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PLANE CURVES WITH MINIMAL DISCRIMINANT

D. SIMON AND M. WEIMANN

ABSTRACT. We give lower bounds for the degree of the
discriminant with respect to y of squarefree polynomials
f ∈ K[x, y] over an algebraically closed field of characteris-
tic zero. Depending on the invariants involved in the lower
bound, we give a geometrical characterization of those poly-
nomials having minimal discriminant, and we give an explicit
construction of all such polynomials in many cases. In par-
ticular, we show that irreducible monic polynomials with
minimal discriminant coincide with coordinate polynomials.
We obtain analogous partial results for the case of nonmonic
or reducible polynomials by studying their GL2(K[x])-orbit
and by establishing some combinatorial constraints on their
Newton polygon. Our results suggest some natural exten-
sions of the embedding line theorem of Abhyankar-Moh and
of the Nagata-Coolidge problem to the case of unicuspidal
curves of P1 × P1.

1. Introduction. Let f ∈ K[x, y] be a bivariate polynomial defined
over an algebraically closed field K of characteristic zero. We denote by
dx and dy the respective partial degrees of f with respect to x and y.
The discriminant ∆y(f) of f with respect to y is the polynomial

∆y(f) :=
(−1)dy(dy−1)/2

lcy(f)
Resy(f, ∂yf) ∈ K[x],

where ∂yf and lcy(f), respectively, stand for the partial derivative and
the leading coefficient of f with respect to y, and Resy stands for the
resultant with respect to y. In this note, we study polynomials with
discriminants of low degrees. More precisely, we focus on the following
problem:
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Problem 1.1. Give a lower bound for the degree of the discriminant
in terms of some invariants attached to f and construct all polynomials
whose discriminant reaches this lower bound.

Throughout the paper, we assume that f is primitive (with respect
to y), that is, f has no factor in K[x]. This hypothesis is not restrictive
for our purpose, due to the well-known formula ∆y(uf) = u2dy−2∆y(f)
when u ∈ K[x]. We also assume that f is squarefree with respect to y
in order to avoid zero discriminants.

1.1. The case of monic polynomials. We recall that a polynomial
f ∈ K[x, y] is monic if its leading coefficient with respect to y is
constant.

Theorem 1.2. Let f ∈ K[x, y] be a primitive squarefree polynomial
with r irreducible factors. Then

degx ∆y(f) ≥ dy − r.

If, moreover, f is monic, then the equality holds if and only if there
exists a polynomial automorphism σ = (σx, σy) ∈ Aut(A2) and a
degree r polynomial g ∈ K[y] such that f = g ◦ σy.

Since the group Aut(A2) of automorphisms of A2 is generated by
affine and elementary automorphisms, due to Jung’s theorem [11],
Theorem 1.2 gives a solution of Problem 1.1 for monic polynomials in
terms of dy and r. Moreover, given f monic for which the equality holds,
we can compute the automorphism σ recursively from the Newton
polygon of any irreducible factor of f (remark after Proposition 4.12).

Theorem 1.2 implies, in particular, that, if f is monic and satisfies
degx ∆y(f) = dy − r, then r divides dy. Hence, either its discriminant
is constant, or it satisfies the inequality

degx ∆y(f) ≥
⌈
dy − 1

2

⌉
.

It turns out that this fact still holds for nonmonic polynomials, and
we have, moreover, a complete classification of polynomials for which
equality holds, solving Problem 1.1 in terms of the degree dy. The
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precise result requires some more notation and will be stated later in
this introduction (Theorem 1.7).

Due to the multiplicative property of the discriminant,

∆y(fg) = ±∆y(f)∆y(g)Res(f, g)
2

the inequality in Theorem 1.2 is equivalent to the fact that any irre-
ducible polynomial satisfies the inequality

degx ∆y(f) ≥ dy − 1.

A similar lower bound for irreducible polynomials appears in [5, Propo-
sition 1], under the additional assumption that deg f = dy. The second
part of Theorem 1.2 for r = 1 must be compared with [10, Theorem
4], where the authors showed that if dy coincides with the total degree
of f , then f is a coordinate of C2 if and only if f is a Jacobian polyno-
mial such that degx ∆y(f) = dy − 1. Our result allows the replacement
of the Jacobian hypothesis by irreducibility. Note, further, that being
monic is a weaker condition than deg f = dy.

1.2. Bounds with respect to the genus. If, now, we take into
account the genus g and the degree dy of f , we can refine the lower
bound dy − 1 for irreducible polynomials:

Theorem 1.3. Let f ∈ K[x, y] be a primitive irreducible polynomial.
Then

2g + dy − 1 ≤ degx ∆y(f) ≤ 2dx(dy − 1),

where g stands for the geometric genus of the algebraic curve defined
by f . Moreover, the equality

degx ∆y(f) = 2g + dy − 1

holds if and only if the Zariski closure C ⊂ P1 × P1 of the affine curve
f = 0 is a genus g curve with a unique place supported on the line
x = ∞ and smooth outside this place.

Theorem 1.2 is mainly a consequence of Theorem 1.3, combined with
the embedding line theorem of Abhyankar and Moh [2] that asserts
that every embedding of the line in the affine plane A2 extends to a
polynomial automorphism of the plane. In particular, the remarkable
fact that a monic irreducible polynomial with minimal discriminant
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with respect to y is also monic with minimal discriminant with respect
to x (Theorem 3.3) becomes apparent.

Remark 1.4. Our results are specific to fields of characteristic zero.
For instance, if K has characteristic p, the polynomial f(x, y) =
yp + yk + x is irreducible and satisfies

degx ∆y(f) = k − 1, for all 1 ≤ k < p.

Hence, there is no nontrivial lower bound for the degree of the discrim-
inant if we do not take some care on the degree.

1.3. G-reduction of (nonmonic) minimal polynomials. We say
that f ∈ K[x, y] is minimal if it is irreducible and if its discriminant
reaches the lower bound

degx ∆y(f) = dy − 1.

Theorem 1.2 characterizes monic minimal polynomials: they coincide
with coordinate polynomials, that is, polynomials that form part of
a Hilbert basis of the K-algebra K[x, y]. In the nonmonic case, the
characterization of minimal polynomials is more complicated. Indeed,
the second part of Theorem 1.2 is false in general since Aut(A2)
does not preserve minimality of nonmonic polynomials. An idea is to
introduce other group actions in order to reduce minimal polynomials
to a “canonical form.” Since the discriminant of f coincides with
the discriminant of its homogenization F with respect to y, we may
try to apply a reduction process to F . The multiplicative group
G := GL2(K[x]) acts on the space K[x][Y ] of homogeneous forms in
Y = (Y0 : Y1) with coefficients in K[x] by

(1.1)

(
a b
c d

)
(F ) = F (aY0 + bY1, cY0 + dY1).

The partial degree dY of F , the number r of irreducible factors and the
degree of the discriminant are G-invariant (see Section 2). Group G is,
thus, a good candidate for reducing nonmonic polynomials with small
discriminant to a simpler form, in the same vein as in Theorem 1.2.

