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HOMOGENEITY OF EQUIFOCAL SUBMANIFOLDS

ULRICH CHRIST

Abstract
Equifocal submanifolds are an extension of the notion of isoparametric sub-
manifolds in Euclidean spaces to symmetric spaces and consequently they
share many of the properties well-known for their isoparametric relatives.
An important step in understanding isoparametric submanifolds was Thor-
bergsson’s proof of their homogeneity in codimension at least two which
in particular solved the classification problem in this case. In this paper
we prove the analogous result for equifocal submanifolds using the general-
ization of Thorbergsson’s result to infinite dimensions due to Heintze and
Liu.

1. Introduction

A closed submanifold M in a Riemannian symmetric space S is
called equifocal (cf. [15]) if its normal bundle νM is globally flat and
abelian and the focal data (i.e., the focal directions and distances) are
invariant under parallel translation in the normal bundle.

In euclidean space S = Rn, equifocal submanifolds are the same as
isoparametric ones. Together with their focal manifolds they form a
large class of interesting spaces which among others contains all flag
manifolds and most symmetric spaces. The study of these submani-
folds has a long history and goes back to Levi-Civita and E. Cartan,
cf. [17] for a detailed historical account. Those of codimension ≥ 3 (if
irreducible and substantial) are homogeneous submanifolds as has been
shown by Thorbergsson [16]. But homogeneous isoparametric subman-
ifolds are well-known: they are the principal orbits of certain orthogo-
nal representations called polar which are closely related to symmetric
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spaces. For codimension 2, however, Thorbergsson’s theorem fails and
the classification is still open (while for codimension 1 there are only
the spheres).

In [15], Terng and Thorbergsson also posed the problem of extending
the result on homogeneity of isoparametric submanifolds in a suitable
way to equifocal ones in simply connected, compact symmetric spaces.
One result in this direction was obtained by M. Brück (cf. [1]) who could
prove that an equifocal submanifold is homogeneous if one of its focal
submanifolds consists of a single point. In the present paper, we provide
an answer to the question of Terng and Thorbergsson:

Theorem. A complete connected irreducible equifocal submanifold
of codimension ≥ 2 in a simply connected compact symmetric space is
homogeneous.

As in the euclidean case, the homogeneous equifocal submanifolds
of a symmetric space S = G/K are well-known: They are orbits of so
called hyperpolar isometric group actions on S which have recently been
classified by Kollross [8]; essentially, the irreducible ones with codimen-
sion ≥ 2 are the principal orbits of subgroups H ⊂ G such that G/H is
a symmetric space as well.

The proof is based on a method due to Terng and Thorbergsson
(cf. [15]): There is a natural Riemannian submersion π : V → S = G/K,
where V is the Hilbert space of L2-curves in the Lie algebra g of G. If
M ⊂ S is equifocal, its preimage or lift M = π−1(M) ⊂ V is an
isoparametric submanifold of V with equal codimension. The theory
of isoparametric submanifolds in euclidean space has been extended to
Hilbert space; in particular is has been shown by Heintze and Liu [5]
that the irreducible ones of codimension ≥ 2 are homogeneous. The
main contribution of the present paper is to show that homogeneity of
M ⊂ V implies homogeneity of M ⊂ G/K.

To obtain this result we have to show that sufficiently many isome-
tries of M preserve the fibration associated to the submersion π. In fact,
through a study of the Lie algebra KM of Killing fields tangent to a lift
M we will see that under slight restrictions on M all one parameter
groups of isometries have this property. This turns out to be true for
arbitrary lifts M , not only for those of equifocal submanifolds.

On V there is an isometric action of the group H1([0, 1], G) of H1-
differentiable paths in G which preserves the fibration. First, we enlarge
the class of the Killing fields induced by this action by algebraically
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similar ones and in particular the parallel ones. We will see that within
this bigger class of Killing fields only those induced by the H1([0, 1], G)-
action can be tangent to a lift and in particular that there are no parallel
Killing fields in KM . In a second step we construct, given a Killing field
tangent to a lift, a sequence converging within KM in a weak sense to
a parallel field. A closer study of this convergence shows that this limit
will be nonzero (which would contradict part one) unless the initial field
is induced by the action of H1([0, 1], G).

