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ASPHERICITY OF MODULI SPACES VIA
CURVATURE

DANIEL ALLCOCK

Abstract
We show that under suitable conditions a branched cover satisfies the same
upper curvature bounds as its base space. First we do this when the base
space is a metric space satisfying Alexandrov’s curvature condition CAT(κ)
and the branch locus is complete and convex. Then we treat branched covers
of a Riemannian manifold over suitable mutually orthogonal submanifolds.
In neither setting do we require that the branching be locally finite. We ap-
ply our results to hyperplane complements in several Hermitian symmetric
spaces of nonpositive sectional curvature in order to prove that two moduli
spaces arising in algebraic geometry are aspherical. These are the moduli
spaces of the smooth cubic surfaces in CP 3 and of the smooth complex
Enriques surfaces.

1. Introduction

It is well-known that taking branched covers usually introduces neg-
ative curvature. One can see this phenomenon in elementary examples
using Riemann surfaces, and the idea also plays a role in the construc-
tion [8] of exotic manifolds with negative sectional curvature. In this
paper we work in the setting of Alexandrov’s comparison geometry; for
background see [3]. In this setting we will establish the persistence of
upper curvature bounds in branched covers. A simple way to build a
cover Ŷ of a space X̂ branched over ∆ ⊆ X̂ is to take any covering
space Y of X̂ −∆ and define Ŷ = Y ∪∆. We call Ŷ a simple branched
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cover of X̂ over ∆. Our first result, Theorem 2.1, states that if X̂ sat-
isfies Alexandrov’s CAT(κ) condition and ∆ is complete and satisfies a
convexity condition then the natural metric on Ŷ also satisfies CAT(κ).

The question which motivated this investigation is whether the mod-
uli space of smooth cubic surfaces in CP 3 is aspherical (i.e., has con-
tractible universal cover). It is, and our argument also establishes the
analogous result for the moduli space of smooth complex Enriques sur-
faces. To prove these claims, we use the fact that each of these moduli
spaces is known to be covered by a Hermitian symmetric space with
nonpositive sectional curvature, minus an arrangement of complex hy-
perplanes. In each case the hyperplanes have the property that any two
of them are orthogonal wherever they meet. In Section 3 we show that
such a hyperplane complement is aspherical. The result (Theorem 3.1)
is more general because the symmetric space structure is not needed.
Theorem 5.3 of [4] morally contains this result and also suggests a sub-
stantial generalization of it. However, there are some difficulties with
the proof.

If M̂ is the symmetric space and H is the union of the hyperplanes,
then the idea is to apply standard nonpositive curvature techniques like
the Cartan-Hadamard theorem to the universal cover N of M = M̂−H.
The problem is that N is not metrically complete. One can pass to its
metric completion N̂ , but this introduces problems of its own. First
there is the issue of how N and N̂ are related. We resolve this by a simple
trick that shows that the inclusion N → N̂ is a homotopy equivalence.
The second problem is that N̂ is not a manifold and not even locally
compact, so that one cannot use the techniques of Riemannian geometry.
But it is still a metric space and it turns out to satisfy Alexandrov’s
CAT(0) condition locally. It is then easy to show that N and N̂ are
contractible.

In order to understand this curvature bound for N̂ , the reader should
imagine a closed ball B in C

n, equipped with some Riemannian met-
ric, minus the coordinate hyperplanes. The metric completion of the
universal cover of the hyperplane complement can be obtained by first
taking a simple branched cover of B over one hyperplane, then taking a
simple branched cover of this branched cover over (the preimage of) the
second hyperplane, and so on. If the hyperplanes are mutually orthog-
onal and totally geodesic then Theorem 2.1 may be used inductively to
bound the curvature of the iterated branched cover. Observe that the
base space of each branched cover fails to be locally compact except in
the first step. This means that the inductive argument requires a the-
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orem treating branched covers of spaces more general than manifolds.
We also note that the condition of mutual orthogonality in branched
covers has appeared before, for example for the modified Deligne com-
plexes of [5], which are certain metric polyhedral complexes of piecewise
constant curvature. In fact, in this polyhedral setting our results are
already well-established. We need to go beyond the piecewise constant
curvature case for the applications to algebraic geometry.