We say that F,H ∈ K[x][Y ] are G-equivalent, denoted by F ≡ H,
if there exists a σ ∈ G such that F = σ(H). The action (1.1) induces
by dehomogenization a well-defined action on the set of irreducible
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polynomials in K[x, y] with dy > 1, and, more generally, on the set
of polynomials with no linear factors in y. In particular, we can talk
about G-equivalence of (affine) minimal polynomials of degree dy > 1.

TheG-orbit of a monic minimal polynomial contains many nonmonic
minimal polynomials, and it is natural to ask whether all nonmonic
minimal polynomials arise in such a way. We prove that the answer is
‘no,’ in general, due to the following counterexample.

Theorem 1.5. Let λ ∈ K∗. The polynomial f = x(x − y2)2 −
2λy(x − y2) + λ2 is minimal but is not G-equivalent to a monic
polynomial.

This result will follow as a corollary of the G-reduction Theorem 4.3,
which shows, in particular, that, if the degree c of the leading coefficient
of a minimal polynomial is not the smallest in the G-orbit, then dy
necessarily divides dx − c. The proof is in the spirit of Wightwick’s
results [18] about orbits of Aut(C2). Although we can guess that this
example is not unique, we were not able to find a single other such
example despite a long computer search (see subsection B). Indeed,
it turns out that being simultaneously minimal and G-reduced still
imposes divisibility restrictions on the partial degrees. In particular,
we can show that all minimal polynomials of prime degree dy are G-
equivalent to a monic polynomial, solving Problem 1.1 in that context.
More precisely:

Theorem 1.6. Let f be a minimal polynomial of prime degree dy.
Then, there exists a g ∈ K[y] of degree dy such that

f(x, y) ≡ g(y) + x.

In particular, f is G-equivalent to a monic polynomial, hence, to a
coordinate polynomial.

Theorem 1.6 follows from the fact that minimality implies that either
dy divides dx−c or dx−c and dy are not coprime except for some trivial
cases (Theorem 4.14). The proof relies on a suitable toric embedding
of the curve of f . It is natural to ask whether minimality implies the
stronger fact that either dy divides dx − c or dx − c divides dy. This
property holds for c = 0, a statement equivalent to the Abhyankar-Moh
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theorem [1]. In general, we need to study the singularity of smooth
rational curves of A1×P1 with a unique place along∞×P1, generalizing
the Abhyankar-Moh situation of smooth rational curves of A2 with a
unique place at the infinity of P2.

1.4. Cremona equivalence of minimal polynomials. In a close
context, we can pay attention to the Cremona reduction of minimal
polynomials. Theorem 1.5 shows that it is hopeless to reduce a non-
monic minimal polynomial to a coordinate by successively applying
GL2(K[x]) and Aut(A2). However, both groups can be considered as
subgroups of the Cremona group Bir(A2) of birational transformations
of the plane, and our results suggest asking whether all minimal
polynomials define curves that are Cremona equivalent to a line. We
will prove, for instance, that the nonmonic minimal polynomial in
Theorem 1.5 satisfies this property (Proposition 4.11). This open
problem can be seen as a generalization of the Coolidge-Nagata problem
[13] to unicuspidal curves of P1 × P1.

1.5. A uniform lower bound for reducible polynomials. Our
last result gives a uniform sharp lower bound for the degree of the dis-
criminant of any squarefree (reducible) polynomial that depends only
on dy. Moreover, it establishes a complete classification of polynomi-
als that reach this lower bound. We need to express this classification
in homogeneous coordinates, and we let F ∈ K[x][Y ] stand for the
homogeneous form associated to f of degree degY F = dy.

Theorem 1.7. Let f ∈ K[x, y] be a primitive and squarefree polyno-
mial. Then, f has constant discriminant if and only if F ≡ H for some
H ∈ K[Y ]. Otherwise, we have the inequality

degx ∆y(f) ≥
⌈
dy − 1

2

⌉
,

and the equality holds if and only if one of the following conditions
holds:

(i) dy = 4 and F ≡ Y0Y1(Y
2
0 + (µx + λ)Y0Y1 + Y 2

1 ), with µ, λ ∈ K,
µ ̸= 0.

(ii) dy = 4 and F ≡ Y1(H(Y )+xY 3
1 ), for some cubic form H ∈ K[Y ].

(iii) dy is odd and F ≡ Y1H(Y 2
0 + xY 2

1 , Y
2
1 ) for some form H ∈ K[Y ].

(iv) dy is even and F ≡ H(Y 2
0 + xY 2

1 , Y
2
1 ) for some form H ∈ K[Y ].
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1.6. Organization of the paper. We prove Theorem 1.3 in Sec-
tion 2. The proof is based upon the classical relations between the
valuation of the discriminant and the Milnor numbers of the curve
along the corresponding critical fiber. We prove Theorem 1.2 in Sec-
tion 3, the main ingredients of the proof being Theorem 1.3 combined
with the embedding line theorem of Abhyankar and Moh. In partic-
ular, we show that, for a monic polynomial, minimality with respect
to y is equivalent to minimality with respect to x (Theorem 3.3). In
Section 4, we focus on the GL2(K[x])-orbits of nonmonic minimal poly-
nomials. We first characterize minimal polynomials that minimize the
area of the Newton polygon in their orbit (subsection 4.1, Theorem 4.3).
The counterexample of Theorem 1.5 follows as a corollary. Although
this example is not G-equivalent to a coordinate, we show in subsec-
tion 4.2 that it defines a curve Cremona equivalent to a line, and we
address the question of whether this property holds for all minimal
polynomials. In a close context, we show in subsection 4.3 that the
partial degrees of minimal polynomials obey to some strong divisibility
constraints (Theorem 4.14). Theorem 1.6 follows as a corollary. At
last, we prove Theorem 1.7 in Section 5. The paper concludes with
two appendices on related problems. In Appendix A, we study the
relations between small discriminants with respect to x and small dis-
criminants with respect to y, extending Theorem 3.3 to the nonmonic
case. In Appendix B, we give a parametric characterization of minimal
polynomials and apply our result to the computer algebra challenge of
computing nonmonic minimal polynomials.

2. Bounds for the degree of the discriminant. Proof of
Theorem 1.3. The upper bound in Theorem 1.3 for the degree of
the discriminant follows from classical results regarding the partial
degrees of discriminants of homogeneous forms with indeterminate
coefficients. The lower bound follows by studying the relations between
the vanishing order of the discriminant at infinity and the singularities
of the curve of f .

We recall that in all of the sequel, f is assumed to be primitive,
hence with no factors in K[x]. This assumption is not restrictive for
our purpose, due to the well-known formula

∆y(uf) = u2dy−2∆y(f)

when u ∈ K[x].
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2.1. Bihomogenization. Let X = (X0, X1) and Y = (Y0, Y1) be
two pairs of variables, and let F ∈ K[X,Y ] be the bihomogenized
polynomial of f

F := Xdx
1 Y

dy

1 f

(
X0

X1
,
Y0

Y1

)
.

It is homogeneous of degree dX = dx in X and of degree dY = dy in Y .
We define the discriminant of F with respect to Y by

∆Y (F ) :=
(−1)dY (dY −1)/2

ddY −2
Y

ResY (∂Y0F, ∂Y1F ).

In the literature, several normalizations exist concerning the sign of
this discriminant; however, these considerations have no impact here,
where we are only interested in its degree. The present normalization
satisfies the relation

∆Y (F )(x, 1) = ∆y(f)(x).

