f(z)∏

i(zki − ai)
−
∑

i

fi(z)
zki − ai



MORSE THEORY ON HAMILTONIAN G-SPACES 357

is a polynomial of degree N −
∑

ki, where fi is the following polynomial
of degree at most ki − 1

(3.5)
zki − ai

ai
πi

(
f(w)w

(z − w)
∏

j �=i(w
kj − aj)

)
.

Moreover, if f =
∑N

i=0 ciz
i then f0 =

∑N−k
j=0 djz

j , where k =
∑

ki and

(3.6) dj =
N∑

i=k+j

ci

 ∑
�1k1+···+�dkd=i−k−j

a�1
1 . . . a�d

d

 .

Proof. Factoring

zki − ai =
ki∏

�=1

(z − wi,�)

and applying (3.1) we get

f0 =
f(z)∏

i(zki − ai)
−

d∑
i=1

hi,

where

hi(z) =
ki∑

�=1

f(wi,�)
z − wi,�

· 1(∏
m�=�(wi,� − wi,m)

)(∏
j �=i,1≤m≤kj

(wi,� − wj,m)
) .

But ∏
m�=�

(wi,� − wi,m) = lim
w→wi,�

wki − ai

w − wi,�
= kiw

ki−1|wi,�
=

kiai

wi,�

and ∏
j �=i,1≤m≤kj

(wi,� − wj,m) =
∏
j �=i

(wkj

i,� − aj).

So

hi(z) =
1
ki

ki∑
�=1

gi(z,wi,�) = πi(gi(z,w)),

where

gi(z,w) =
1
ai

f(w)w
(z − w)

∏
i�=j(w

kj − aj)
.

This proves (3.4) and (3.5). The fact that fi is of degree at most ki − 1
is an easy consequence of (3.5) and (3.3).
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To prove (3.6), expand both sides of (3.4) in powers of z. In particular,
note that

f(z)∏
i(zki − ai)

=
N∑

i=0

ciz
i−k

d∏
i=1

(
1 − ai

zki

)−1
(3.7)

=
N∑

i=0

ci

 ∞∑
�1,...,�d=0

a�1
1 . . . a�d

d

 zi−k−
�

�iki .

It is clear from (3.4) that f0 is the “polynomial part” of this expression.
Indeed the expansion of (fi(z))/(zki − ai) only involves negative powers
of z and f0 is a polynomial in z. Therefore, f0 is the sum of the terms
in the expression (3.7) for which the exponent i − k −

∑
�iki is greater

than or equal to zero. Hence its coefficients are given by (3.6). q.e.d.

Remark 3.3. Notice that if we let f to be a Laurent polynomial
f =

∑M
i=−N ckz

k with ck ∈ C, then Lemmas 3.1 and 3.2 hold after
substituting the statements that f0 and fi’s are polynomials of certain
degree by claims that f0 and fi’s are Laurent polynomials.

A third variant of this formula involves the character ring of the group
C∗ = C − {0}, i.e., finite sums of the form f(z) =

∑M
i=−N ckz

k with
ck ∈ C. It asserts that if k1, . . . , kd are non-zero integers and b1, . . . , bd

are non-zero complex numbers satisfying b
kj

i �= bki
j for i �= j, then

Lemma 3.4.

(3.8) f0(z) =
f(z)∏

i(1 − bizki)
+
∑

i

sgn(ki)
fi(z)

1 − bizki

as well as f1, . . . , fd are in the character ring of C∗, where

(3.9) fi(z) = (1 − biz
ki)πi

(
f(w)w

(z − w)
∏

j �=i(1 − bjwkj )

)
.

Here, if ki > 0 then πi is defined as in (3.3) with ai = 1/bi, and if ki < 0
then πi for a rational function h(z,w) is given by

(3.10) πi(h(z,w)) = − 1
ki

−ki∑
�=1

h(z,wi,�)

summed over the roots wi,� of (z−ki − bi).
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Proof. This is easily deduced from (3.4) and (3.5) by setting

1 − biz
ki = zki(z−ki − bi) for ki negative and

= −bi(zki − 1
bi

) for ki positive

and applying (3.4) to the function

g = f
∏
ki>0

(
−1
bi

) ∏
ki<0

z−ki

instead of f , as allowed by Remark 3.3. q.e.d.

Our last version of Lagrange interpolation is a multidimensional gener-
alization of the character formula (3.8) which leads to a proof of Theo-
rem 1.7. As in Theorem 1.7, let G be an n-dimensional torus, R(G) the
character ring of G and αi, i = 1, . . . , d elements of the weight lattice
of G. Corresponding to each αi one has a homomorphism

e2π
√
−1αi : G → S1.