For the reader’s convenience we recall some definitions from [3]. Dκ

is the diameter of the simply-connected complete surface of constant
sectional curvature κ. A metric space X is Dκ-geodesic if any two
points at distance < Dκ are joined by a geodesic. A subset ∆ of X is
called Dκ-convex if any two points of ∆ at distance < Dκ are joined by
a geodesic of X, and every geodesic joining them lies in ∆. We say that
X is CAT(κ) if it is Dκ-geodesic and any two points on any geodesic
triangle in X with perimeter < 2Dκ satisfy Alexandrov’s inequality. We
write �(γ) for the length of a path γ.

I would like to thank Jim Carlson and Domingo Toledo for their
interest in this work, and for the collaboration [1] that suggested these
problems. I would also like to thank Richard Borcherds, Misha Kapovich
and Bruce Kleiner for helpful conversations, Brian Bowditch for pointing
out an error in an early version, and the referee for suggesting many
improvements. This paper was distributed in preprint form under the
title “Metric curvature of infinite branched covers”.

2. Branched covers

We begin by showing that a branched cover satisfies the same upper
bounds on curvature as its base space. We treat what we call simple
branched covers. The idea is that one removes a closed subset ∆ from
a length space X̂, takes a cover of what is left, and then attaches a
copy of ∆ in the obvious way. More precisely, if Y is any covering of
X = X̂ − ∆, then each component of Y carries a unique length metric
under which projection to X is a local isometry. We take Ŷ = Y ∪ ∆
and write π : Ŷ → X̂ for the obvious projection map. If x, z ∈ Ŷ then
we define

d(x, z) = inf
(
{d(πx, πy) + d(πy, πz) | y ∈ ∆}

∪ {�(γ) | γ is a path in Y joining x and z}
)

.
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One checks that d is a length metric, and we call Ŷ a simple branched
covering of X̂ over ∆.

Theorem 2.1. If X̂ is CAT(κ) and ∆ is complete and Dκ-convex,
then Ŷ is also CAT(κ).

This theorem was stated by Gromov [7, Section 4.4], without the
completeness hypothesis. Without this, Ŷ may fail to be Dκ-geodesic.
It may even happen that Ŷ contains points having no geodesic neigh-
borhoods. On the other hand, every geodesic triangle in Ŷ of perime-
ter < 2Dκ still satisfies CAT(κ). The same concerns arise for Reshet-
nyak’s gluing lemma (see for example [3, p. 347]), to which this result
is very similar.

Proof. We have obtained a proof in full generality, but here we
make the additional assumptions that κ ≤ 0 and X̂ is complete. This
is sufficient for our applications. The idea is to realize Ŷ as a Gromov-
Hausdorff limit of spaces which are obviously CAT(κ). For ε > 0 let
∆ε be the closed ε-neighborhood of ∆, and let Ŷε be obtained by gluing
together a copy of ∆ε and a copy of Y , so that all preimages in Y
of any given point of ∆ε − ∆ are identified. This space has a natural
path metric—in fact it is a simple branched cover of X̂ over ∆ε. It
is obvious that Ŷ is a Gromov-Hausdorff limit of the Ŷε. Since Ŷ is
complete it suffices by [3, Cor. 3.10] to show that each Ŷε is CAT(κ).
Since Ŷε is complete and simply connected, it suffices to show that Ŷε

is locally CAT(κ). If x ∈ Ŷε lies at distance �= ε from ∆ then x admits
a CAT(κ) neighborhood because it has a neighborhood isometric to an
open subset of X̂. Now suppose d(x, ∆) = ε. We let U be the closed
ε/2-ball about the image of x in X̂. Then x admits a neighborhood
which is the union of some number of copies of U , glued together along
U ∩ ∆ε. This neighborhood of x is CAT(κ) by Reshetnyak’s lemma,
since U ∩ ∆ε is complete and is convex in U . q.e.d.