The following section contains some preliminary material, in par-
ticular about the submersion π, as well as remarks on notation and
subtleties due to the infinite dimensional context. Moreover, we solve
a first part of the problem by showing that homogeneity of a subman-
ifold of S = G/K is equivalent to the homogeneity of its lift under the
natural submersion G → G/K. In the subsequent sections we procede
with the investigation of the Killing fields tangent to a lift as sketched
above.

The author would like to thank E. Heintze and J. Eschenburg for
many helpful discussions.

2. Preliminaries and notation

Throughout this paper, let G be a Lie group, g denote its Lie algebra
and S = G/K be a simply connected compact symmetric space. We
can assume that G is a simply connected compact semisimple Lie group
equipped with the biinvariant metric induced by the Killing form. Terng
and Thorbergsson (cf. [15]) introduced as an essential tool in the study of
submanifolds in symmetric spaces the following Riemannian submersion
V = L2([0, 1], g) → G. For proofs of all the facts stated below consult
[15] or [7].

Let H1([0, 1], G) denote the group of weakly differentiable paths in
G whose weak derivative g′ is square integrable (with the group struc-
ture given by pointwise multiplication of paths) and ΩG the subgroup
of loops based at the identity of G. The group H1([0, 1], G) acts isomet-
rically on the Hilbert space L2([0, 1], g) via gauge transformations

g ∗ u = gug−1 − g′g−1.

We will frequently denote the isometry induced by a path g simply by g
as well. Restricted to PeG = {g ∈ H1([0, 1], G) | g(0) = e}, this action
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induces a map

PeG −→ L2([0, 1], g), g �→ g−1 ∗ 0 = g−1g′,

which turns out to be an isometry. Composed with the endpoint map
PeG → G, g �→ g(1) its inverse yields the desired Riemannian submer-
sion

π : L2([0, 1], g) −→ Pe(G) −→ G

u = g−1 ∗ 0 �−→ g �−→ g(1).

From this description we see that the fibers of π are precisely the orbits
of ΩG under the above action. Denoting the associated horizontal and
vertical distributions on L2([0, 1], g) by H and V, we see that

V0 =
{

u ∈ L2([0, 1], g)
∣∣∣ ∫ 1

0
u dt = 0

}
and thus

H0 = {u ∈ L2([0, 1], g) |u ≡ const}.
We will therefore frequently not distinguish between H0 and g. The
projection L2([0, 1], g) → H0 is given by uH0 =

∫ 1
0 u dt. Also, a simple

calculation shows that the derivative of the isometry PeG → L2([0, 1], g)
yields an identification of TeΩG = {u ∈ H1([0, 1], g) |u(0) = u(1) = 0}
and V0 given by u �→ u′.

The isometries induced by H1([0, 1], G) preserve the fibration asso-
ciated to π; more precisely, we have the relation

π(g ∗ u) = g(0) π(u) g−1(1),

for g ∈ H1([0, 1], G). Conversely, this also shows that isometries of G
can be lifted to L2([0, 1], g): if ϕ : G → G is given by ϕ(x) = g0 x g−1

1 and
g any curve joining g0 and g1 then the isometry of L2([0, 1], g) induced
by g covers ϕ:

L2([0, 1], g)
g∗.−−−→ L2([0, 1], g)

π

� �π

G
ϕ−−−→ G.

As in finite dimensions there is the usual relation between skew
adjoint operators and isometries on a Hilbert space given by the expo-
nential map, which also in this context is a local diffeomorphism near
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the origin (cf. [9]). Thus it is possible to obtain information about one
parameter groups of isometries via the investigation of Killing fields.
However, it seems to be unknown whether the group of extrinsic isome-
tries of a submanifold in Hilbert space (i. e. the group of isometries on
the Hilbert space preserving the submanifold) is a Lie group as well.
This problem can be circumvented in our situation since in their proof
of homogeneity of isoparametric submanifolds in Hilbert space Heintze
and Liu construct one parameter groups of isometries.