Let Gi be the kernel of this homomorphism and let T be a circle sub-
group of G. Assume ξ is the infinitesimal generator of T . Fixing a
complimentary subtorus H to T in G we have

G = T × H = S1 × H ⊆ C∗ × H.

Hence one can regard elements of R(G) as a finite sum f =
∑M

k=−Nckz
k

with ck ∈ R(H).
Applying Lemma 3.4 to the sum

∑M
k=−N ckz

k, we get an identity of
the form (3.8), f0 and f1, . . . , fd being polynomials with coefficients in
the quotient field of R(H). Moreover, it is clear from (3.6) that the
coefficients of f0 are actually in the ring R(H) itself; i.e. modulo the
splitting, G = T × H, f0 is in R(G).

Proof of Theorem 1.7. Let

1 − biz
ki = 1 − zkie2π

√
−1βi = 1 − e2π

√
−1αi

where bi = e2π
√
−1βi , βi is the restriction of αi to H, and ki = αi(ξ).

Notice that pairwise linear independence of the weights αi guarantees
that b

kj

i �= bki
j for i �= j. Theorem 1.7 then follows from the identity of
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the form (3.8), with f0 and f1, . . . , fd being polynomials with coefficients
in the quotient field of R(H), and the identity

(3.11) πi(bjw
kj ) = πiri(e2π

√
−1αj ),

whose left-hand side is defined by either (3.3) or (3.10) depending on
sgn(ki). q.e.d.

4. Atiyah–Segal localization for twisted projective spaces

This section describes in detail the twisted projective spaces which
arise as symplectic cuts of stable manifolds. It also discusses the Atiyah–
Segal localization theorem on these twisted projective spaces.

Let α1, . . . , αm be weights of the torus G, such that if ξ is the in-
finitesimal generator of the circle subgroup T , then ki = αi(ξ) �= 0 for
i = 1, . . . ,m. Assume all ki’s are negative. (At the end of this section,
we discuss the case when some ki’s are positive.) Let T act on Cm+1

with weights k1, . . . , km, km+1 = −1. Let TC be the complexification
of T which acts on Cm+1 with the same weights. The twisted projective
space we are interested in is the orbifold

C̃P
m

= Cm+1//TC = (Cm+1 − {0})/TC.

We will not review orbifold theory, but refer the reader to [17] for an
exposition of orbifold theory and further references.

To define local orbifold charts on C̃P
m

, let Ũi be the m-dimensional
affine space with coordinates (z1, . . . , ẑi, . . . , zm+1). Denote by Ui the
open subset of C̃P

m
where the projective coordinate zi is not zero. De-

fine the map φi : Ũi → Ui by

φi(z1, . . . , ẑi, . . . , zm+1) = [z1, . . . , 1, . . . , zm+1].

Let Γi be the finite abelian group of kith roots of unity. Then w ∈ Γi

acts on Ũi by

w · (z1, . . . , ẑi, . . . , zm+1) = (wk1z1, . . . , ẑi, . . . , w
km+1zm+1)

so that Ũi/Γi = Ui. The triples (Ũi,Γi, φi) are the orbifold charts
of C̃P

m
.

Assume that G acts on Cm+1 with weights α1, . . . , αm, αm+1 = 0,
so that this action descends to an action on C̃P

m
. To make sure that

this action has a finite fixed point set, we assume that the weights
α1, . . . , αm are pairwise linearly independent. Then the fixed points of
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the G-action on C̃P
m

are points pi = [0, . . . , 1, . . . , 0] with 1 in the ith
place. An element g = exp(η) ∈ G acts on Ui by

g · [z1, . . . , 1, . . . , zm+1]

=
[
e2π

√
−1α1(η)z1, . . . , e

2π
√
−1αi(η), . . . , e2π

√
−1αm(η)zm, zm+1

]
=
[
e
2π

√
−1(α1(η)− k1αi(η)

ki
)
z1, . . . , 1, . . . ,

e
2π

√
−1(αm(η)− kmαi(η)

ki
)
zm, e

2π
√−1αi(η)

ki zm+1

]
.

So, the isotropy action of G at pi is given by the rational weights αj −
(kjαi/ki) for j �= i, 1 ≤ j ≤ m and the rational weight αi/ki. Another
way to think about those weights is the following. Notice that if Gi

is the kernel of the map e2π
√
−1αi : G → S1 and ri is the restriction

R(G) → R(Gi), then

e
2π

√
−1(αj−

kjαi
ki

) = ri(e2π
√
−1αj ).

In particular, the rational weights αj − (kjαi/ki) are genuine integer
weights of Gi. A similar computation shows that the weights of the
action of G at the fixed point pm+1 = [0, . . . , 0, 1] are α1, . . . , αm.

