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QUASI-POSITIVE CURVATURE ON
HOMOGENEOUS BUNDLES

KRISTOPHER TAPP

Abstract
We provide new examples of manifolds which admit a Riemannian metric
with sectional curvature nonnegative, and strictly positive at one point.
Our examples include the unit tangent bundles of CP

n, HP
n and OP

2 (the
Cayley plane), and a family of lens space bundles over CP

n.

1. Introduction

There are very few known examples of compact manifolds with
strictly positive sectional curvature. However, new examples have been
recently constructed of nonnegatively curved manifolds with positive
curvature either at a point (called quasi-positive curvature) or on an
open dense set of points (called almost-positive curvature). Gromoll
and Meyer discovered a 7-dimensional exotic sphere with quasi-positive
curvature [5]. This exotic sphere was later shown to admit almost-
positive curvature [8], [4]. Petersen and Wilhelm endowed T 1S4 and a
6 dimensional quotient of T 1S4 with almost-positive curvature [6].

More recently, in [9], Wilking discovered several families of manifolds
admitting almost-positive curvature, including the projective tangent
bundles PRTRP

n, PCTCP
n and PHTHP

n, and a family of lens space
bundles over CP

n. His result for PRTRP
n implies that its cover, T 1Sn,

admits almost-positive curvature, which is particularly interesting in the
cases of T 1S3 = S3×S2 and T 1S7 = S7×S6. Amongst his examples are
non-simply-connected spaces known not to admit positive curvature. On
the other hand, it remains unknown whether every manifold admitting
quasi-positive curvature must admit almost-positive curvature.
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The main results of this paper are the following new examples:

Theorem 1.1. The following manifolds admit metrics with quasi-
positive curvature:

1. The unit tangent bundles T 1
CP

n, T 1
HP

n and T 1
OP

2.

2. The homogeneous space

M = U(n + 1)/{diag(zk, zl, A) | z ∈ U(1), A ∈ U(n − 1)},

where (k, l) is a pair of integers, not both zero, and n ≥ 2.

3. The homogeneous space

Sp(n + 1)/{diag(z, 1, A) | z ∈ Sp(1), A ∈ Sp(n − 1)}, n ≥ 2.

The space in part (2) is a lens space bundle over CP
n. Wilking

proved that the sub-family with k·l < 0 admit almost-positive curvature.
Our larger family contains new examples, including the case k = l = 1,
which is T 1

CP
n.

The space in part (3) is an S4n−1-bundle over HP
n. Wilking proved

that a quotient of this space by a free S3-action, namely the bi-quotient
Sp(1)\Sp(n+1)/Sp(1) ·Sp(n−1), admits almost-positive curvature, but
he did not prove anything about the space itself.

All of our examples are homogeneous bundles over homogeneous
spaces. If B = H\G is a homogeneous space, then a fiber bundle F ↪→
M → B is called homogeneous if the transitive right G-action on B lifts
to M . Said differently, a homogenous fiber bundle over B is one which
can be written as a quotient M = H\(G × F ), for some left action
of H on the fiber F . If the action of H on F is transitive, then M
is diffeomorphic to H\(G × (H/K)) = G/K, where K is the isotropy
group of this action. So the bundle looks like:

H/K → G/K → G/H.

In this case, we will endow M = H\(G×F ) with the submersion metric
(using a natural left-invariant metric on G and the product metric on
G×F ), and derive conditions under which this metric on M has quasi-
positive curvature.

The author is pleased to thank Burkhard Wilking and Wolfgang
Ziller for helpful conversations about this work.
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2. Summary of Conditions

In this section, we summarize our conditions under which a homoge-
neous bundle admits quasi-positive curvature. We adopt the following
notation and assumptions for the remainder of the paper. Let B = H\G
denote a homogenous space, with G and H compact Lie groups. Let g0

denote a bi-invariant metric on G, and assume that H\(G, g0) has posi-
tive curvature. Let F denote a compact Riemannian manfold which has
positive curvature or is one dimensional. Assume that H acts transi-
tively and isometrically on F on the left. Let K ⊂ H denote the isotropy
group at some point p0 ∈ F . Denote the Lie algebras of K ⊂ H ⊂ G
as k ⊂ h ⊂ g. Let m := h � k and p := g � h, where “�” denotes the
g0-orthogonal compliment.