The polynomial ∆Y (F ) is homogeneous of degree 2dy − 2 in the
coefficients of F , which vanishes if and only if F is not squarefree with
respect to Y . In our situation, it follows that ∆Y (F ) is a homogeneous
polynomial in X of total degree

degX ∆Y (F ) = 2dX(dY − 1) = 2dx(dy − 1).

We obtain the following relation

degx ∆y(f) = degX ∆Y (F )− ord∞ ∆Y (F ),

where ord∞ stands for the vanishing order at ∞ := (1 : 0) ∈ P1. The
upper bound in Theorem 1.3 follows. In order to get the lower bound,
an upper bound is necessary for ord∞ ∆Y (F ). Let

C ⊂ P1 × P1

be the curve F = 0. It coincides by construction with the Zariski
closure of the affine curve f = 0 in the product of projective spaces
P1 × P1. For a point α ∈ P1, we denote by

Zα := C ∩ (X = α)

the set theoretical intersection of C with the “vertical line” X = α. It
is zero-dimensional since, otherwise, F would have a linear factor in X,
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contradicting the primitivity assumption on f . Moreover, we have

Card(Zα) ≤ dY ,

with strict inequality if and only if ∆Y (F )(α) = 0, that is, if and only if
F (α, Y ) is not squarefree. In order to understand the order of vanishing
of ∆Y (F ) at α, we need to introduce some classical local invariants of
the curve C.

2.2. The ramification number. Let p ∈ C. A branch of C at p is
an irreducible analytic component of the germ of curve (C, p).

Definition 2.1. The ramification number of C over α ∈ P1 is defined
as

rα := dy −
∑
p∈Zα

np,

where np stands for the number of branches of C at p.

In other words, the ramification number measures the defect to the
expected number dY of branches of C along the vertical line X = α. It
is also equal to the sum

∑
(eβ − 1) over all places β of C over α, where

eβ stands for the ramification index of β.

2.3. The delta invariant. Let B be a branch. The local ring OB

has finite index in its integral closure OB. The quotient ring is a finite-
dimensional vector space over K, whose dimension

δ(B) := dimK OB/OB

is called the delta invariant of B. More generally, we define the delta
invariant of C at p as the nonnegative integer

δp(C) :=
∑
i

δp(Bi) +
∑
i<j

(Bi ·Bj)p,

where the Bi’s run over the branches of C at p, and where (Bi · Bj)p
stands for the intersection multiplicity at p of the curves Bi and Bj . In
some sense, the delta invariant δp(C) measures the complexity of the
singularity of C at p. In particular, we have δp(C) = 0 if and only if C
is smooth at p.
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Definition 2.2. The delta invariant of C over α ∈ P1 is

δα :=
∑
p∈Zα

δp(C).

The integer δα thus measures the complexity of all singularities of C
that lie over α.

2.4. PSL2-invariance of the discriminant. The multiplicative group
GL2(K[x]) of 2×2 invertible matrices with coefficients in K[x] acts nat-
urally on the space K[x][Y ] of homogeneous forms in Y = (Y0 : Y1) with
coefficients in K[x] by

(2.1)

(
a b
c d

)
(F ) = F (aY0 + bY1, cY0 + dY1).

This action preserves the degree in Y and, for τ ∈ GL2(K[x]), we have

(2.2) ∆Y (τ(F )) = det(τ)dY (dY −1)∆Y (F ),

so that the discriminant is PSL2(K[x])-invariant and the degree of
the discriminant is GL2(K[x])-invariant. This action also preserves the
irreducibility. It induces by dehomogenization a well-defined action on
the set of irreducible polynomials in K[x, y] with dy > 1, and, more
generally, on the set of polynomials with no linear factors in y. The
corresponding formula is

(2.3)

(
a b
c d

)
(f) = (cy + d)dyf

(
x,

ay + b

cy + d

)
.

We study in more detail the action of GL2(K[x]) in subsection 4.1.

2.5. Vanishing order of the discriminant. For α = (α0 : α1) ∈ P1

and H ∈ K[X0 : X1] a homogeneous form, the vanishing order ordα H
of H at α is the highest power of α0X1 − α1X0 that divides H.
The vanishing order at α ̸= ∞ coincides with the usual valuation
of the dehomogenization of H at x − α. The vanishing order of
the discriminant is related to the ramification degree and the delta
invariant, due to the following key proposition:
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Proposition 2.3. Let α ∈ P1, and let F ∈ K[X,Y ] be a bihomogeneous
form with no factors in K[X]. We have the equality

ordα ∆Y (F ) = rα + 2δα.

In particular, we have

degx ∆y(f) = 2dx(dy − 1)− 2δ∞ − r∞.

Proof. Up to a change of coordinates of P1 and, without loss of
generality, we can assume that α = (0 : 1), and we will simply write
ord0 for ord(0:1). Note first that ord0 ∆Y (F ) = ord0 ∆y(f). Since K
has infinite cardinality, there exists a β ∈ K such that f(0, β) ̸= 0. For
such a β, the leading coefficient with respect to y of the transformed
polynomial ydyf(x, β + 1/y) is a unit modulo x. Since by (2.2) the
discriminant is invariant under PSL2(K), we can, thus, assume that the
leading coefficient of f with respect to y is a unit modulo x, meaning
that the point (0,∞) does not belong to C. In such a case, Hensel’s
lemma ensures that we have a unique factorization

f = u
∏
p∈Z0

fp ∈ K[[x]][y]

where u ∈ K[[x]] is a unit and where fp ∈ K[[x]][y] is a monic polynomial
giving the equation of the germ of curve (C, p). Note that fp is
not necessarily irreducible. By the well-known multiplicative relations
between discriminants and resultants, we have

∆y(f) = ±u2dy−2
∏
p∈Z0

∆fp

∏
p ̸=q

Resy(fp, fq)
2

where Resy stands for the resultant with respect to y. The roots of
fp(0, y) and fq(0, y) are distinct by assumption; thus, the resultant
Res(fp, fq) is a unit in K[[x]]. Hence,

ord0 ∆y(f) =
∑
p∈Z0

ord0 ∆y(fp).

The polynomial fp is monic with respect to y − yp and f(0, y) =
(y−yp)

dp , where dp stands for the degree in y of fp. Such a polynomial
is said to be distinguished with respect to y − yp (or a Weierstrass
polynomial) and has the property that

ord0 ∆y(fp) = (C · Cy)p,
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where Cy stands for the polar curve ∂yf = 0. Now, by Teissier’s lemma
[16, Chapter II, Proposition 1.2], we have

(C · Cy)p = µp(C) + dp − 1,

where µp stands for the Milnor number of C at p, that is,

µp(C) := (Cx · Cy)p,

with Cx the polar curve ∂xf = 0. The Milnor number and the delta
invariant of a germ of curve are related by the Milnor-Jung formula
[17, Theorem 6.5.9]

µp(C) = 2δp(C)− np(C) + 1,

where np(C) stands for the number of branches of C at p. Finally, we
obtain:

ord0 ∆y(f) =
∑
p∈Z0

(2δp(C)− np(C) + dp)