We will now explicitly compute the pushforward map in equivariant
K-theory,

indG : KG(C̃P
m

) → KG(pt)

using the Atiyah–Segal localization theorem [3]; however, before we do
this in general, we will first consider the situation when all ki’s are equal
to minus one, and C̃P

m
is just the standard projective space CPm.

Recall that on a G-manifold X, the index map (or K-theoretic push-
forward)

indG : KG(X) → KG(pt) � R(G)

is defined by imbedding X into a linear complex representation space V
of G, applying the Thom isomorphism to map KG(X) to KG(V ) and
then using Bott periodicity to identify KG(V ) with KG(pt). We also
recall that by the Atiyah–Segal localization theorem, the restriction map

KG(X) → KG(XG)

becomes an isomorphism after localizing with respect to a certain prime
ideal of R(G) (see [3]), and that it is possible to write an explicit formula
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for indG(δ) in terms of this restriction. In the case X = CPm, this
formula says that

indG(δ) =
m∑

i=1

δi

(1 − e2π
√
−1αi)

∏
j �=i(1 − e2π

√
−1(αj−αi))

(4.1)

+
δm+1∏m

j=1(1 − e2π
√
−1αj )

,

where δi is the restriction of δ to pi, and the denominators in the for-
mula are just the virtual characters of the exterior algebra complexes∑

(−1)kΛkTpi of the tangent spaces Tpi at the fixed points.
We now drop the assumption that all kj ’s are equal to minus one, so

that C̃P
m

may have orbifold singularities. Let us recall the definition of
the equivariant index map for orbifolds (for more details see [10] or [16]).
Assume an orbifold X is presented as a quotient Y/K of a manifold Y
by a locally free action of a compact group K action. (We will describe
such a presentation of C̃P

m
shortly.) Moreover, assume G acts on Y

and commutes with the K action, then the action of G descends to an
action on X. It is well known that there exists an isomorphism (which
for purposes of this paper will be treated as a definition of KG(X))

Ψ : KG(X) 	−→ KG×K(Y ).

Then for δ ∈ KG(X), we define its index by

indX
Gδ =

(
indY

G×K

(
Ψ(δ)

))K
∈ R(G),

the K invariant part of the G × K index of Ψ(δ). The relative version
of the localization theorem on Y produces a localization formula for
orbifolds, which expresses indX

G (δ) in terms of the restriction of δ to XG.
We will not give the general version of this formula, since we will only
apply it to the case of the weighted projective space C̃P

m
. So from this

point on, we specialize to the case X = C̃P
m

.
The twisted projective space C̃P

m
can be realized as a the symplec-

tic reduction of Cm+1 by the action of T , which is just the quotient
S2m+1/T , where S2m+1 is the sphere

S2m+1 = {(z1, . . . , zm+1) ∈ Cm+1|
∑

ki|zi|2 = −1}
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on which the circle T acts locally freely. So, as mentioned above, there
is an isomorphism,

Ψ : KG(C̃P
m

) 	−→ KG×T (S2m+1).

For δ ∈ KG(C̃P
m

), we are interested in computing the K-theoretic
index

ind�CP
m

G δ =
(
indS2m+1

G×T Ψ(δ)
)T

∈ R(G)

by means of Atiyah–Segal localization. Recall that the fixed points of
the G action on C̃P

m
are the points p1, . . . , pm+1. Denote by ιi the

inclusion pi → C̃P
m

. Let si be the circle inside S2m+1 which after
dividing by T becomes pi and let ι̃i : si → S2m+1 be the natural in-
clusion. The stabilizer of the G × T action on si is the group Gi × T ′,
where T ′ is the subgroup {(t, t−1)|t ∈ T} of G × T and Gi is the kernel
of e2π

√
−1αi : G → S1. Then

KG×T (si) = KGi×T ′(pi) ∼= R(Gi × T ′).

We now define maps r̃i and π̃i, which, as we will explain below, are
extensions of the maps, ri and πi of Section 3. The map r̃i will be the
restriction homomorphism

(4.2) R(G × T ′) → R(Gi × T ′),

which clearly extends ri, the restriction map from R(G) to R(Gi).
Consider the covering map ρ : Gi×T ′ → G which sends (g, (t, t−1)) ∈

G × T ′ to gt ∈ G. The kernel of this map is the group Γi
∼= Gi ∩ T

which can be identified with the kith roots of unity, so that

Gi × T ′/Γi = G.