The Killing fields induced by the action of H1([0, 1], G) on L2([0, 1], g)
are given by

Kvx = [v, x] − v′,

where v ∈ H1([0, 1], g) and ′ denotes weak derivative: If gs is a one
parameter family in H1([0, 1], G) with g0 ≡ e then the derivative of
gs ∗ x = Adgs x − g′sg−1

s with respect to s evaluated at s = 0 yields

precisely Kv for v(t) = ∂
∂s

∣∣∣
s=0

gs(t).

We will use the following notation: The natural projection for the
symmetric space S will be denoted by π : G → G/K = S. The symbol
M will always refer to a submanifold of S; a star as in M∗ will indi-
cate the corresponding lift to G via π and the lift to the Hilbert space
L2([0, 1], g) will be called M . Thus we have the following picture:

V
π−→ G

π−→ G/K
∪ ∪ ∪
M M∗ M

where M∗ = π−1(M), M = π−1(M∗) and π, π are the natural submer-
sions.

It is proven in [15] that a submanifold M is equifocal in G/K if and
only if its lift M∗ to G is equifocal which in turn is equivalent to the
fact that the corresponding lift M to L2([0, 1], g) is isoparametric.

We may moreover assume that all manifolds under consideration
are irreducible, i. e. do not split as a product: for isoparametric as well
as equifocal submanifolds such a splitting can be recognized from the
associated Weyl group (cf. [12], [3]) and these groups coincide for M ,
M∗ and M (cf. [15]). In particular, we can assume that M does not
contain a trivial factor, i. e. it does not split as a product containing a
whole factor of S.
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We now consider the situation of the submersion G → G/K starting
with a simple algebraic fact.

Lemma 1. Let G be a group and H ⊂ G × G a subgroup. Let
Hi ⊂ G, i = 1, 2 be the projection of H onto the first resp. second factor
of G × G and H1 = {g ∈ G | (g, e) ∈ H}, H2 = {g ∈ G | (e, g) ∈ H}.
Then H i is a normal subgroup of Hi.

Theorem 2. Let G/K be a simply connected symmetric space of
compact type, (G, K) a symmetric pair and π : G → G/K the canonical
projection. If M is a submanifold of G/K s.th. M∗ = π−1(M) is ex-
trinsically homogenous in G then so is M . The converse holds trivially.

Proof. Let H ⊂ G × G be the connected component of I(M∗), the
group of extrinsic isometries of M∗. Obviously we have e×K ⊂ H and
thus K ⊂ H2 ⊂ H2 ⊂ G.

Since K is a maximal subgroup of G it follows that H2 = G or
H2 = K (if necessary consider only the connected components). In the
first case we have e × G ⊂ H and H is transitive on G, so M∗ = G
and M = G/K. Otherwise we see that since K = H2 is not a normal
subgroup of G the above lemma excludes H2 = G and so we obtain
H2 = K. Thus H ⊂ G × K and so the isometries of M∗ preserve the
fibration G → G/K. q.e.d.

3. Horizontal projection of Killing fields

As mentioned above, we want to show that all Killing fields tangent
to the lift M of an irreducible submanifold M∗ ⊂ G are induced by the
H1([0, 1], G)-action. In this section, we will prove this for the class of
Killing fields of the form

Kx = [v, x] − b,(∗)

for some v, b ∈ L2([0, 1], g). Such a vector field is induced by the action
of H1([0, 1], G) iff v ∈ H1([0, 1], g) and b = v′ and our aim is to show
that only in this case it can be tangent to a lift. Note that M∗ is not
assumed to be equifocal.