Let gH
l denote the left-invariant and right-H-invariant metric on G

obtained from g0 by rescalling in the direction of h. More precisely, fix
t ∈ (0, 1) and define:

gH
l (X, Y ) = g0(Xp, Y p) + t · g0(Xh, Y h)(2.1)

where Xp (respectively Xh) denotes the projection of X orthogonal to
(respectively onto) h. Notice that (G, gH

l ) is nonnegatively curved by [3],
since it can be described as a submersion metric:

(G, gH
l ) = ((G, g0) × (H, λ · g0|H))/H,(2.2)

where λ = t/(1 − t).
Let M = H\((G, gH

l )×F ), where H acts diagonally, and denote the
projections as follows:

(G, gH
l ) × F

π→ M
φ→ H\(G, gH

l ).

Notice that the maps π and φ ◦ π are Riemannian submersions by con-
struction, so it follows that φ is a Riemannian submersion as well. The
fibers of φ are not in general totally geodesic, although they would be
if gH

l were replaced by a right-invariant and left-H-invariant metric.
As for the isometries remaining on M , the following is straightfor-

ward to verify:

Remark 2.1. The right H-action on the first factor of (G, gH
l )×F

induces an isometric action of H on M . A subgroup L ⊂ H acts freely
if and only if L ∩ (g−1 · K · g) = {Id} for all g ∈ G. In this case, the
quotient M/L is diffeomorphic to the bi-quotient L\G/K.
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The space M has nonnegative curvature. Our first goal is to de-
rive conditions under which M has points of positive curvature. Our
conditions turn out not to depend on t.

Theorem 2.2.

1. If [Z, W ] �= 0 for all linearly independent vectors Z ∈ g � k and
W ∈ p, then M has positive curvature.

2. If there exists A ∈ g such that [Zh, [A, W ]h] �= 0 for all linearly
independent vectors Z ∈ g � k and W ∈ p for which [Z, W ] = 0,
then M has quasi-positive curvature.

3. If (G, H) is a compact rank one symmetric pair, and if there exists
A ∈ p such that [X, A] �= 0 for all nonzero X ∈ m, then M has
quasi-positive curvature.

We will prove this theorem in Section 4. We prove part (1) by
deriving straightforward conditions for zero-curvature planes. We prove
part (2) by differentiating these conditions to show that for small ε > 0,
points in M of the form π((exp(−ε · A), p0)) have positive curvature.
When (G, H) is a symmetric pair, the hypothesis of part (2) simplifies to
the hypothesis of part (3). All of our new examples are consequences of
part (3) of the theorem. We construct these new examples in Section 6,
and also recover quasi-versions of Wilking’s almost-positive curvature
results. In fact, our metrics are isometric to his, which we prove in
Section 7.

3. Positive Curvature?

At first glance, it seems possible to use part (1) of Theorem 2.2 to
find new examples of positively curved manifolds. However, the hypoth-
esis implies that [Z, W ] �= 0 for all nonzero vectors Z ∈ m and W ∈ p,
which is called “fatness” of the homogeneous bundle (the hypothesis if
equivalent to fatness when (G, H) is a rank one symmetric pair). See [11]
for an overview of literature related to the fatness condition.

Berard Bergery classified all fat homogeneous bundles in [2]. Our
theorem provides hindsight motivation for his classification. If (G, H) is
a rank one symmetric pair, he found that the bundle is fat if and only if
M admits a homogeneous metric of positive curvature. Further, if the
fiber dimension is > 1, he found that fatness implies that (G, H) must
be a rank one symmetric pair. Therefore, no new examples of positive
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curvature can be found with Theorem 2.2, with the possible exception
of circle bundles.