Proposition 2.3 then follows from equality
∑

p dp = dy. �

2.6. Adjunction formula. Let C be an irreducible algebraic curve
on a smooth complete algebraic surface. We denote by pa(C) =

dimH0(C,ΩC) the arithmetic genus of C and by g(C) = dimH0(C̃,ΩC̃)
its geometric genus, where ΩC and ΩC̃ stand, respectively, for the
canonical sheaves of C and of its normalization C̃. The adjunction
formula measures the difference between both integers, namely,

(2.4) pa(C) = g(C) +
∑

p∈Sing(C)

δp(C),

see, for instance, [3, subsection 2.11]. This formula generalizes the
famous Plücker formula that computes the geometric genus of a pro-
jective plane curve with ordinary singularities. We deduce the following
bound for the valuation of the discriminant:

Proposition 2.4. Let α ∈ P1, and let F ∈ K[X,Y ] be an irreducible
bihomogeneous polynomial of partial degree dY > 0. Let g be the
geometric genus of the curve C ⊂ P1 × P1 defined by F = 0. We
have the inequality

ordα ∆Y (F ) ≤ (2dX − 1)(dY − 1)− 2g.
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Moreover, equality holds if and only if C has a unique place on the line
X = α and is smooth outside this place.

Proof. Since C has at least one branch along the line X = α,
the ramification number rα is bounded above by dy − 1. Hence,
Proposition 2.3 implies that

ordα ∆Y (F ) ≤ 2
∑

p∈Sing(C)

δp(C) + dy − 1.

It is well known that a curve C ⊂ P1×P1, defined by a bihomogeneous
polynomial of bidegree (dx, dy), has arithmetic genus

pa(C) = (dx − 1)(dy − 1)

(see for instance [8], subsection 4.4). The upper bound of Proposi-
tion 2.4 then follows from the adjunction formula (2.4). Equality holds
in Proposition 2.4 if and only if both invariants δα and rα are maximal
once the genus is fixed. This is equivalent to the equalities

δα =
∑

p∈Sing(C)

δp(C) and rα = dy − 1.

The first equality is equivalent to δβ = 0 for all β ̸= α, meaning
geometrically that C is smooth outside the line X = α. The second
equality is equivalent to the fact that C has a unique branch along this
line. �

Proof of Theorem 1.3. Theorem 1.3 follows by combining the equal-
ity

degx ∆y(f) = degX ∆Y (F )− ord∞ ∆Y (F )

with the inequality of Proposition 2.4. �

Corollary 2.5. Let f ∈ K[x, y] be an irreducible polynomial of partial
degree dy > 0. Then

degx ∆y(f) ≥ dy − 1,

and equality holds if and only if the curve C ⊂ P1×P1 is rational, with
a unique place over the line x = ∞, and smooth outside this place.
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2.7. Almost minimal discriminants. Due to parity, we can also
give a geometrical characterization of polynomials with an “almost
minimal” discriminant, that is, for which equality degx ∆(f) = dy
holds.

Corollary 2.6. Let f ∈ K[x, y] be irreducible. Then, equality

degx ∆y(f) = dy

holds if and only if the closed curve C ⊂ P1×P1 defined by f is rational,
with two places over the line x = ∞ and smooth outside these places.

Proof. From Proposition 2.3, we have degx ∆y(f) = dy if and only
if

dy = 2dx(dy − 1)− 2δ∞ − r∞.

Since δ∞ ≤ (dx − 1)(dy − 1) by the adjunction formula, it follows that
r∞ ≥ dy − 2. But we have r∞ ≤ dy − 1 and equality cannot hold
for the reason of parity. Hence, the only solution is r∞ = dy − 2 and
δ∞ = (dx − 1)(dy − 1). This means exactly that C is rational with two
places over the line x = ∞ and smooth outside of these two places. �

3. Classification of minimal monic polynomials. Proof of
Theorem 1.2.

Definition 3.1. We say that f ∈ K[x, y] is minimal (with respect to
y) if it is irreducible and satisfies the equality degx ∆y(f) = dy − 1.

Definition 3.2. We say that f ∈ K[x, y] is monic with respect
to y (respectively, to x) if its leading coefficient with respect to y
(respectively, to x) is constant. Caution must be used since in the
literature this terminology often refers to polynomials with a leading
coefficient equal to 1.

3.1. Characterization of monic minimal polynomial.

Theorem 3.3. Let f ∈ K[x, y] be a nonconstant irreducible bivariate
polynomial. The following assertions are equivalent :
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(a) dy = 0, or degx ∆y(f) = dy − 1, and f is monic with respect to
y.

(b) dx = 0, or degy ∆x(f) = dx − 1, and f is monic with respect to
x.

(c) The affine curve f = 0 is smooth rational, and has a unique
place at infinity of P2.

(d) There exists σ ∈ Aut(A2) such that f ◦ σ = y.

Due to Jung’s theorem [11], we have an explicit description of the
group Aut(A2) of polynomial automorphisms of the plane, namely,
it is generated by the transformations (x, y) → (y, x) and (x, y) →
(x, λy + p(x)) with λ ∈ K∗ and p ∈ K[x]. Hence, Theorem 3.3 gives
a complete and explicit description of all minimal monic polynomials.
Note the remarkable fact that, for monic polynomials, minimality with
respect to y is equivalent to minimality with respect to x. This
symmetry can be extended to nonmonic polynomials by taking into
account the number of roots of the leading coefficients, see Appendix A.

Proof.

(a) ⇒ (b). If dx = 0, the assertion is trivial. If dy = 0, then, by
the irreducibility assumption, we have f = ax + b for some a ∈ K∗

and b ∈ K so that (b) also holds trivially. Suppose now that dy > 0
and dx > 0. By Theorem 1.3, the curve C ⊂ P1 × P1 defined by f
has a unique place p on the line x = ∞ and is smooth outside of this
place. Since f must be monic with respect to y and dx > 0, the curve
C intersects the line y = ∞ at the unique point (∞,∞). This forces
equality p = (∞,∞). Hence, C is rational with a unique place over
the line y = ∞ and smooth outside of this line. Thus, f has a minimal
discriminant with respect to x by Theorem 1.3. Since C has a unique
place on the divisor at infinity

B := P1 × P1 \ A2,

standard arguments (see Lemma 4.2) ensure that the Newton polygon
of f has an edge that connects the points (dx, 0) and (0, dy). In
particular, f is necessarily monic with respect to x.

(b) ⇒ (a). Follows by the symmetric roles played by the variables x
and y.
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(a) ⇔ (c). If dy = 0 or dx = 0, then the result is trivial. Suppose
now that dx and dy are positive. We just saw that this is equivalent
to the fact that C is rational, with (∞,∞) as a unique place on the
divisor at infinity B := P1 × P1 \ A2 and smooth outside of this place.
The result then follows from the fact that the number of places at the
infinity of P2 is equal to the number of places on the boundary B of
P1 × P1.

(c) ⇔ (d). This is an immediate consequence of the embedding line
theorem [2] (also, see [15]). �

3.2. The monic reducible case. Proof of Theorem 1.2.

Proposition 3.4. Let g, h ∈ K[x, y] be two monic minimal polynomi-
als. Then

Resy(g, h) ∈ K∗ ⇐⇒ h = µg + λ

for some nonzero constants µ, λ ∈ K∗.