Theorem 3. Let M = π−1(M∗) be the lift of a submanifold M∗ ⊂
G. If M∗ does not contain a trivial factor of G then every Killing field
of the form (∗) tangent to M is induced by the action of H1([0, 1], G).
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Informally, the idea is to see towards which adjacent fibers the points
of the standard fiber π−1(e) will be moved by a Killing field K, i.e., to
consider the horizontal projection of K along this fiber. More explicitely,
this horizontal projection can be described by the map

ΠK : ΩG −→ g ∼= H0, ΠK(g) = (g∗K) H0
0 =

∫ 1

0
Adg K(g−1 ∗ 0) dt.

Here, the term g∗K denotes push forward of the vector field K by the
isometry induced by g. Thus, we push forward K from all points of the
standard fiber to the origin and take its horizontal projection to H0.

Clearly, since the isometries induced by ΩG preserve lifts, if K is
tangent to M = π−1(M∗) then so is g∗K and thus Im ΠK is contained
in the horizontal part of the tangent space T0M which we identify with
TeM

∗

Im ΠK ⊂ TeM
∗ ∼= T0M ∩H0.

We state some more facts about the map Π:

(i) The assignment K �→ ΠK is linear.

(ii) The horizontal projection is constant for Killing fields induced by
the action of H1([0, 1], G), since the asscociated one-parameter
group of isometries preserves the fibration.

(iii) ΠK(hg) = Πg∗K(h), in particular (dΠK)g (dRg)e = (dΠg∗K)e,
where Rg denotes right-multiplication with g.

(iv) If Kx = [v, x]− b as above, then (dΠK)e u =
∫ 1
0 [v− b̃, u′] dt for all

u ∈ TeΩG.

Here and below, the symbol ˜ or ˜ denotes integration, e.g., b̃(t) =∫ t
0 b(τ)dτ . To check (iv), we can assume b = 0 by subtracting Kx =

[̃b, x] − b which, by (i) and (ii) above, changes ΠK only by a constant.
But then, if gs is a curve in ΩG with g0 ≡ e

∂

∂s

∣∣∣
s=0

ΠK(gs) =
∫ 1

0

∂

∂s

∣∣∣
s=0

Adgs [v, g−1
s ∗ 0] dt

=
∫ 1

0

[
v,

∂

∂s

∣∣∣
s=0

(g−1
s ∗ 0)

]
dt

=
∫ 1

0

[
v,

∂g′s
∂s

∣∣∣
s=0

]
dt.
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For the moment, we assume G to be simple and Kx = [v, x] − b. In
this situation, we will find a surprising dichotomy: either the projection
ΠK is constant (which is the case if and only if K is induced by the
action of H1([0, 1], G)) or its image is not contained in any proper affine
subspace of g.

Proposition 4. If G is simple and K as above, then Im ΠK is not
contained in any proper affine subspace of g unless v ∈ H1([0, 1], g) and
b = v′.

As an immediate corollary we obtain the above theorem for simple
G: If dimM∗ < dim G then in view of the above dichotomy the relation
span(Im ΠK) ⊂ TeM

∗ �= g implies ΠK ≡ const and so K must be
induced by the H1([0, 1], G)-action.

Proof. As in the calculation above, subtracting an H1([0, 1], G)-
Killing field, we may restrict to the case Kx = [v, x]. Then

(g∗K)x = Adg [v, g−1 ∗ x]
= [Adg v, x] − [Adg v, g ∗ 0],

since Adg(g−1 ∗ x) = g ∗ (g−1 ∗ x) + g′g−1 = x − g ∗ 0 and we obtain

(dΠg∗K)e u =
∫ 1

0
[w, u′] dt with w = w(g) = Adg v − ˜[Adg v, g ∗ 0].

Now, if Im ΠK is contained in some affine subspace of g then there is
a nonzero X ∈ g such that 〈(dΠK)g ug, X〉 = 0 for all g ∈ ΩG and
ug ∈ TgΩG or equivalently

〈(dΠg∗K)e u, X〉 = 0 for all g ∈ ΩG and u ∈ TeΩG.