It is already known which circle bundles over rank one symmetric
spaces admit positive curvature. The three non-symmetric positively
curved normally homogeneous spaces discovered in [1] and [10] are odd
dimensional, making a circle bundle over one be even-dimensional. But
our metric on a circle bundle looks like M = H\((G, gH

l ) × S1), which
admits the free isometric S1-action induced by the action of S1 on the
second factor of (G, gH

l )×S1. So positive curvature on M would contra-
dict Berger’s Theorem, which says that an even dimensional positively
curved manifold cannot admit a nonvanishing Killing field. Thus, our
construction does not yield new examples of positive curvature.

4. Proof of Theorem 2.2

Notice that any point of M can be written as π((g−1, p0)) for some
g ∈ G. If (g−1, p0) does not contain a π-horizontal zero-curvature plane,
then π((g−1, p0)) is a point of positive curvature. We begin with the
following lemma, which is more generally valid when gH

l is replaced by
any left-invariant metric on G.

Lemma 4.1. There exists a π-horizontal zero-curvature plane at
(g−1, p0) if and only if there exist vectors

X ∈ g � Adg(k) = {Y ∈ g | gH
l (Y,AdgA) = 0 ∀A ∈ k},

Wi ∈ g � Adg(h) = {Y ∈ g | gH
l (Y,AdgA) = 0 ∀A ∈ h}

such that span {X + W1, X + W2} is a 2-plane in g with zero-curvature
with respect to gH

l .

Proof. Suppose that σ is a π-horizontal zero-curvature plane at
(g−1, p0). Since σ has zero-curvature, it is spanned by vectors of the
form {dLg−1W 1 + V, dLg−1W 2 + V }, where V ∈ Tp0F , and W 1, W 2 ∈ g

span a gH
l -zero curvature plane (notice that W 1 and W 2 are linearly

independent because V is not π-horizontal).
The vertical space of π at (g−1, p0) is the set {dRg−1A+A(p0) | A ∈

h}, where A(p0) ∈ Tp0F denotes the value at p0 of the Killing field on
F associated with A. So for all i ∈ {1, 2} and A ∈ h, we have:

0 = 〈dLg−1W i + V, dRg−1A + A(p0)〉 = gH
l (W i, AdgA) + 〈V, A(p0)〉.

In particular,W 1, W 2 ∈ g � Adg(k). Further, W 1 and W 2 have the
same gH

l -orthogonal projections onto Adg(h). We denote their common
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projection as X. Denote Wi = W i−X. Then span{X +W1, X +W2} =
span{W 1, W 2} is a zero-curvature plane in g as required.

Conversely, suppose there exist vectors X ∈ g � Adg(k) and Wi ∈
g�Adg(h) such that span{X +W1, X +W2} is a zero-curvature plane in
g. For any V ∈ Tp0F , the plane σ = span{dLg−1(X+W1)+V, dLg−1(X+
W2)+V } is a zero-curvature plane in G×F at (g−1, p0). It will suffice to
choose V such that σ is π-horizontal; that is, such that for all i ∈ {1, 2}
and A ∈ h,

0 = 〈dLg−1(X +Wi)+V, dRg−1A+A(p0)〉 = gH
l (X, AdgA)+ 〈V, A(p0)〉.

By linearity, it will suffice to find V ∈ Tp0F such that 〈V, Ai(p0)〉 =
−gH

l (X, AdgAi) for each element Ai of a basis of h. Choose a basis {Ai}
such that Ai ∈ k for i ≤ dim(k) and such that {Ai(p0) | i > dim(k)} is a
basis of Tp0F . Since X is orthogonal to k, it is easy to see that such a
vector V can be chosen. q.e.d.

In order to apply Lemma 4.1, we require Eschenburg’s description
of the planes in g which have zero curvature with respect to gH

l . The
case t = 1/2 is found in [3], and the general case is similar. To phrase
his condition, we define Φ : g → g by the rule: Φ(A) = t · Ah + Ap. It’s
easy to verify that for all A, B ∈ g,

gH
l (A, B) = g0(A, Φ(B)) and g0(A, B) = gH

l (A, Φ−1(B)).

Lemma 4.2 (Eschenburg). Let σ = span{X, Y } be a plane in g.