Proof. We have Resy(g, h) ∈ K∗ if and only if the curves C1, C2 ⊂
P1×P1 respectively defined by g and h do not intersect in the open set

A1 × P1. Let σ ∈ Aut(A2), and let g̃ = g ◦ σ and h̃ = h ◦ σ. Assume
that degy g̃ > 0. Since g is assumed to be monic minimal, so is g̃ by

Theorem 3.3. It follows that the respective curves C̃1 and C̃2 of g̃ and

h̃ do not intersect in A1 × {∞}. Since C1 and C2 do not intersect in

A2, by assumption, the curves C̃1 and C̃2 cannot intersect in A2 since

σ is an automorphism of the plane. Hence, C̃1 and C̃2 do not intersect
in A1 × P1, that is,

(3.1) Resy(g̃, h̃) ∈ K∗.

By Theorem 3.3, there exists a σ ∈ Aut(A2) such that g̃ = y. Combined

with (3.1), this implies that h̃(x, 0) ∈ K∗. Since h̃ is a coordinate

polynomial by Theorem 3.3, it is irreducible, as well as h̃(x, y)−h̃(x, 0),

forcing the equality degy h̃ = 1. Since h is monic, so is h̃, and the

condition h̃(x, 0) ∈ K∗ implies that

h̃ = µy + λ = µg̃ + λ

for some constant µ, λ ∈ K∗. The result follows by applying σ−1. �
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Proof of Theorem 1.2. Let f be a monic squarefree polynomial with
r irreducible factors f1, . . . , fr of respective degrees d1, . . . , dr. Corol-
lary 2.5 combined with the multiplicative properties of the discriminant
gives the inequality

degy(∆y(f)) =
r∑

i=1

degy(∆y(fi)) +
r∑

i ̸=j

degy(Resy(fi, fj))

≥
r∑

i=1

(di − 1) ≥ dy − r.

Moreover, equality holds if and only if all factors fi are minimal and
satisfy Resy(fi, fj) ∈ K∗ for all i ̸= j. If f is monic, all of its factors are
also monic. We conclude, due to Theorem 3.3 and Proposition 3.4, that
there exists an automorphism σ ∈ Aut(K2) such that f ◦σ is a degree r
univariate polynomial. Note that r automatically divides dy. �

4. GL2(K[x])-orbits of minimal polynomials. We saw that monic
minimal polynomials are particularly easy to describe and construct
since they coincide with coordinate polynomials. What can be said for
nonmonic minimal polynomials? Due to relation (2.2), a simple way
to produce nonmonic minimal polynomials is to let G := GL2(K[x])
act on a monic minimal polynomial. It is natural to ask whether all
nonmonic minimal polynomials arise in such a way. We prove here that
the answer is ‘no,’ a counterexample being given by

f = x(x− y2)2 − 2λy(x− y2) + λ2

(Theorem 1.5 of the introduction). However, we will show that, if we
assume that dy is prime, then the answer is ‘yes’ (Theorem 1.6). Both
results will follow from divisibility constraints on the partial degrees of
a minimal polynomial (Theorems 4.3 and 4.14).

Definition 4.1. Let f, g ∈ K[x, y] be two irreducible polynomials with
partial degrees degy f > 1 and degy g > 1. We say that f and g are
G-equivalent, denoted by f ≡ g, if there exists a σ ∈ G such that
f = σ(g), the action of σ being defined in (2.1).

4.1. G-reduction of minimal polynomials. Proof of Theorem
1.5. In this subsection, we focus on the G-reduction of minimal poly-
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nomials: what is the ‘simplest’ form of a polynomial in the G-orbit of
one which is minimal?

4.1.1. Newton polygon. We define the generic Newton polygon of
f ∈ K[x, y] as the convex hull

P (f) := Conv
(
(0, 0) ∪ (0, dy) ∪ Supp(f)

)
,

where Supp(f) stands for the support of f , i.e., the set of exponents that
appear in its monomial expansion. It is well known that the edges of the
generic polygon that do not pass through the origin give information
about the singularities of f at infinity. In our context, we have the
following lemma:

Lemma 4.2. Suppose that f is minimal. Then

P (f) := Conv
(
(0, 0), (0, dy), (b, dy), (a, 0)

)
for some integers a, b.

Proof. Since f has a unique place along x = ∞, the claim follows
from the Newton-Puiseux factorization theorem applied along the line
x = ∞. See, for instance, [4, Chapter 6]. �

The integers a = a(f) and b = b(f) of Lemma 4.2 coincide with the
respective degrees in x of the constant and leading coefficients of f with
respect to y. Due to Lemma 4.2, we have the relation

dx = max(a, b)

for any minimal polynomial f , and we define the integer c = c(f) as

c := min(a, b).

We say that f is in normal position if b ≤ a, that is, if (dx, c) = (a, b).

4.1.2. Reduced minimal polynomials. We can now state our main
result about G-reduction of minimal polynomials. Given n : K[x, y] →
Q+ and f ∈ K[x, y], we define

nmin(f) := inf{n(g), g ≡ f}.
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Figure 1. The generic Newton polygons of a minimal polynomial in normal
and non normal position.

Theorem 4.3. Let f be a minimal polynomial with parameters (dy, dx, c).
Denote by V the Euclidean area of P (f). Suppose that dy ≥ 2. Then,
the following assertions are equivalent :

(i) V = Vmin;
(ii) dx = dx,min and c = cmin;
(iii) dy does not divide dx − c.

Definition 4.4. We say that f is reduced if it is minimal and satisfies
one of the equivalent conditions of Theorem 4.3.

The remaining part of this subsection is dedicated to the proof of
Theorem 4.3.

4.1.3. The characteristic polynomial. It turns out that Newton-
Puiseux theorem gives strong information about the edge polynomial
of f attached to the right hand side of P (f), namely, we have:

Lemma 4.5. Suppose that f is minimal with parameters (dy, a, b).
Then

(4.1) f(x, y) = xb(αyp + βxq)n +
∑
j≤pn

pi+qj<pqn+np

cijx
iyj ,

where p ∈ N∗ and q ∈ Z are coprime integers such that

(4.2) pn = dy, qn = a− b,
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where α, β ∈ K∗. We call the polynomial f∞ := (αyp + βxq)n the
characteristic polynomial of f at x = ∞.

Proof. By Corollary 2.5, the Zariski closure in P1 × P1 of the curve
defined by f has a unique place along the line x = ∞. Thus, it follows
once again from the Newton-Puiseux theorem applied along the line
x = ∞ that the edge polynomial attached to the right hand edge of
P (f) is of the form xbg(x, y), where g is the power of an irreducible
quasi-homogeneous polynomial [4, Chapter 6]. �

Corollary 4.6. If V = Vmin, then dy does not divide dx − c.

Proof. By Lemma 4.7 below, the parameters (dx, dy, c, V ) are invari-
ant under the inversion τ , while the parameters (a, b) are permuted.
Hence, without loss of generality, we can suppose that f is in normal
position, that is, (dx, c) = (a, b). By (4.2), we get that q ≥ 0, and that
dy divides dx − c if and only if p = 1. In such a case, the polynomial

g(x, y) := f(x, y − β/αxq)

satisfies b(g) = b(f) and a(g) < a(f). Since g is equivalent to f , it is
also minimal of partial degree dy, and we deduce from Lemma 4.2 that

V (g) =
dy(a(g) + b(g))

2
< V (f) =

dy(a(f) + b(f))

2
.