Next we define precisely what we mean by a branched cover which
is locally an iterated branched cover of a manifold over a family of
mutually orthogonal totally geodesic submanifolds. Then we show that
such a branched cover satisfies the same upper bounds on local curvature
as the base manifold. We prove this only in the case of nonpositive
curvature, and indicate what else is needed in the general case.

We say that a finite set {S1, . . . , Sn} of codimension-2 subspaces of
an even-dimensional real vector space A is normal if it is equivalent to
some n of the m coordinate hyperplanes in C

m under an R-linear iso-
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morphism A → C
m. If A is odd-dimensional then we call {S1, . . . , Sn}

normal if it is equivalent to the products with R of some n of the m
coordinate hyperplanes of C

m, in C
m × R. We write S for ∪iSi. Now

suppose H0 is a family of immersed submanifolds of a Riemannian man-
ifold M̂ with union H. We say that H0 is normal at x ∈ M̂ if there is a
set {S1, . . . , Sn} of mutually orthogonal subspaces of TxM̂ that are nor-
mal in the sense above and have the following property. We require that
there be an open ball U about 0 in TxM̂ which the exponential map car-
ries diffeomorphically onto its image V , such that V ∩H = expx(U ∩S),
and such that each expx(Si∩U) is a convex subset of V . We say that H0

is normal if it is normal at each x ∈ M̂ . In this case, each element of H0

is totally geodesic and intersections of elements of H0 are orthogonal.
If x ∈ M̂ then π1(V − H) ∼= π1(U − S) ∼= π1(TxM̂ − S) ∼= Z

n.
The first two isomorphisms are obvious and the last follows from the
fact that TxM̂ − S is a product of n punctured planes and a Euclidean
space. We choose generators σ1, . . . , σn for π1(TxM̂ − S) by taking a
representative for σi to be a simple circular loop that links Si but none
of the other Sj . We say that a connected covering space of TxM̂ − S is
standard if the subgroup of Z

n to which it corresponds is generated by
σd1

1 , . . . , σdn
n for some d1, . . . , dn ∈ Z. We apply the same terminology

to the corresponding cover of V −H. In particular, the universal cover
is standard. An arbitrary covering space of V −H is called standard if
each of its components is.

We write M for M̂ −H. If π : N → M is a covering space then we
say that N is a standard cover of M if for each x ∈ M̂ with V as above,
π : π−1(V −H) → V −H is a standard covering in the sense above. In
this case, we take N̂ to be a certain subset of the metric completion of
N , namely those points which map into M̂ under the extension of π. In
particular, if M̂ is complete then N̂ is the completion of N . We denote
the natural extension N̂ → M̂ of π again by π, and call N̂ a standard
branched covering of M̂ over H0. The simplest example of a standard
branched cover is π : C

n → C
n, carrying (z1, . . . , zn) to (zd1

1 , . . . , zdn
n ).

We have just extended this by making the definition local and allowing
infinite branching.

Theorem 2.2. If a Riemannian manifold M̂ has sectional curva-
ture bounded above by κ ≤ 0 and π : N̂ → M̂ is a standard branched
cover over a normal family H0 of immersed submanifolds of M̂ , then N̂
is locally CAT(κ).



446 daniel allcock

Lemma 2.3. Let X be a length space with metric completion X̂.
Then every open ball in X̂ meets X in a path-connected set.

Proof. Suppose given an open ball U about x ∈ X̂, and y, z ∈ U∩X.
Choose x′ ∈ X near x and join y and z to x′ by paths in X that are
short enough that they are forced to lie in U . q.e.d.

Proof of Theorem 2.2. We will write H̃ for π−1(H). Suppose x̃ ∈ N̂
lies over x ∈ M̂ and let S1, . . . , Sn, U and V be as in the definition of
the normality of H0 at x. Let r be the common radius of U and V .
We write Ti for expx(U ∩ Si) ⊆ V . It is clear that geodesics from x̃ to
nearby points are lifts of radial geodesics from x. By choosing r small
enough we may suppose that π−1(V ) is the disjoint union of the r-balls
about the points of π−1(x). We also choose r small enough so that
V and all smaller balls centered at x are convex. We write Ṽ for the
open r-ball about x̃; Lemma 2.3 assures us that Ṽ − H̃ is a connected
covering space of V − H. Taking generators σ1, . . . , σn for π1(V − H)
as above, the standardness of the cover assures us that the covering
Ṽ −H̃ → V −H corresponds to the subgroup generated by σd1

1 , . . . , σdn
n

for some d1, . . . , dn. We take B (resp. B̃) to be the closed r′-ball about
x (resp. x̃), where we will choose r′ < r later. To show that x admits a
CAT(κ) neighborhood, it suffices to show that B̃ is CAT(κ) under the
metric induced by lengths of paths in B̃. We will prove this by realizing
B̃ as an iterated simple branched cover of B.