1. σ has zero-curvature if and only if [Φ(X), Φ(Y )] = 0 and [Xh, Y h]
= 0.

2. If (G, H) is a symmetric pair, then σ has zero-curvature if and
only if [X, Y ] = 0 and [Xh, Y h] = 0.

Combining Lemmas 4.1 and 4.2 yields the following condition:

Lemma 4.3. There exists a π-horizontal zero-curvature plane at
(g−1, p0) if and only if there exist linearly independent vectors Z ∈ g� k

and W ∈ p such that [Z, W ] = 0 and [(AdgZ)h, (AdgW )h] = 0.

Proof. Assume there exists a π-horizontal zero curvature plane at
(g−1, p0). By Lemma 4.1, there exists vectors X ∈ g � Adg(k) and
Wi ∈ g � Adg(h) such that

span{X + W 1, X + W 2} = span{X + W 1, W 2 − W 1}
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is a zero curvature plane in g with respect to gH
l .

It is possible to write X + W 1 = Φ−1(AdgZ) and W 2 − W 1 =
Φ−1(AdgW ) for some Z, W ∈ g. In fact, Z ∈ g� k because for all A ∈ k,

0 = gH
l (X + W 1, AdgA) = gH

l (Φ−1(AdgZ), AdgA)
= g0(AdgZ, AdgA) = g0(Z, A).

Similarly, W ∈ p. Applying Lemma 4.2 gives:

0 = [Φ(X + W 1), Φ(W 2 − W 1)] = [Adg(Z), Adg(W )] = [Z, W ].

0 = [(X + W 1)h, (W 2 − W 1)h] = [(1/t)(Adg(Z))h, (1/t)(AdgW )h].

Therefore, the vectors {Z, W} satisfy the conclusions of the lemma. The
other direction of the lemma follows analogously. q.e.d.

The previous lemma simplifies with the symmetric pair conditions
[p, p] ⊂ h and [p, h] ⊂ p.

Lemma 4.4. Assume that (G, H) is a symmetric pair. Then there
exists a π-horizontal zero-curvature plane at (g−1, p0) if and only if there
exists nonzero vectors X ∈ m and W ∈ p such that [X, W ] = 0 and
[(AdgX)h, (AdgW )h] = 0.

Proof. Assume there exists a π-horizontal zero curvature plane at
(g−1, p0). So by Lemma 4.3, there exists linearly independent vectors
Z ∈ g�k and W ∈ p for which [Z, W ] = 0 and [(AdgZ)h, (AdgW )h] = 0.
Then, 0 = [Zh +Zp, W ] = [Zh, W ]+ [Zp, W ]. But since [Zh, W ] ∈ p and
[Zp, W ] ∈ h, both vectors must be zero. Since H\(G, go) has positive
curvature, Zp and W are parallel. So Zh �= 0, and the pair {X = Zh, W}
satisfies the conclusions of Lemma 4.4. The other direction of the lemma
is argued similarly. q.e.d.

Finally, we prove Theorem 2.2.

Proof of Theorem 2.2. Part (1) is immediate from Lemma 4.3. To
prove part (2), assume that A ∈ g satisfies its hypothesis. Notice that
Lemma 4.3 remains true if the phrase “linearly independent” is replaced
by the phrase “g0-orthonormal”. So fix g0-orthonormal vectors Z ∈ g�k

and W ∈ p for which [Z, W ] = 0. Define:

f(s) =
∣∣∣[(Adexp(sA)Z

)h
,
(
Adexp(sA)W

)h
]∣∣∣2 .
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Then f(0) = 0, f ′(0) = 0 and:

1
2
f ′′(0)

=
∣∣∣∣ d
ds

∣∣∣
s=0

[(
Adexp(sA)Z

)h
,
(
Adexp(sA)W

)h
]∣∣∣∣

2

=
∣∣∣∣
[
Zh,

d
ds

∣∣∣
s=0

(
Adexp(sA)W

)h
]∣∣∣∣

2

=

∣∣∣∣∣
[
Zh,

(
d
ds

∣∣∣
s=0

Adexp(sA)W

)h
]∣∣∣∣∣

2

=
∣∣∣[Zh, [A, W ]h

]∣∣∣2 > δ > 0.