The corollary follows. �

4.1.4. Basic transformations. We first study the behavior of the
parameters dx and c under the inversion and the polynomial De Jon-
quières transformations. We define the inversion τ ∈ G by

τ(f) := ydyf(x, 1/y).

We have the following, obvious lemma:

Lemma 4.7. Let f ∈ K[x, y] not be divisible by y. The parameters dy,
dx, c are invariant by τ , and parameters a and b are permuted.

Proof. It is straightforward to verify that dy(g) < dy(f) if and only
if f(x, y) = ykh(x, y) with k > 0, which is excluded by hypothesis. The
remaining part of the lemma is straightforward. �
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Let U ⊂ G stand for the polynomial De Jonquières subgroup of G,
that is, the subgroup of transformations σ of type

σ(f) : (x, y) 7−→ f(x, λy + h(x)),

where λ ∈ K∗ and h ∈ K[x]. We then define deg(σ) := deg(h), with
the convention deg(0) = 0. If σ is a homothety, that is, if h = 0, then
the Newton polygon and all of the parameters of f and σ(f) obviously
coincide. Otherwise, we obtain:

Lemma 4.8. Let f be a minimal polynomial of degree dx > 0, and let
σ ∈ U not be a homothety. Let g = σ(f). Then:

(i) If f is in normal position and dy does not divide dx − c, then

dx(g) = max(c(f) + dy(f) deg σ, dx(f)) and c(g) = c(f).

(ii) If f is not in normal position, then

dx(g) = dx(f) + dy(f) deg σ and c(g) = dx(f).

In both cases, g is in normal position.

Proof. We write σ(f) = f(x, λy + µxk + r(x)), with λ, µ ∈ K∗,
k = deg σ ≥ 0 and deg r < k, and we write f =

∑
cijx

iyj . We have

(4.3) g(x, 0) = f(x, µxk + r(x)) =
∑

i+kj=M

cijµ
jxi+kj +R(x),

where
M := max

(i,j)∈Supp(f)
(i+ kj) and degR < M.

Since the line i + kj = 0 has negative slope −1/k (vertical if k = 0),
Lemma 4.2 forces M to be reached at one of the two vertices (a(f), 0)
or (b(f), dy) of Nf , forcing the equality

M = max(a(f), b(f) + kdy).

Suppose that f is not in normal position. Then, a(f) < b(f), and
M = b(f) + kdy is reached at the unique point (b(f), dy) of Nf . Thus,
there is a unique monomial in (4.3) with maximal degree. This forces
the equality

a(g) := degx(g(x, 0)) = b(f) + kdy.
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On the other hand, it is clear that, for any f , we have

lcy(g) = λdy lcy(f).

In particular, b(g) = b(f) = a(g) − kdy ≤ a(g), forcing equality
(a(g), b(g)) = (dx(g), c(g)). Since f is not in normal position, we have
(a(f), b(f)) = (c(f), dx(f)). Claim (ii) follows.

Suppose now that f is in normal position and that dy does not divide
dx − c. In particular, we have a(f) ̸= b(f) + kdy, so that, once again,
M is reached at a unique point of Nf , forcing equality

a(g) := degx(g(x, 0)) = max(b(f) + kdy, a(f)).

Since b(g) = b(f) ≤ a(g), we have (a(g), b(g)) = (dx(g), c(g)). Since f
is in normal position, we have (a(f), b(f)) = (dx(f), c(f)). Claim (i)
follows. �

4.1.5. Decomposition of GL2(K[x]). Let V := GL2(K) ⊂ G. It
is well known that GL2(K[x]) is the amalgamated free product of the
subgroups U and V along their intersections [14]: every element of
GL2(K[x]) can be uniquely written as a finite alternating product of
elements of U and V , with no elements in U ∩ V , except possibly the
first or last factor. On the other hand, it is a classical fact that V is
generated by translations

y −→ y + λ,

homotheties
y −→ λy,

λ ∈ K∗,

and the inversion τ . Since translations and homotheties lie in U ∩ V ,
it follows that any transformation σ ∈ G can be decomposed as an
alternate product

(4.4) σ = σnτσn−1τ · · ·σ2τσ1,

with σi ∈ U for all i. We can assume, moreover, that σi /∈ U ∩ V ,
except possibly for i = 1 or i = n, that is,

deg σi > 0 for all i = 2, . . . , n− 1.
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Now, let σ ∈ G have decomposition (4.4), and let f ∈ K[x, y]. We
introduce the notation

f1 = σ1(f) and fi = (σiτ)(fi−1), i = 2, . . . , n,

and we write, for short, di = dx(fi) and ci = c(fi). The following
proposition must be compared to [18], where the author considers the
behavior of the total degree of a bivariate polynomial under the action
of Aut(A2).

Proposition 4.9. Let f be a minimal polynomial in normal position
such that dy does not divide dx − c, and let σ ∈ G. With the notation
introduced before, we have

dx ≤ d1 < d2 < · · · < dn−1 ≤ dn

and

c = c1 < c2 < · · · < cn−1 ≤ cn.

Moreover, dy does not divide dn − cn if and only if (dn, cn) = (dx, c).

Proof. By Lemma 4.8, the proposition is true if n = 1. We have
a(f) > b(f) by assumption, so that a(f1) > b(f1) by Lemma 4.8. From
Lemma 4.7, it follows that τ(f1) is not in normal position. If σ2 is a
homothety, then n = 2, and f2 = σ(τ(f1)) has the same parameters
as f1, proving the proposition in that case. If σ2 is not a homothety,
then d2 > d1, c2 > c1, and dy divides d2 − c2 by Lemma 4.8. Hence,
Proposition 4.9 follows for n = 2. Moreover, we have

n > 2 =⇒ deg σ2 > 0 =⇒ a(f2) > b(f2),

the second implication again using Lemma 4.8. Thus, n > 2 implies,
moreover, that τ(f2) is not in normal position. The proposition then
follows by induction. �

Proof of Theorem 4.3. We have (i)⇒ (iii) by Corollary 4.6, while the
implication (iii) ⇒ (ii) is an immediate consequence of Proposition 4.9.
The remaining implication (ii) ⇒ (i) follows from equality V = dy(c+
dx)/2 that holds for minimal polynomials due to Lemma 4.2. �
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As mentioned earlier in this section, Theorem 1.5 is an easy corollary
of Theorem 4.3.

Proof of Theorem 1.5. A direct computation shows that the polyno-
mial f = x(x − y2)2 − 2λy(x − y2) + λ2 is minimal with parameters
(dy, dx, c) = (4, 3, 1) for all λ ∈ K∗ (for λ = 0, the polynomial f is re-
ducible). Since dy does not divide dx− c, f is reduced by Theorem 4.3.
Hence, c = cmin = 1 ̸= 0, and f is not equivalent to a monic polynomial
by Theorem 4.3. �

4.2. Cremona equivalence of minimal polynomials. Theorem
1.5 shows that we cannot hope that a nonmonic minimal polynomial
can be transformed to a coordinate via a composition of an element of
GL2(K[x]) with an element of Aut(A2). However, both groups act on
the curve of f as subgroups of the Cremona group Bir(A2) of birational
transformations of the plane, and both Theorem 3.3 and GL2(K[x])-
invariance of the degree of the discriminant lead us to ask the following
natural question:

Question 4.10. Do minimal polynomials define curves Cremona
equivalent to lines?