The Gysin map

π̃i : KG×T (si) = KGi×T ′(pt) = R(Gi × T ′)(4.3)

→ R(G) = KG(pt) = KG(pi)

is defined as follows. Let V be a virtual representation for Gi × T ′, and
let π̃i(V ) be the subspace V Γi of V fixed by Γi. Since G = Gi×T ′/Γi, the
space V Γi is a virtual representation space for G, so π̃i is well defined.
Again, this map is clearly an extension of the map πi : KGi(pt) →
KH(pt) defined in (3.11), where H is a subtorus for which G = H × T .
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The key ingredient in the Atiyah–Segal localization formula is the fact
that the composition of the pushforward map ι̃i! and the restriction ι̃∗

KGi×T ′(pt) = KG×T (si)
ι̃i!→ KG×T (S2m+1)

ι̃∗i→ KG×T (si) = KGi×T ′(pt)

is multiplication by the character of the exterior algebra complex∑
(−1)kΛkTpi

of the tangent space at pi, which is just

(4.4) r̃i

(1 − ζ)
∏
j �=i

(
1 − e2π

√
−1αj

) ,

where ζ is the generator of the character ring R(T ′). (Recall that G
acts on Tpi with the rational weights, but the group Gi × T ′, a cover
of G, acts on Tpi with integer weights. So, in (4.4) ζ is the character
of the representation of T ′ associated with the rational weight αi/ki of
G.)

The Atiyah–Segal localization theorem states that the map ι̃! =
∑

ι̃i!
becomes an isomorphism after localization. Thus, together with the fact
that ι̃∗ι̃i! is multiplication by (4.4), it implies that

indS2m+1

G×T (Ψ(δ)) =
m∑

i=1

ι̃∗i Ψ(δ)

r̃i

(
(1 − ζ)

∏
j �=i

(
1 − e2π

√
−1αj

))
+

ι̃∗m+1Ψ(δ)∏m
i=1(1 − e2π

√
−1αi)

.

It remains to take T invariants of both part of this formula. Notice that
taking the T -invariant part of a K-class in KG×T (si) = KGi×T ′(pt) is
equivalent to applying the map π̃i to this class. Hence we get

Lemma 4.1. For δ ∈ KG(C̃P
m

)

ind�CP
m

G (δ) =
m∑

i=1

π̃i

 ι̃∗i Ψ(δ)

r̃i

(
(1 − ζ)

∏
j �=i

(
1 − e2π

√
−1αj

))
(4.5)

+
ι̃∗m+1Ψ(δ)∏m

i=1(1 − e2π
√
−1αi)

.
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In case not all the numbers ki are negative, assume that for the first
r weights, α1, . . . , αr, these numbers are positive and for the others
are negative. Then apply Lemma 4.1 to the twisted projective space
defined for the weights −α1, . . . ,−αr, αr+1, . . . , αm and the equivari-
ant K-theory class δ

∏r
i=1 e−2π

√
−1αi . This, after an easy computation,

yields

Lemma 4.2. For δ ∈ KG(C̃P
m

)

(−1)rind�CP
m

G (δ
r∏

i=1

e−2π
√
−1αi)

=
m∑

i=1

sgn(−ki)π̃i

 ι̃∗i Ψ(δ)

r̃i

(
(1 − ζ)

∏
j �=i

(
1 − e2π

√
−1αj

))


+
ι̃∗m+1Ψ(δ)∏m

i=1(1 − e2π
√
−1αi)

.

5. Calculation of local indices for GKM spaces

In this section, we apply Lemma 4.1 to the twisted projective spaces,
Sε, to prove Lemma 2.3 and Theorem 1.6. We also describe the rela-
tionship between formulas (1.9) and (4.5).

Let us recall the definition of symplectic cuts of stable manifolds.
Assume (M,ω) is a Hamiltonian G-space. Choose a generic circle sub-
group T of G such that MT = MG. Let p be an isolated fixed point
and S the stable manifold of p. Let ωS be the restriction of ω to S, and
consider the space S ×C with the symplectic form (wS ,−

√
−1dy ∧ dȳ),

where y is the complex coordinate on C. If T acts on C with the
weight −1, the action of T on S × C is Hamiltonian. Restrict the mo-
ment map φ of the T action to S. If φ(p) = c, the moment map for the
action of T on S × C is

φ̃(x, y) = φ(x) − c − |y|2 ,

and the symplectic cut Sε is the symplectic reduction of S×C at −ε. For
more details and an explanation of why this definition of Sε coincides
with definition (1.1) see [13].

The Kirwan map

κ̃ε : KG×T (S × C) → KG(Sε)
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is the composition of the restriction of a class in KG×T (S×C) to φ̃−1(ε)
and the identification of KG×T (φ̃−1(ε)) with KG(Sε). As before, let T ′

be the circle subgroup of G×T given by {(t, t−1)|t ∈ T}, so that there is
a canonical identification G× T ∼= G× T ′. Notice that T ′ acts trivially
on S, hence

KG×T (S × C) = KG×T ′(S × C) = KG(S) ⊗ KT ′(C).