By compactness (of the space of orthonormal vectors {Z,W} with [Z, W ]
= 0), δ can be chosen to depend only on A (not on Z and W ). It follows
that δ′ > 0 can be chosen (independent of Z and W ) such that f(s) > 0
for all s ∈ (0, δ′]. It now follows from Lemma 4.3 that for s ∈ (0, δ′],
π((exp(−s · A), p0)) is a point of positive curvature.

To prove part (3), suppose there exists A ∈ p such that [X, A] �= 0
for all nonzero X ∈ m. Then for all nonzero X ∈ m we have:

0 �= g0([X, A], [X, A]) = g0([X, [X, A]], A).

In particular, [X, [X, A]] �= 0.
Now let Z ∈ g � k and W ∈ p be linearly independent vectors for

which [Z, W ] = 0. Using the assumption that (G, H) is a rank one
symmetric pair, X := Zh �= 0 and [X, W ] = 0. From part (2) of the
theorem, it will suffice to show that the following is nonzero:

[Zh, [A, W ]h] = [X, [A, W ]] = −[W, [X, A]] (Jacobi identity).

But if [W, [X, A]] = 0, then W would be parallel to [X, A], which would
mean [X, [X, A]] = 0. This is a contradiction. Therefore M has quasi-
positive curvature. q.e.d.

5. The Space S2 × S3

In this section, we use Lemma 4.4 to recover Wilking’s theorem that
S2 × S3 admits a metric with almost-positive curvature. Although our
proof is very similar to the original, we find it worthwhile to translate
the original proof into the vocabulary of this paper.
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Proposition 5.1 (Wilking). The space S2 × S3 admits almost-
positive curvature.

Proof. One way to describe S3 as a symmetric space S3 = H\G
is G = S3 × S3 and H = ∆(S3). If we let H act on (S2, round) as
SO(3), then the associated bundle M = H\(G × S2) is diffeomorphic
to T 1S3 = S3 × S2. One isotropy group of the action of H on S2 is
K = {(eiθ, eiθ) | θ ∈ S1}. The Lie algebras of K ⊂ H ⊂ G are:

k = span{(i, i)} ⊂ h = ∆(sp(1)) ⊂ g = sp(1) × sp(1).

Let g = (g1, g2) ∈ G. Let X = (a, a) ∈ m = h � k and W =
(b,−b) ∈ p = g � h be nonzero vectors, which means that a, b ∈ sp(1)
are not zero, and a is orthogonal to i. Assume that [X, W ] = 0 and
[(AdgX)h, (AdgW )h] = 0. By Lemma 4.4, it will suffice to prove that g
lies in the compliment of an open dense set of G.

Since 0 = [X, W ] = [(a, a), (b,−b)] = ([a, b], [a,−b]), we see that
[a, b] = 0. Thus a is parallel to b, so b = λa for some λ ∈ R. Next,

0 = [(Adg(a, a))h, (Adg(λa,−λa))h]

= λ[(Adg1a,Adg2a)h, (Adg1a,−Adg2a)h]

= λ

[(
Adg1a + Adg2a

2
,
Adg1a + Adg2a

2

)
,(

Adg1a − Adg2a

2
,
Adg1a − Adg2a

2

)]
.

From this we see that [Adg1a,Adg2a] = 0. This implies that Adg1a =
±Adg2a; in other words, a = ±Ad(g−1

1 g2)a. Using the fact that a ⊥ i,

this implies that (g−1
1 g2) ⊥ 1 or (g−1

1 g2) ⊥ i. q.e.d.

6. New examples

In this section, we will use part (3) of Theorem 2.2 to obtain all of
the new examples in Theorem 1.1.

Proposition 6.1. The unit tangent bundle of any compact rank
one symmetric space admits quasi-positive curvature.