For each k = 0, . . . , n, let Gk be the subgroup of G = π1(B −
H) generated by σd1

1 , . . . , σdk
k , σk+1, . . . , σn. We let Bk be the metric

completion of the cover of B −H associated to Gk, equipped with the
natural path metric. Then Bk is the standard branched cover of B,
branched over the Ti ∩ B, with branching indices d1, . . . , dk, 1, . . . , 1.
In particular, B0 = B and Bn = B̃. We write pk for the natural
projection Bk → B obtained by extending the covering map to a map
of metric completions. Because Gk+1 ⊆ Gk, there is a covering map
Bk+1 − p−1

k+1(H) → Bk − p−1
k (H) whose completion qk+1 : Bk+1 → Bk

satisfies pk ◦ qk+1 = pk+1. For each k = 0, . . . , n − 1 we let ∆k =
p−1

k (Tk+1). It is easy to see that qk+1 is a simple branched covering
with branch locus ∆k ⊆ Bk.

In order to use Theorem 2.1 inductively, we will need to know that
∆k is a convex subset of Bk. This requires us to choose r′ small enough
so that the orthogonal projection maps from B to the Ti are well-
behaved. By this we mean that for each i, there is fiberwise starshaped
(about 0) set in the restriction to Ti ∩ B of the normal bundle of Ti,
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which is carried diffeomorphically onto B by the exponential map. Then
each projection B → Ti has image in B ∩Ti, and the projection may be
realized by a deformation retraction along geodesics. The retraction is
distance non-increasing since Ti is totally geodesic and M̂ has sectional
curvature ≤ 0. Because the Tj are orthogonal to Ti for j �= i, the track
of the deformation retraction to Ti starting at a point outside ∪j �=iTj

misses ∪j �=iTj entirely. Therefore the deformation lifts to a deformation
retraction from Bk − p−1

k (∪j �=iTj) to ∆k − p−1
k (∪j �=iTj). This extends

to a distance nonincreasing retraction Bk → ∆k, which we will also call
orthogonal projection.

Now we prove by simultaneous induction that Bk is CAT(κ) and
that ∆k is convex in Bk. The fact that B0 = B is CAT(κ) follows from
its convexity in M̂ and the fact that M̂ has sectional curvature ≤ κ.
The convexity of ∆0 = T1 ∩ B in B follows from the convexity of T1 in
V . Now the inductive step is easy. If Bk is CAT(κ) and ∆k is convex
in Bk then Bk+1 is CAT(κ) by Theorem 2.1. In particular, geodesics
in Bk+1 are unique. Then if γ is a geodesic of Bk+1 with endpoints in
∆k+1, the orthogonal projection to ∆k+1 carries γ to a path of length
≤ �(γ) with the same endpoints. By the uniqueness of geodesics, γ lies
in ∆k+1, so we have proven that ∆k+1 is convex in Bk+1. The theorem
follows by induction. q.e.d.

Remark . We indicate here the additional work required to prove
the theorem when κ > 0. The projection maps B → B∩Tj may increase
distances in the presence of positive curvature. All that is important
for us is that the length of a path in B with endpoints in Tk does not
increase under projection to Tk. Even this is not true, but we only need
the result for paths of length < 2r′. One should choose r′ small enough
so that any path in B of length < 2r′, with endpoints in Tk, grows no
longer under the projection to Tk. Presumably this can be done but I
have not checked the details.