Using this identification, define, for a class, a ∈ KG(M)

κε(a) = κ̃ε(aS ⊗ 1),

where aS is the restriction of a to S. Then Ip(a) is just the G-equivariant
index of κ̃ε(aS ⊗ 1).

Remark 5.1. We will explain why Ip is an R(G/T ) (rather than
R(G)) module homomorphism. There are two R(G) module structures
on KG×T (S×C): one coming from the projection of G×T onto the first
factor and the other coming from the multiplication map G × T → G,
which maps (g, t) �→ g · t−1, and the map κ̃ε is an R(G)-module ho-
momorphism with respect to the second (not the first) R(G)-module
structure. However, for Ip to be an R(G)-module homomorphism, κ̃ε

has to be an R(G)-module homomorphism with respect to the first
module structure. Because of this, Ip is just an R(G/T )-module homo-
morphism. (This is also clear, by the way, from the algebraic description
of the map, Ip, in Theorem 1.7. Namely, formulas (3.4) and (3.6) make
clear that the map, f → f0 in Theorem 1.7 is not an R(G) morphism.)

Let Tp be the tangent space at p. This space decomposes into a direct
sum

Tp = T−
p ⊕ T+

p ,

where T acts on T±
p with positive and negative weights respectively. The

exponential map identifies a neighborhood of p in S with a neighborhood
of the origin inside T−

p . Let G act with weights α1, . . . , αm (so far we
allow linear dependencies) on T−

p . Then, it is obvious that Sε can be
identified with the projective space C̃P

m
defined in the previous section.

Before we specialize to GKM spaces we will prove Lemma 2.3.

Proof of Lemma 2.3. As above identify the symplectic cut of the stable
manifold S at p with C̃P

m
. Assume for the moment that we are in the

GKM setting so that every pair of αi’s are linearly independent. Apply
Lemma 4.1 to κε(τ), where τ is a class with τ(q) = 0 whenever q < p. In
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particular, if a descending edge goes from p to q, then τ(q) = 0. Hence
ι̃∗i Ψ(κε(τ)) = 0, unless i = m + 1 and

ι̃∗m+1Ψ(κε(τ)) = τp.

Thus Lemma 4.1 yields

Ip(τ) = ind�CP
m

G (κε(τ)) =
ι̃∗m+1Ψ(κε(τ))∏m

i=1(1 − e2π
√
−1αi)

=
τp

Λ−
p

,

which finishes the proof in the case αi’s are pairwise linearly indepen-
dent.

If we allow linear dependencies among pairs of αi’s, then a very similar
proof will go through. Atiyah–Segal localization gives a formula analo-
gous to Lemma 4.1, the difference being that the fixed point set of the
G action on C̃P

m
contains an isolated point pm+1 and other (possibly

non-isolated) fixed points. Here, the first term on the right-hand side
of (4.5) (which is the contribution to the index of these other points) is
more complicated. However, if the class τ is supported above p, that is
τ(q) = 0 whenever φ(q) < φ(p), then it is clear that the first term on the
right-hand side of (4.5) vanishes, since restrictions to the corresponding
fixed point sets are zeros.

To finish the proof, we will explain why we can assume without loss
of generality that φ(q) < φ(p) if and only if q < p, so that the condition
that τ(q) = 0 for q < p implies that τ is supported above p. This
follows from the equivariant version of the following standard result in
classical Morse theory (see [15, Theorem 4.1]). Given two real numbers
a < b, assume φ−1([a, b]) contains two critical points p and q whose
stable and unstable manifolds do not intersect. Then for any a < c,
c′ < b, there exists another Morse function φ′ which coincides with φ
outside of φ−1([a, b]), and has the same critical points as φ and the same
stable and unstable manifolds as φ, and φ′(p) = c and φ′(q) = c′. It
is clear from the proof of [15, Theorem 4.1] that the proof of this fact
does not rely on any transversality arguments and can be restated and
proved in the equivariant setting. q.e.d.

Let us now turn to the proof of Theorem 1.6. We assume that M is a
GKM manifold with respect to the G action, so that the one-skeleton Γ
with its G-action carries all the information we need to compute the
equivariant cohomology and the equivariant K-theory of M .
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Let p ∈ M be a fixed point under the G action, or, in other words,
a vertex of Γ, and let T act on T−

p with the weights α1, . . . , αm. The
GKM assumption implies that every pair of weights is linearly indepen-
dent, and in terms of the graph Γ it means that the descending edges
e1, . . . , em coming out of p are labeled by the weights α1, . . . , αm.