To put it another way, identifying u ∈ TeΩG with u = u′ ∈ V0 we obtain

0 =
〈∫ 1

0
[w, u] dt, X

〉

= −
∫ 1

0
〈u, [w, X]〉 dt

= −〈u, [w, X]〉L2 for all g ∈ ΩG and u ∈ V0

and thus

[Adg v − ˜[Adg v, g ∗ 0], X] ∈ H0 = g for all g ∈ ΩG.
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Choosing Y ∈ g such that Z := [X, Y ] �= 0 and taking inner products
with Y, we see that for all g ∈ ΩG

〈Adg v − ˜[Adg v, g ∗ 0], Z〉 = const as a function of t ∈ [0, 1], or

〈v,Ad−1
g Z〉 = 〈 ˜[Adg v, g ∗ 0], Z〉 + const.

Since the nontrivial adjoint orbits of G are full, g has a basis of the
form Adhi

Z for suitable hi ∈ G. Now consider loops gi such that
gi|(ε,1−ε) = hi for some ε > 0. Since gi ∗ 0 |(ε,1−ε) = 0 the first term on
the right-hand side above is constant on (ε, 1 − ε) and thus so is v.

q.e.d.

Thus, for simple Lie groups a large class of Killing fields can be seen
not to be tangent to any lift by considering their horizontal projection
along a single fiber. In the semisimple case the situation is a bit more
involved, since a trivial factor cannot be recognized by investigating
only one tangent space. However, from the algebraic form of the Killing
fields under consideration we see that their horizontal projection splits:
if G = G1 × · · · × Gk with Gi simple and gi the Lie algebra of Gi then

Im ΠK = Im ΠK1 × · · · × Im ΠKn ⊂ g1 × · · · × gk,

where Ki(x) = [vi, x]−bi and vi, bi denote the projection to gi of v, b and
ΠKi : Gi → gi is the corresponding horizontal projection. So again in
the situation where M is the lift of M∗ ⊂ G and Kx = [v, x]−b tangent
to M we see from the argument in the simple case that TeM

∗ contains
all the ideals gi such that bi �= v′i. Let gK denote the complement of
these, i. e. the maximal ideal in g for which the projection (v − b̃)gK is
constant.

The following proposition yields Theorem 3 in the general case.

Proposition 5. For every x ∈ M∗ we have (gK)⊥ x ⊂ TxM∗. If
M∗ does not contain a trivial factor, then gK = g and thus b = v′.

Proof. We noted above that (gK)⊥ ⊂ TeM
∗. Now let x ∈ M∗

and g(t) = exp(tX) be a geodesic from e to x. Then g ∗ M is the
lift of M∗x−1 and g∗K is tangent to g ∗ M . So we obtain the relation
(gg∗K)⊥ ⊂ Te(M∗x−1) = (TxM∗)x−1. We will prove that gg∗K = gK .

To see this recall that

(g∗K)x = [Adg v, x] − [Adg v, g ∗ 0] − Adg b.
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Thus to prove that gK ⊂ gg∗K we have to consider the projection onto
gK of

Adg v − ˜[Adg v, g ∗ 0] − Ãdg b

= Adg(v − b̃) − ˜[Adg v, g ∗ 0] − Ãdg b + Adg b̃

Observe that this projection is (weakly) differentiable since (v− b̃)gK =
const. Then deriving the above projection onto gK we obtain using
g ∗ 0 = −X

Adg[X, v − b̃] − [Adg v,−X] − Adg b + Adg[X, b̃] + Adg b ≡ 0.

This proves gK ⊂ gg∗K and the converse inclusion is obtained by ex-
changing the roles of K and g∗K.

The second claim and thus Theorem 3 now follows from Lemma 3.4
in [3], which states that a submanifold of G has a trivial factor if and
only if there is an ideal k ⊂ g such that kx ⊂ TxM∗ for all x ∈ M∗.

q.e.d.

4. Constructing parallel Killing fields

In this section we finish the proof of our main theorem by proving
that only the H1([0, 1], G)-Killing fields can be tangent to a lift contain-
ing no trivial factor. By the results of the previous section, it remains
to show that the linear part has the required form. So we have to prove
the following:

Theorem 6. If M∗ ⊂ G does not contain a trivial factor and Kx =
Ax + b is a Killing field tangent to M = π−1(M∗) then Ax = [v, x] for
some v ∈ L2([0, 1], g).