Proof. Assume (G, H) is a compact rank one symmetric pair. Let
S = G/H, which is one of RP

n, Sn, CP
n, HP

n or OP
2. There is a natural

G action on the unit tangent bundle T 1S, obtained by differentiating
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the G-action on S. This action on T 1S is transitive because the isotropy
representation of H on p = T[e]S is transitive on the unit-sphere p1. Fix
A ∈ p1. Then T 1S = G/K, where K is the collection of elements of H
fixing A under the isotropy representation of H on p. By part (3) of
Theorem 2.2, it suffices to prove that [A, X] �= 0 for all nonzero X ∈ m.

Each element, Y ∈ h determines a Killing vector field on p1 via the
isotropy representation of H on p. The value of this Killing field at V ∈
p1 equals [Y, V ]. Since the action of H on p1 is transitive, these Killing
fields must span TV p1 for every V ∈ p1. Since the Killing field associated
to an element Y ∈ k vanishes at A, and since dim(m) = dim(p1), the
Killing fields associated to a basis for m must be linearly independent
at A. Therefore, [A, X] �= 0 for all nonzero X ∈ m. q.e.d.

Remark 6.2. The groups for T 1S2n are K = SO(2n − 1) ⊂ H =
SO(2n) ⊂ G = SO(2n + 1). By Remark 2.1, there is a free isometric
S1-action on T 1S2n coming from the subgroup L = SO(2) embedded
diagonally in H. Wilking proved that T 1S2n/S1 admits almost-positive
curvature.

Remark 6.3. Let K ∈ {R, C, H}. Let G(n) denote O(n), U(n)
or Sp(n), depending on K. The unit tangent bundle T 1

KP
n and the

projective tangent bundle PKTKP
n come respectively from the groups:

{diag(z, z, A) | z ∈ G(1), A ∈ G(n − 1)} ⊂ G(1) · G(n) ⊂ G(n + 1)
{diag(z1, z2, A) | zi ∈ G(1), A ∈ G(n − 1)} ⊂ G(1) · G(n) ⊂ G(n + 1).

We verified that the groups K ⊂ H ⊂ G for T 1
KP

n satisfy the condition
for quasi-positive curvature. Since K is strictly larger in the groups for
PKTKP

n, the condition is also satisfied there. Wilking proved that these
projective tangent bundles admit almost-positive curvature. The pro-
jective tangent bundles of RP

2, CP
2, HP

2 and OP
2 admit homogeneous

metrics with positive curvature [7].

Proposition 6.4. The homogeneous space Mkl = U(n + 1)/Kkl

admits quasi-positive curvature, where (k, l) is a pair of integers with
k �= 0, n ≥ 2 and Kkl = {diag (zk, zl, A) | z ∈ S1, A ∈ U(n − 1)}.

When l = 0, we lose no generality in assuming that k = 1. When
l �= 0, we lose no generality in assuming that k and l are relatively
prime, since dividing both by a common factor does not change the
group Kkl. In these case, M is a homogeneous bundle over CP

n =
U(n + 1)/(U(1) · U(n)) with fiber equal to the homogeneous lens space
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Lk = S2n−1/Zk = U(n)/(Zk · U(n − 1)). To describe the transitive
isometric action of H = U(1) · U(n) on Lk which yields these bundles,
denote a point of Lk as [C], where C ∈ U(n). The action is:

[C]
(z,A)�→ [z−l/k · A · C],

where z−l/k means the −lth power of any kth root of z. Since the answer
does not depend on the choice of root, this action is well-defined, and
has isotropy group Kkl.

A more general action of H on Lk is:

[C]
(z,A)�→ [z−l1/k · (det A)l2/k · A · C].

However, the total space of the resultant lens space bundle over CP
n

depends only on the integers k and l1 + l2, so we lose no generality in
assuming that l2 = 0. So see this, notice that isotropy group of this
more general action is:

Kkl1l2 =
{

(z, w, A) ∈ U(1) · U(1) · U(n − 1) |
z−l1/k · wl2/k · (det A)l2/k · w ∈ Zk

}
= {(z, w, A) | z−l1 · wk+l2 · (det A)l2 = 1}.