For any class a ∈ KG(M), let us apply Lemma 4.1 to the class κε(a)
to compute Ip(a). We can make Lemma 4.1 more specific by computing
the restrictions of κε(a) to the fixed points of C̃P

m
. It is easy to see

that
ι̃∗i Ψ(κε(a)) = ri(ap) = ri(aqi),

where qi is the second vertex of the edge ei. By inserting these identities
in (4.5), one immediately gets the identity (1.7) of Theorem 1.6.

We also observe that if we apply the Lagrange interpolation for-
mula (1.9) to the virtual character ap ∈ R(G) with α1, . . . , αm being the
labels of the edges of Γ pointing down from p, we get a slightly weaker
version of Theorem 1.6. Namely, we get a formula whose right-hand side
is identical to the right-hand side of (1.7), but has the term f0 (instead
of Ip(a)) on the left-hand side. So, the proof of Theorem 1.6 presented
above gives a geometric interpretation of the term f0 in the Lagrange
interpolation formula. Similarly, Lemma 4.2 can be interpreted as the
geometric analogue of the formula (1.9).

Notice also that the above discussion can be adapted to the setting
of equivariant cohomology, with the pushforward in K-theory, or index,
replaced by the pushforward in cohomology, or integration.

6. The restriction of the classes τp to fixed points

Theorem 1.6 enables one to express local indices in terms of restric-
tions of equivariant K-classes to fixed points. In this section, we will do
the opposite. Namely, we will compute the restrictions of equivariant
K-theory classes to fixed points in terms of local indices. Since the τp’s
generate KG(M), it is enough to do this for the classes τp’s. Hence, we
will derive an explicit graph-theoretic formula for the restriction of τp

to a fixed point q ∈ MG.
To state this result, we recall some notation: Assume that an edge e

of Γ is equipped with an orientation. Denote by i(e) and t(e) the initial
and terminal vertices of e, and we denote by ē the edge obtained from
e by reversing its orientation. Thus i(ē) = t(e) and t(ē) = i(e). We call
e an ascending edge if αe(ξ) > 0 and a descending edge if αe(ξ) < 0.
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Let H be a complimentary torus to T in G. As in Section 3, we will
make use of the splitting G = T ×H to identify the ring R(G) with the
ring of finite sums

(6.1)
M∑

k=−N

ckz
k, ck ∈ R(H),

and we will denote by Q(H) the quotient field of the ring R(H) and
by R̂(G) the ring of finite sums

(6.2)
M∑

k=−N

ckz
k, ck ∈ Q(H).

Thus by (6.1) R̂(G) contains R(G) as a subring.
Let e be an ascending edge of Γ. The key ingredient in our combina-

torial formula for τp(q) is a Q(H) module endomorphism

Qe : R̂(G) → R̂(G).

To define this endomorphism, let p = t(e) and let e1, . . . , er+1 be the
descending edges of Γ with i(ej) = p. We will order these edges so that
er+1 = ē. Let αj = αej . Then e2π

√
−1αj = zkje2π

√
−1βj , where kj is a

negative integer and βj is an element of the weight lattice of H. Denote
by Ge the kernel of e2π

√
−1αe : G → S1. Given an element f of R̂(G)

and h ∈ H, we define Qef to be the expression

Qef(z, h) =

r+1∏
j=1

(1 − zkje2π
√
−1βj)

(6.3)

× πiri
f(w, h)

(1 − z
w )
∏r

j=1(1 − e2π
√
−1αj )

,

or alternatively the sum

Qef(z, h) =

r+1∏
j=1

(1 − zkje2π
√
−1βj)

(6.4)

× 1
k

r∑
i=1

f(wi, h)

(1 − z
wi

)
∏r

j=1(1 − w
kj

i e2π
√
−1βj)

,
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where w1, . . . , wk are the preimages of h in Ge with respect to the pro-
jection Ge → H, and ri and πi are the restriction and Gysin maps. By
Theorem 1.7, this expression is a finite sum of the form (6.2) and hence
an element of R̂(G).

Notice that with e = ei, Qef(z, h) is the term fi in formula (1.8) of
Theorem 1.7, multiplied by

∏r+1
j=1(1−zkje2π

√
−1βj). From the geometric

interpretation of Theorem 1.7, as Atiyah–Segal localization on twisted
projective spaces, it is possible to interpret Qe as a purely topological
operation. This is an easy exercise, and we omit the details.

Now let γ be a path in Γ joining p to q; i.e., a sequence of oriented
edges e1, . . . , es with i(e1) = p1, t(es) = q and t(ej) = i(ej+1). We will
call γ an ascending path if all the ej ’s are ascending, and we will denote
by

Qγ : R̂(G) → R̂(G)
the composition QesQes−1 . . . Qe1 .