Theorem 2.2 has been widely believed, but this seems to be the first
proof. As mentioned before, it is morally contained in Theorem 5.3
of Charney and Davis [4], who consider locally finite branched covers
of Riemannian manifolds over subsets more complicated than mutually
orthogonal submanifolds. Unfortunately there are gaps in their proof
which I do not know how to bridge. (Lemma 5.7 does not seem to fol-
low from Lemma 5.6. Also, the techniques of [6] referred to in passing
to finish the proof of Theorem 5.3 use properties of Riemannian mani-
folds, like continuous dependence of sufficiently short geodesics on their
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endpoints, that are not established for branched covers.) Nevertheless
their infinitesimal CAT(κ) condition (Condition 3 of Theorem 5.3) is
very natural, and their theorem surely holds and extends to the case of
locally infinite branching.

3. Asphericity of moduli spaces

In this section we solve the problems which motivated our investi-
gation, concerning the asphericity of certain moduli spaces. By using
known models for the moduli spaces of cubic surfaces in CP 3 and of
Enriques surfaces we will show that these spaces have contractible uni-
versal covers. In both cases the main ingredient is the following theorem,
which is a sort of global version of Theorem 2.2.

Theorem 3.1. Let M̂ be a complete simply connected Riemannian
manifold with sectional curvature bounded above by κ ≤ 0. Let H be the
union of a family of complete submanifolds which is normal in the sense
of Section 2. Then the metric completion N̂ of the universal cover N
of M̂ −H is CAT(κ), and N and N̂ are contractible.

We will conform to the notation of Section 2 by writing M for M̂−H,
π for the covering map N → M and its completion, and H̃ for π−1(H) ⊆
N̂ .

Lemma 3.2. Suppose x̃ ∈ N̂ lies over x ∈ M̂ and V is an open
ball about x that meets none of the submanifolds except those passing
through x. If Ṽ is the ball of the same radius about x̃, then Ṽ − H̃ is a
copy of the universal cover of V −H.

Proof. Since Ṽ − H̃ is connected (Lemma 2.3), all we must show is
that π1(V −H) injects into π1(M̂ −H). Writing I for the union in M̂
of the submanifolds that pass through x, we have homomorphisms

π1(V − I) → π1(M̂ −H) → π1(M̂ − I) → π1(V − I) ,

where the first two maps are induced by inclusions and the third by a
retraction of M̂ −I into V −I along geodesics from x. The composition
is obviously the identity map, so the first map is injective. q.e.d.

Lemma 3.3. The inclusion N → N̂ is a weak homotopy equiva-
lence.
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Proof. First we show that for each x̃ ∈ N̂ there is a homotopy of N̂
to itself that (i) carries some neighborhood of x into N , (ii) carries N
into itself, and (iii) fixes each point of N̂ − N that doesn’t get pushed
into N . We write n for the number of submanifolds passing through
x = π(x̃). By the previous lemma there is a closed neighborhood Ṽ of x̃
which is homeomorphic to (Ã)n ×D, where Ã is the metric completion
of the universal cover of a punctured disk and D is a closed Euclidean
ball. It is easy to see that Ã is homeomorphic to a wedge in the plane,
by which we mean

Ã ∼= {(0, 0)} ∪ {(x, y) ∈ R
2 | |y| < x and x2 + y2 ≤ 1} .

There is obviously a homotopy of Ã into Ã−{(0, 0)} which is supported
on a small neighborhood of (0, 0). Using this it is easy to construct a
homotopy of N̂ satisfying (i)–(iii).

Now, if f : Sk → N̂ represents any element of the homotopy group
πk(N̂) then we may cover f(Sk) with finitely many open sets, each
of which is carried into N by some homotopy of N̂ that satisfies (ii)
and (iii). Applying these homotopies one after another shows that f is
homotopic to a map Sk → N . Therefore πk(N) surjects onto πk(N̂).
The same argument applied to balls rather than spheres shows that
πk(N) also injects. (By elaborating this argument one can show that
N → N̂ is actually a homotopy equivalence, but it is easier to prove
Theorem 3.1 first and then apply the contractibility of both spaces.)

q.e.d.