Theorem 3.3 gives a positive answer in the case of monic polynomials,
and more generally for all members of their GL2(K[x])-orbits. This is
also the case for the nonmonic minimal polynomial of Theorem 1.5,
as will be shown in the next proposition. Note that being Cremona
equivalent to a line does not imply minimality. In a close context, it
has recently been proved in [13] that any rational cuspidal curve of P2 is
Cremona equivalent to a line, solving a famous problem of Coolidge and
Nagata. In the present context, minimal polynomials define rational
unicuspidal curves of P1 ×P1 (Corollary 2.5), and we may ask whether
the result of Koras-Palka extends to this case. These kinds of problems
are closely related to the geometry of the minimal embedded resolution.

Proposition 4.11. The curve defined by the polynomial f = x(x −
y2)2 − 2λy(x− y2) + λ2 is Cremona equivalent to a line.

Proof. Since the polynomial f is minimal with parameters (dx, dy, c) =
(3, 4, 1), it is easy to see that it defines a unicuspidal curve of P2. Hence,
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the claim follows from [13]. It should be noticed that we can ‘read’ the
underlying birational transformation on the Newton polygon of f . We
have f1(x, y) := f(x+ y2, y) = x3 + (xy − λ)2, and

f2(x, y) := f1(x, y/x+ λ) = x3 + y2

defines a curve which is clearly Cremona equivalent to f = 0. Let
C ⊂ P2 be the projective plane curve defined by the homogenization
F (X,Y, Z) = X3 + Y 2Z of f2. Consider the rational map

P2 99K P2

(X : Y : Z) 7−→ (XY 2 : Y 3 : X3 + Y 2Z).

The restriction of σ to the chart Y = 1 coincides with the affine map
(x, z) → (x, x3 + z), which is clearly invertible. Hence, σ ∈ Bir(P2) is
a Cremona transformation that satisfies σ−1(Y = 0) = C. �

4.3. Divisibility constraints for minimal reduced polynomials.
Proof of Theorem 1.6. Due to Theorem 1.2, monic minimal poly-
nomials coincide with coordinate polynomials. In particular, it follows
from [1] that they obey the crucial property:

Proposition 4.12 (Abhyankar-Moh’s theorem reformulated). Let f
be a monic minimal polynomial. Then, dx divides dy or dy divides dx.

Proposition 4.12 is another reformulation of the embedding line
theorem of Abhyankar and Moh [1]. Indeed, this property allows
reduction of the degree of f with translations x 7→ x − αyk or y 7→
y − αxk. Since these translations preserve the property of being
simultaneously monic and minimal, we can reach f = y. In the
nonmonic case, a similar reduction process requires a positive answer
to the following question:

Question 4.13. If f is minimal, is it true that dx− c divides dy or dy
divides dx − c?

Here, the parameter c is that defined in the previous subsection. This
property holds for all polynomials in the G-orbit of a monic minimal
polynomial by Propositions 4.12 and 4.9. It also holds for the minimal
reduced polynomial f of Theorem 1.5 (dx − c = 2 divides dy = 4),
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and may be seen as a key point in the explicit construction of the
birational map of Proposition 4.11. Although Questions 4.10 and 4.13
are closely related, translations on x do not preserve the minimality of a
nonmonic minimal polynomial, and it is not clear that a positive answer
to Question 4.13 leads to a positive answer to Question 4.10. Anyway,
it would be an important property for reducing minimal polynomials
to a “nice canonical form.” We prove a partial result here that shows
that, if f is minimal and dy does not divide dx − c, then dy and dx − c
are not coprime as soon as dx > 1.

Theorem 4.14. Let f be a minimal polynomial of degree dy ≥ 1. If f
is nonreduced, then dy divides dx − c. If f is reduced, we have:

(i) If dx = 0, then c = 0 and dy = 1.
(ii) If dx = 1, then c = 0 and dy > 1.
(iii) If dx > 1 and c = 0, then dx divides dy.
(iv) If dx > 1 and c > 0, then 2 ≤ gcd(dx − c, dy) ≤ dy/2.

Proof. If f is nonreduced, then dy divides dx − c by Theorem 4.3.
Assume that f is reduced. If dx = 0, then c = 0 is obvious and dy = 1
since, otherwise, f would not be irreducible. If dx = 1, then c ≤ 1.
Since f is reduced, we must have c = 0 and dy > 1 by Theorem 4.3
since, otherwise, dy would divide dx − c. Suppose now that dx > 1.
If c = 0, then we can suppose that f is monic up to application of
the inversion y → 1/y. The claim thus follows from Proposition 4.12
combined with the fact that dy cannot divide dx since f is assumed to
be reduced (Theorem 4.3). Now, suppose that dx > 1 and c > 0. Then,
gcd(dx − c, dy) ≤ dy/2 by Theorem 4.3.

It remains to show that dy and dx − c are not coprime. We will use
the theory of toric varieties. Since they appear only in this proof, we do
not give a detailed account on toric varieties, but instead, we refer the
reader to the books of Fulton [8] and Cox, Little and Schenck [6]. Let
P := P (f) be the generic Newton polygon of a bivariate polynomial f
such that f(x, 0) is non constant. Consider the map

ϕP : A2 −→ PN

t 7−→ [tm0 : · · · : tmN ],
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where P ∩ Z2 = {m0, . . . ,mN}. Since (0, 0), (1, 0), (0, 1) ∈ P by
hypothesis, the map ϕP is an embedding. The projective toric surface
X = XP associated to P is, by definition, the Zariski closure of ϕP (A2).
Set theoretically, we have that

X = A2 ⊔ (D1 ∪ · · · ∪Dr),

where the divisors Di ≃ P1 are in one-to-one correspondence with the
edges Λ1, . . . ,Λr of P that do not pass through the origin. Moreover,
if we let C ⊂ X be the Zariski closure of the image of the affine curve
f = 0, then C properly intersects the divisors Di with total intersection
degree

deg(C ·Di) = Card(Λi ∩ Z2)− 1.

Let us return to our context of f minimal. We can assume that P (f)
is in normal position so that P (f) satisfies the previous conditions.
Moreover, since c > 0, P has exactly four edges, by Lemma 4.2. Let
E ⊂ X be the divisor corresponding to the right hand edge Λ of P .
Since P has two horizontal edges and one vertical edge passing throw
the origin (see Figure 1), the normal fan of P refines the fan of A1×P1

(see [8, subsection 1.4]), and it follows that

X \ E = A1 × P1.

In particular, we have, by the minimality of f , that C is smooth in
X \ E. On the other hand, we have that

deg(C · E) = Card(Λ ∩ Z2)− 1 = gcd(dx − c, dy).