The strategy for the proof is as follows: First, note that by Theo-
rem 3 in particular there are no parallel Killing fields in KM . We will
associate to a Killing field K ∈ KM and a suitable direction v ∈ V a
sequence Kn ∈ KM which converges to a parallel Killing field K∞ in
a weak sense. This limit is still contained in KM , contradicting Theo-
rem 3 unless K∞ is zero. By a closer examination of this process we
will see that thereto K must be contained in the class of Killing fields
we considered in the previous section, and the proof is complete.
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The suitable topology on the space K is the one induced by the norm
topology on End(V ) and the weak topology on V . Abusing notation,
convergence in this topology will be called weak convergence, denoted
by “⇀”. It is easy to see that KM is closed in this weaker topology:
Kn ⇀ K clearly implies Knx ⇀ Kx (weak convergence in V ) for every
x ∈ V and since the tangent spaces of M are closed, in particular wealky
closed, Knx ∈ TxM for all n implies Kx ∈ TxM .

We now turn to the construction mentioned above. Consider points
v = fX ∈ V , where either:

• ∫ 1
0 fdt = 0, or

• f ≡ const and v is the initial velocity of a closed geodesic in G of
period one.

Since by the above assumptions g = exp(f̃X), where f̃(t) =
∫ t
0 fdτ , is a

loop and we have v = g−1∗0 such points lie on the fiber π−1(e). Clearly,
the same is true for any integer multiple of v and we find sequences
of points in π−1(e) lying on a line and going to infinity. Now, given
K ∈ KM , a fixed direction v = fX as above and loops gn = exp(nf̃X)
consider the sequence

Kn := gn∗K/n.

If Kx = Ax + b then the linear and constant part of Kn are given by

An = Adgn A Ad−1
gn

/n and

bn = Adgn(A(g−1
n ∗ 0) + b)/n

= Adgn(A(fX) + b/n).

Since ΩG acts isometrically on M clearly KM is invariant under the
action of ΩG by push forward and thus Kn ∈ KM . Now, the above for-
mulae show that An → 0 and ‖bn‖ ≤ const. Thus Kn has a subsequence
converging wealky to a parallel Killing field K∞ ∈ KM . By the results
of previous section this is impossible unless K∞ = 0.

The condition Kn ⇀ 0 for all v as above yields an important restric-
tion on the linear part of K:

Proposition 7. If v = fX as above then Kn ⇀ 0 implies
A(fX) ⊂ Im adX .
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Proof. Let gn := exp(nf̃X) and decompose A(fX) = v1 + v2 with
v1 ⊂ ker adX and v2 ⊂ Im adX . Then the constant part of Kn = gn∗K/n
is given by

bn = Adgn(v1 + v2 + b/n)
= v1 + Adgn(v2 + b/n)

since Adgn acts trivially on (curves in) ker adX .

Thus 〈v1, bn〉L2 = ‖v1‖2
L2 + 〈v1, bn〉L2/n → ‖v1‖2

L2 and Kn ⇀ 0
implies v1 = 0. q.e.d.

In other words, we see that the linear part of tangent Killing fields
must have the form A(fX) = [v(fX), X] for some v(fX) ∈ L2([0, 1], g),
if f and X are chosen suitably. In fact, in the case where f ≡ const,
say one, we can drop the assumption that X is the initial velocity of a
closed geodesic of period one: first, scaling X doesn’t affect the above
form. Now, given any Y ∈ g, we can find an approximating sequence Xi

in some abelian subalgebra of g and corresponding to closed geodesics
(of any period). We may assume that ker adXi = ker adY such that
[v(Xi), Xi] = AXi −→ AX implies convergence of v(Xi) modulo ker adY

which is sufficient for our purposes.
Our aim is now to show that v(fX) = fv0 for some fixed v0 ∈

L2([0, 1], g). To this end, we first prove that v(fX) can be chosen inde-
pendently of X:

Proposition 8. Let K be a Killing field in KM and f, X as above.
Then there is a (uniquely determined) operator

v : L2([0, 1]) → L2([0, 1], g)

such that

K(fX) = [v(f), X] − b.