Theorem 6.1. The restriction τp(q) of τp to q ∈ MG is equal to the
sum

(6.5)
∑

Qγ(τp(p))

over all ascending paths γ in Γ joining p to q.

Proof. For p = q, this formula is obvious, so we assume q �= p. Let
e1, . . . , er be the ascending edges of Γ with terminal vertex q and let
qj = i(ej). Since Iq(τp) = 0, we get from Theorems 1.6 and 1.7

(6.6) τp(q) =
∑

Qeiτp(qi).

If one of the qi’s, say q1 is equal to p, one can incorporate it as a term
in the sum (6.5), since e1 is a path of length one joining p to q. For
the qi’s which are not equal to p, let eij be the ascending edges of Γ
with t(eij) = qi and let qij = i(eij). By iterating (6.6), we get for the
contribution of these qi’s to the sum (6.6)

(6.7)
∑
i,j

QeiQeijτp(qij).

Again, if one of the qij’s is equal to p, the summand in (6.7) correspond-
ing to it gets incorporated in the sum (6.5), since the path with edges eij

and ei is an ascending path on Γ joining p to q. For the remaining qi,j’s,
we iterate this argument again. It is clear that after sufficiently many
iterations, we obtain the formula (6.5). q.e.d.
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An analogue of Theorem 6.1 for the equivariant cohomology ring
H∗

G(M) can be found in [9]. In equivariant cohomology, the τp’s are
defined as the equivariant Thom classes of the unstable manifolds, and
it was shown in [9] that the restriction of these classes to the fixed points
are given by a formula analogous to (6.5) with operators, Qe, defined
by formulas similar to (6.3). Moreover, Catalin Zara was able to show
that, for this combinatorial version of (6.5), a lot of summands cancel
each other out making this formula an effective tool for computational
purposes. We conjecture (or at least hope) that the same will be true
in K-theory.

7. Example: The case of Grassmannian

In this section, we present a generalization of the definition of local
index. This allows us to single out a class of GKM manifolds for which
the computation of the restriction of the class, τp, to MG is not much
more complicated in K-cohomology than in ordinary cohomology. (We
will show that one example of such a manifold is the Grassmannian.)

For a compact symplectic manifold (M,ω) with a Hamiltonian G
action, the total index map I : KG(M) → KG(MG) depends on a
choice of a circle subgroup T ∈ G with MG = MT . Recall that the
local index of a ∈ KG(M) at a fixed point p depends on the symplectic
cut of the stable manifold Sp of φ at p with respect to the T action. We
now modify this definition of local index by considering symplectic cuts
of these stable manifolds with respect to other circle subgroups of G.

Namely, besides choosing a circle subgroup T of G with MG = MT ,
choose for each fixed point p a circle subgroup Tp of G, such that the
Tp-moment map µp : M → R restricted to Sp attains its maximum at p.
This allows us to define this local symplectic cut using the Tp action
instead of the T action. So, now let Sε be the symplectic cut of the
stable manifold of φ at p with respect to the circle Tp action. As before,
we have a map κε : KG(M) → KG(Sε) and we define the local index Ĩp

by
Ĩp(a) = indG(κε(a)).

Notice that all the results in Section 2 hold for the new local indices Ĩp.
In particular, Theorem 1.1 is still true. (Notice, however, that the classes
τp may be different from those defined using the old definition of local
indices.) Also Lemmas 4.1, 4.2 as well as Theorem 1.6 hold with the
following minor changes. If ξp is the infinitesimal generator of Tp, then
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the numbers ki have to be defined as αi(ξp), the maps π̃i and r̃i are
defined using the circle Tp instead of T , and ζ is the generator of the
character ring R(Tp).

We now define the new total index Ĩ : KG(M) → KG(MG) to be the
sum of all Ĩp. (Notice that the new total index is no longer an R(G/T )-
module homomorphism.) Let us call Ĩ torsion-free if we can pick the
circles T and Tp’s in such a way that all the numbers ki’s for all the
fixed points are equal to minus one. Then, Theorem 1.6 simplifies to:

Theorem 7.1. Let M be a GKM space. For p ∈ V = MG, let
e1, . . . , em be the descending edges with initial vertex at p. Let ei connect
p to qi and be labeled by weight αi. If Ĩ is torsion-free, then for any
a ∈ KG(M), we have

Ĩp(a) =
m∑

i=1

ri(aqi)

(1 − e2π
√
−1αi)

∏
j �=i

(
1 − e2π

√
−1(αj−αi)

)(7.1)

+
ap∏m

i=1(1 − e2π
√
−1αi)

,

Proof. This immediately follows from (1.7) with all ki’s equal to mi-
nus one, or from a straight forward application of (4.1). q.e.d.