Proof of Theorem 3.1. By Lemma 3.2, N̂ is a standard branched
cover of M̂ over the normal family H0. Since M̂ has sectional curvature
≤ κ ≤ 0, Theorem 2.2 shows that N̂ is locally CAT(κ). Since N is
simply connected, Lemma 3.3 implies that N̂ is also. The Cartan-
Hadamard theorem for Alexandrov spaces [3, p. 193] implies that N̂
is CAT(κ) and hence contractible. In particular, all of its homotopy
groups vanish, and by another application of Lemma 3.3 the same is
true of N . As a manifold all of whose homotopy groups vanish, N is
contractible. q.e.d.

Now we turn to moduli spaces. The set C of cubic surfaces in CP 3

may be identified with CP 19, because there are 20 cubic monomials
in 4 variables. The smooth surfaces form an open subset C0, and it is
known that PGL(4, C) acts properly on C0. Therefore the moduli space
M = C0/PGL(4, C) carries the natural structure of a complex analytic
orbifold. The main result of [1] shows that M is orbifold-isomorphic
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to (CH4 −H)/PΓ, where CH4 is complex hyperbolic 4-space, H is the
union of an infinite family of complex hyperplanes and Γ is a certain
discrete group. To state this more precisely, let ω be a primitive cube
root of unity and let E be the discrete subring Z[ω] of C. Let Λ be the
lattice E5 equipped with the Hermitian inner product

h(x, y) = −x0y0 + x1y1 + · · · + x4y4 .

Then the complex hyperbolic space CH4 is the set of lines in C
5 on

which h is negative-definite, H is the union of the hyperplanes in CH4

which are the orthogonal complements of those r ∈ Λ with h(r, r) = 1,
and Γ is the unitary group of Λ, which is obviously discrete in U(4, 1).

Corollary 3.4. M has contractible orbifold universal cover.

Proof. Since CH4 −H covers (CH4 −H)/PΓ and CH4 has negative
sectional curvature, all we have to prove is the normality of the family
of hyperplanes. Suppose r, r′ ∈ Λ satisfy h(r, r) = h(r′, r′) = 1. If r⊥

meets r′⊥ then r and r′ span a positive-definite sublattice of Λ. This
requires |h(r, r′)| < 1, and since h(r, r′) ∈ E we must have h(r, r′) = 0,
so that r⊥ and r′⊥ meet orthogonally. The local finiteness of the family
of hyperplanes follows from a standard argument: if x ∈ C

5 represents
a point of CH4 and N is given, then there are only finitely many r ∈ Λ
satisfying h(r, r) = 1 and |h(r, x)| ≤ N . q.e.d.

Enriques surfaces are smooth compact complex surfaces that sat-
isfy certain cohomological conditions; see for example Horikawa [9],
[10]. Horikawa’s global Torelli theorem identifies the set of isomorphism
classes of these surfaces with (D − H)/Γ, where D is the Hermitian
symmetric space for O(2, 10), Γ is a certain discrete subgroup and H
is the union of an infinite family of complex hyperplanes. Namikawa
[11] refined Horikawa’s work, and according to the rephrasing of these
results in [2], Γ may be taken to be the isometry group of the lattice L
which is Z

12 equipped with the inner product

x · y = x1y1 + x2y2 − x3y3 − · · · − x12y12 .

A concrete model for D is the set of v ∈ P (L ⊗ C) satisfying v · v = 0
and v · v > 0, and H may be taken to be the union of the (complex)
hyperplanes in D which are the orthogonal complements of the norm
−1 vectors of L. We regard the moduli space of Enriques surfaces as
being the orbifold (D −H)/Γ.
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Corollary 3.5. The moduli space (D − H)/Γ has contractible
orbifold universal cover.

Proof. The proof that hyperplanes that meet do so orthogonally
is the same as before. Local finiteness follows by essentially the same
standard argument: any v ∈ D defines a 2-dimensional positive-definite
subspace V of L⊗R, namely the projection to L⊗R of the complex line it
represents. For each N there are only finitely many r ∈ L with r ·r = −1
having projection to V of norm ≤ N . This proves local finiteness and
hence normality. Then we use the fact that D has nonpositive sectional
curvature and appeal to Theorem 3.1. q.e.d.
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