Next observe that SU(n + 1) ⊂ U(n + 1) acts transitively on Mkl1l2 =
U(n + 1)/Kkl1l2 because every coset intersects SU(n + 1). So Mkl1l2 is
diffeomorphic to SU(n + 1)/K ′

kl1l2
, where:

K ′
kl1l2 = SU(n + 1)∩Kkl1l2 = {(z, w, A) ∈ SU(n + 1) | z−l1−l2 ·wk = 1}.

Proof of Proposition 6.4. The Lie algebra of H is h = u(1) · u(n).
The Lie algebra of K is:

k = {diag(tki, tli, B) ∈ u(1) · u(1) · u(n − 1) | t ∈ R}.
We use the bi-invariant metric on g = u(n + 1) defined by 〈A, B〉 =
Real(trace(A · BT )). Arbitrary vectors X ∈ m and A ∈ p look like:

X =




−tli 0 0 · · · 0
0 tki Z1 · · · Zn−1

0 −Z1 0 · · · 0
...

...
...

...
0 −Zn−1 0 · · · 0


, A =




0 W1 · · · Wn

−W 1 0 · · · 0
...

...
...

−Wn 0 · · · 0


,
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where t ∈ R and Wi, Zi ∈ C. Using the shorthand A = {W1, W2, . . . ,
Wn},

[X, A] = {−t(l + k)iW1 + Z1W2 + · · ·
+ Zn−1Wn,−Z1W1 − tliW2, . . . ,−Zn−1W1 − tliWn}.

If we set W1 = W2 = 1, W3 = · · · = Wn = 0, then [X, A] = 0 implies
X = 0. Thus, no nonzero vector in m commutes with A, so Mkl admits
quasi-positive curvature. q.e.d.

Proposition 6.5. The homogeneous space

M = Sp(n + 1)/{diag(z, 1, A) | z ∈ Sp(1), A ∈ Sp(n − 1)}
admits quasi-positive curvature.

M is the total space of a homogeneous S4n−1-bundle over HP
n =

Sp(n+1)/(Sp(1)·Sp(n)). The corresponding action of H = Sp(1)·Sp(n)
is the one whereby p ∈ S4n−1 is sent by (A, q) ∈ H to A · p. Notice that
sending p to A · p · q−1 would yield T 1

HP
n.

Proof. We use the bi-invariant metric on sp(n + 1) defined by
〈A, B〉 = Real(trace(A ·BT )). Arbitrary elements X ∈ m and A ∈ p can
be described as:

X =




0 0 0 · · · 0
0 Y Z1 · · · Zn−1

0 −Z1 0 · · · 0
...

...
...

...
0 −Zn−1 0 · · · 0


, A =




0 W1 · · · Wn

−W 1 0 · · · 0
...

...
...

−Wn 0 · · · 0


,

where Wi, Zi, Y ∈ H with Real(Y ) = 0. Using the shorthand A =
{W1, W2, . . . , Wn}, we have:

[X, A] = {−Y W1 + W2Z1 + · · · + WnZn−1,−W1Z1, . . . ,−W1Zn−1}.
The choice W1 = 1, W2 = · · · = Wn = 0 insures no nonzero vector in m

commutes with A. q.e.d.

Remark 6.6. By Remark 2.1, the subgroup L = {z · I | z ∈
Sp(1)} ⊂ H acts freely and isometrically on M , where I denotes the
identity in Sp(n + 1). L is isomorphic to S3, and the quotient M/S3 =
Sp(1)\Sp(n+1)/Sp(1)·Sp(n−1) inherits quasi-positive curvature. Wilk-
ing proved that M/S3 admits almost-positive curvature.
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7. Normal biquotient metrics

So far we have searched for points of positive curvature on the space
H\((G, gH

l ) × F ), which is diffeomorphic to the homogeneous space
G/K. Most of Wilking’s examples are homogeneous spaces G/K with
bi-quotient metrics of the form:

∆(G)\((G, gH
l ) × (G, gH

l ))/1 × K.(7.1)

More precicely, his metrics on PRTRP
n, PCTCP

n, PHTHP
n, and U(n+

1)/Klk all have this form. Further, his example

SO(2)\SO(2n + 1)/SO(2n − 1)

is a quotient of T 1S2n by a free isometric S1-action, so his metric on
this space also comes from one of the above form. His only example not
coming from a metric of the above form is the bi-quotient Sp(1)\Sp(n+
1)/Sp(1) · Sp(n − 1), mentioned in Remark 6.6.