As mentioned above, local indices can be defined in the setting of
equivariant cohomology by using integration instead of the index map
for the pushforward. Then Theorem 7.1 has a counterpart in the equi-
variant cohomology which states that for a ∈ H∗

G(M),

(7.2) Ĩp(a) =
m∑

i=1

ri(aqi)
αi
∏

j �=i

(
αj − αi

) +
ap∏m

i=1 αi
,

where Ĩp is the local index in equivariant cohomology. Notice that (7.2)
is obtained from (7.1) by the formal substitution of every expression of
the form (1 − e2π

√
−1α) by α.

Without giving details, we remark that it is possible to prove an
analogue of Theorem 6.1 for this new local index. However, the oper-
ators Qγ will be defined differently and will no longer map R̂(G) into
itself, where R̂(G) is the ring of the sums of the form (6.2). In the
torsion free case, the operators Qγ will simplify and after formal substi-
tution of (1−e2π

√
−1α) by α will resemble the operators of [9] appearing

in their “path integral formula”.
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We will conclude this section by showing that the Grassmannian,
Gr(k, n), of k-planes in Cn is an example of a space for which one
can define a torsion-free total index map. To see this, identify the n-
dimensional torus G̃ with the product of n circles S1 × · · · × Sn. Let
Si act on the ith component of Cn with weight 1 and with weight 0 on
the other components. This action induces an action of G̃ on Gr(k, n).
If S is the diagonal of the torus G̃, then its action on Gr(k, n) is trivial,
and the action of G = G̃/S on Gr(k, n) is effective. The G action on
Gr(k, n) is known to be GKM and its one-skeleton Γ is the Johnson
graph.

Let ξ1, . . . , ξn be the infinitesimal generators of the circles S1, . . . , Sn.
They form a basis of the Lie algebra g̃ of G̃. Let α1, . . . , αn be the
dual basis of g̃∗. Then

∑
ciαi with ci ∈ Z is a weight of G as long as∑

ci = 0.
Let vi be a non-zero vector in the ith component of Cn = C×· · ·×C.

The fixed points of the G action on Gr(k, n) are indexed by the k-
element subset of {1, . . . , n}. Namely, if I is such a set, the fixed point pI

is the span of vectors vik with ik ∈ I. The weights of the isotropy action
at pI are αi −αj with i /∈ I and j ∈ I. Let T̃I be the diagonal subcircle
of the torus

∏
i∈I Si and TI its image inside (

∏
i∈I Si)/S. Then the

isotropy action of TI at pI is given by the weight −1, and the moment
map associated to the TI action attains its maximum at pI .

So, if we pick any generic circle subgroup T of G and then define
local indices ĨpI

using symplectic cuts with respect to the actions of TI ,
the total index will be torsion-free. In particular, Theorem 7.1 applies
to Gr(k, n).

Now let us specialize to the case of the ordinary (non-equivariant)
cohomology and K-cohomology rings of Gr(k, n). They are known to
be isomorphic, where the isomorphism Φ : K(Gr(k, n)) → H∗(Gr(k, n))
is given by sending the Chern classes in K-theory of the dual of the tau-
tological vector bundle on Gr(k, n) to the corresponding Chern classes
in cohomology. For more details concerning this isomorphism and the
discussion below, see [12].

Pick a generic circle, T , in G, such that its moment map attains
its minimum at pI with I = {1, . . . , k}. Call the closure of the stable
manifold at pI the Schubert variety XI . Then we can define two different
bases of H∗(Gr(k, n)) one basis, sI , being given by the Poincare duals,
or Thom classes, of the XI ’s, and the other basis, gI , being given by the
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images under Φ of the structure sheaves of the XI ’s. (The topological
K-theory of Gr(k, n) can be identified with its algebraic K-theory, so
that we can use coherent sheaves, in particular the structure sheaves of
Schubert varieties, to define K-classes, see [4] for details.) These bases
are not the same and the transition matrix between these two bases was
worked out in [12] using the combinatorics of Schur and Grothendieck
polynomials.

Notice that the classes τpI
constructed in Theorem 1.1 descend to

a basis τ̂pI
of K(Gr(k, n)). From the discussion above it is clear that

Φ(τ̂pI
) = sI . So this allows one to interpret the coefficients computed

in [12] geometrically. Namely, these are the coefficients appearing when
we express K-theory classes of the structure sheaves of the XI ’s as
linear combinations of the τ̂p’s. Hence, the problem of computing these
coefficients can be reduced to the computation of the (non-equivariant)
local indices of the K-theory classes of the structure sheaves of the
XI ’s. It would be very interesting to reprove the results of [12] using
this geometric approach.
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