The proof is based on the following lemma:

Lemma 9. If A : g → g is a linear map of the form Ax = [v(x), x]
for some map v : g → g then A ∈ ad(g), i.e., there is a fixed v ∈ g such
that Ax = [v, x].

Proof. Clearly A is skew symmetric and tangent to the adjoint
orbits in g; so the associated one-parameter group etA leaves the orbits
invariant.
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Now if G is simple and of rank ≥ 2 it is known from Dadok (cf. [2])
that Ad(G) is the maximal subgroup of SO(g) acting with these orbits,
thus etA ∈ Ad(G) and so A ∈ ad(g). For g = su(2) the result is trivial
since ad(su(2)) = so(3).

In the semisimple case we can restrict A to the simple ideals of g

and the claim follows. q.e.d.

Proof of Proposition 8. We know that A(fX) = [v(fX), X] for f, X
as required.

First, we treat the case
∫ 1
0 fdt = 0, where we have no condition on

X. Then the result follows immediately applying the lemma to the map
X �→ A(fX)(t) for fixed f and t ∈ [0, 1]. (The expression A(fX)(t)
of course only makes sense for representatives of the L2-curve A(fX).
However, it is easy to see that the resulting v(f) ∈ L2([0, 1], g) does not
depend on this choice.)

For the case where f ≡ const, say one, and X is the initial velocity
of a closed geodesic of periode one we note that any

Uniqueness, linearity and continuity follow since g is semisimple.
q.e.d.

We are now in a position to finish the proof of the main theorem
by showing that the operator v : L2([0, 1]) → L2([0, 1], g) is of the form
v(f) = fv0 for some v0 ∈ L2([0, 1], g) and thus A(fX) = [v0, fX] which
by the previuos section implies the result.

Proof of the main theorem.

Note that the form A(fX) = [v(f), X] is invariant not only under the
action of ΩG but also of H1([0, 1], G): if K ∈ KM and g ∈ H1([0, 1], G)
then g∗K is tangent to g ∗ M , the lift of g(0) M∗ g(1)−1, and Proposi-
tion 8 applies.

To finish the proof we show that v(f) = fv(1) using the action of
H1([0, 1], G). Comparing the linear parts of K and K = g−1∗ K yields

Adg A = A Adg(∗∗)
where

A(fX) = [v(f), X] for some v : L2([0, 1]) → L2([0, 1], g).

It is now convenient to consider the complexified situation. So let t be
a maximal abelian subalgebra of gC and

gC = t +
∑
α∈∆

gα
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be a complex root space decomposition, i.e., [H, Xα] = α(H) Xα for
H ∈ t and Xα ∈ gα for a set of roots ∆.

Fix n ∈ Z, a root α ∈ ∆ and a path g(t) = exp(tH) with H ∈ t,
α(H) = 2πn. Comparing both sides of (∗∗) yields for X ∈ t

[Adg v(1), X] = [v(1), X], since Adg |t = id

and for Xα ∈ gα

[Adg v(1), e2πintXα] = [v(e2πint), Xα], since Adg(Xα) = e2πintXα.

Thus we obtain

Adg v(1) = v(1) mod t

e2πint Adg v(1) = v(e2πint) mod C(gα)

(i.e., agree up to a curve in t resp. C(gα)), where C(gα) denotes the
centralizer of gα. Combining the two relations yields

e2πintv(1) − v(e2πint) =: d ⊂ t + C(gα)

and it remains to show d = 0.

Now varying α ∈ ∆ and using
⋂

α C(gα) = 0 (since g is semisimple)
shows d ⊂ t, and, considering other maximal abelian subalgebras t, the
same argument proves e2πintv(1) = v(e2πint). q.e.d.
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