In this section, we show that these biquotient metrics are isometric
to our metrics.

Proposition 7.1.
The normal biquotient ∆(G)\((G, gH

l )× (G, gH
l ))/1×K is isometric

to the space H\((G, gH
l )×F ), where F has a normal homogeneous metric

and gH
l is defined like gH

l , but with a different choice of t and a different
scaling of the bi-invariant metric g0.

In the proof we use the standard notational convention for biquo-
tient. That is, if A ⊂ G × G, then G//A denotes the orbit space of the

action of A on G defined by g
(a1,a2)∈A�→ a1 · g · a−1

2 . In the special case
that A = {(a1, a2) | a1 ∈ A1, a2 ∈ A2}, we denote G//A as A1\G/A2.

Proof. The equivalent definition of gH
l from Equation (2.2) is:

(G, gH
l ) = ((G, g0) × (H, λ · g0))/H.

The isometry sends [g, h] ∈ ((G, g0) × (H, g0))/H to g · h−1 ∈ (G, gH
l ).

Notice that (G, gH
l ) is left invariant and right H-invariant. Via this

isometry, the left G-action on ((G, g0) × (H, λ · g0))/H acts only on
the first factor as [g, h] a∈G�→ [ag, h], and the right H-action acts only
on the second factor as [g, h] a∈H�→ [g, a−1h]. Using this, the biquotient
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N = ∆(G)\((G, gH
l ) × (G, gH

l ))/1 × K can be re-described as:

{(g, 1, g, k−1) | g ∈ G, k ∈ K}\
((G, g0) × (H, λ · g0) × (G, g0) × (H, λ · g0))/

{(h1, h1, h2, h2) | hi ∈ H}.

The two copies of (G, g0) in the above description of N can be com-
bined using the identity:

(G, (1/2)g0) = G\((G, g0) × (G, g0)).

The isometry sends [a, b] ∈ G\((G, g0)×(G, g0)) to a−1 ·b ∈ (G, (1/2)g0).
Via this isometry, the right G-action on the first factor of G\((G, g0)×
(G, g0)) becomes the following right action of G on (G, (1/2)g0): g

a∈G�→
a−1g. Similarly, the right G-action on the second factor of G\((G, g0)×
(G, g0)) becomes the following right action of G on (G, (1/2)g0): g

a∈G�→
ga. Therefore N can be re-described as:

N = {h−1
1 , 1, k−1}\((G, (1/2)g0) × (H, λ · g0) × (H, λ · g0))/{h2, h1, h2},

which is our notational shorthand for the biquotient:

((G, (1/2)g0) × (H, λ · g0) × (H, λ · g0))//

{((h−1
1 , 1, k−1), (h−1

2 , h−1
1 , h−1

2 )) | k ∈ K, hi ∈ H}.

Next using the isometry of (G, (1/2)g0) × (H, λ · g0) × (H, λ · g0)
defined as (a, b, c) �→ (a−1, b, c−1), we re-describe N as:

N = {h2, 1, h2}\((G, (1/2)g0) × (H, λ · g0) × (H, λ · g0))/{h1, h1, k}.

On the other hand, if F has the normal homogeneous metric F =
(H, λ · g0)/K, then:

H\((G, gH
l ) × F )

= {h2, 1, h2}\((G, g0) × (H, λ · g0) × (H, λ · g0))/{h1, h1, k}.

q.e.d.
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à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa (3) 15 (1961)
179–246, MR 0133083 (24 #A2919), Zbl 0101.14201.

[2] L. Bérard Bergery, Sur certaines fibrations d’espaces homogènes Riemannienes,
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