Suppose that gcd(dx − c, dy) = 1. Then, deg(C · E) = 1 forces C to
intersect E transversally at a unique point. In particular, it is smooth
along E, hence, smooth in X by what was previously stated. The
arithmetic genus formula for curves in toric surface [12], combined
with the fact that C ⊂ X is smooth and rational, leads to the equality

0 = g(C) = pa(C) = Card(Int(P ) ∩ Z2),

where Int(P ) stands for the interior of P . However, this contradicts
the fact that P is the convex hull of (0, 0), (0, dy), (c, dy), (dx, 0) with
dx > 1, c > 0 and dy ≥ 2. �

5. A uniform lower bound for reducible polynomials. We now
focus on the non monic reducible case, and we prove Theorem 1.7
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of the introduction: all polynomials f ∈ K[x, y] with non constant
discriminant satisfy

degx ∆y(f) ≥
⌈
dy − 1

2

⌉
,

and we have a complete classification of polynomials for which equality
holds. The proof requires some preliminary lemmas. In order to study
the discriminant of reducible polynomials, it is more convenient to
consider homogeneous polynomials in Y = (Y0 : Y1). Homogeneity
in x is unnecessary. We, thus, consider polynomials F ∈ K[x][Y ].

Lemma 5.1. Let F ∈ K[x][Y ] be a squarefree polynomial of degree
degY F = d ≥ 0 with no factor in K[x]. Assume that F has only linear
factors. Then, exactly one of the following occurs:

(i) degx ∆Y F = 0, and F is G-equivalent to some polynomial of
K[Y ].

(ii) d = 2, and degx ∆Y F ≥ 2 > d/2.
(iii) d ≥ 3, and degx ∆Y F ≥ 2(d− 2) > d/2.

Proof. Cases d = 0 and d = 1 are trivially in case (i). We now

assume that d ≥ 2. We have F =
∏d

i=1 Fi with Fi = aiY0 + biY1, for
some ai and bi in K[x]. For all nonempty subsets I ⊂ {1, . . . , d}, we
write

FI =
∏
i∈I

Fi.

If I has only one element, then, clearly, ∆Y FI ∈ K. Among all subsets
I such that ∆Y FI ∈ K, we consider one with a maximal number of
elements and write m for its cardinality. We have 1 ≤ m ≤ d.

Consider first the casem = 1. For all i ̸= j, we have degx ResY (Fi, Fj)
≥ 1. This implies that degx ∆Y F ≥ d(d − 1). This proves case (ii) if
d = 2 and case (iii) if d > 2.

Consider now the case 2 ≤ m. We can assume that I = {1, 2, . . . ,m}.
We then have Res(F1, F2) ∈ K. The matrix

σ =

(
b2 −b1
−a2 a1

)
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is, therefore, an element of GL2(K[x]). Via the action of σ, F1 and
F2 are transformed into Y0 and Y1. Without loss of generality, we
assume that F1 = Y0 and F2 = Y1. For all 3 ≤ i ≤ m, we have
ResY (Fi, Y0) ∈ K; hence, bi ∈ K. Similarly, we have ResY (Fi, Y1) ∈ K;
hence, ai ∈ K. This proves that Fi ∈ K[Y ] for all i ∈ I. If m = d, then
we have proved that F is equivalent to a polynomial in K[Y ]; hence,
we are in case (i).

It remains to consider the case 2 ≤ m < d. This case is possible
only if d ≥ 3. As before, we can assume that I = {1, 2, . . . ,m} and
Fi ∈ K[Y ] for all i ∈ I. For an integer j /∈ I, there exists at most one
value of i ∈ I such that ResY (Fi, Fj) ∈ K. Otherwise, using a similar
argument as before, we would have Fj ∈ K[Y ] and ResY (Fi, Fj) ∈ K for
all i ∈ I, contradicting the maximality of I. Since each Fj for j /∈ I has
at least m−1 nonconstant resultants with Fi for i ∈ I, this proves that
degx ∆Y F ≥ 2(m−1)(d−m). It is an exercise to verify the inequalities
2(m− 1)(d−m) ≥ 2(d− 2) > d/2. �

Lemma 5.2. Let F ∈ K[x][Y ] be an irreducible polynomial of degree
d ≥ 2. Assume that F is minimal. Consider an integer n and
polynomials Fi = aiY0 + biY1, for 1 ≤ i ≤ n and ai, bi ∈ K, that
are pairwise coprime. If ResY (Fi, F ) ∈ K for all 1 ≤ i ≤ n, then
n ≤ 1.

Proof. It is sufficient to prove that the case n = 2 is impossible.
Suppose that two such polynomials exist. Using the action of GL2(K),
we can assume that F1 = Y0 and F2 = Y1. We write r1 = ResY (Y1, F ) ∈
K and r0 = ResY (Y0, F ) ∈ K. Since F is irreducible of degree d ≥ 2,
it cannot be divisible by Y0; hence, r0 ̸= 0. Without loss of generality,
we can assume that r0 = 1. The relation ResY (Y0, F ) = 1, therefore,
implies that F (Y0, Y1) is monic in Y1. By Theorem 3.3, F (1, y) is
equivalent to y up to an automorphism of A2. This implies that
F (1, y) is irreducible of degree d ≥ 2, as well as F (1, y)− r1. However,
this last polynomial is, by construction, divisible by y. We obtain a
contradiction. �

Lemma 5.3. Let F ∈ K[x][Y ] be a squarefree polynomial of degree
degY F = d ≥ 2 with no factor in K[x]. Assume that F = PQ, where
P is irreducible of degree degY P ≥ 2, and Q has only linear factors.
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Then

degx ∆Y F ≥
⌈
d− 1

2

⌉
.

Furthermore, equality holds if and only if F is G-equivalent to one of
the following exceptional polynomials:

(Case d = 2). Y 2
0 + (x+ a)Y 2

1 , (a ∈ K);

(Case d = 3). Y1(Y
2
0 + (x+ a)Y 2

1 ), (a ∈ K);

(Case d = 4). Y1(Y
3
0 + aY0Y

2
1 + (x+ b)Y 3

1 ), (a, b ∈ K);

(Case d = 4). Y0Y1(Y
2
0 + (ax+ b)Y0Y1 + Y 2

1 ), (a ∈ K∗ and b ∈ K).

Proof. We write F = PQ. In order to shorten some expressions,
we write dP = degY P and dP = degY Q. We have d = dP + dQ. By
Theorem 1.3, we already have degx ∆Y P ≥ dP−1. The proof splits into
different cases according to which case corresponds to the polynomial
F in Lemma 5.1.

Case (0). If dQ = 0. We have

degx ∆Y F = degx ∆Y P ≥ d− 1 ≥
⌈
d− 1

2

⌉
.

Equality holds if and only if d = 2 and P is minimal. From Theorem
1.6, P is G-equivalent to a polynomial of the form Y 2

0 +(x+c)Y 2
1 , with

c ∈ K.

Case (i). If dQ > 0 and degx ∆Y Q = 0. From Lemma 5.1, we can
assume that Q ∈ K[Y ].

Subcase (i.1). If dQ ≤ dH − 2. Here, we simply have

degx ∆Y F ≥ dP − 1 ≥ dP + dQ
2

.

In this case, the anticipated inequality is proven. We then observe that
equality implies that P is minimal, dQ = dP − 2, and ResY (P,Q) ∈ K.
From Lemma 5.2, this is possible only if dQ = 1 and dP = 3. By
Theorem 1.6, we deduce that P is G-equivalent to a polynomial of the
form Y 3

0 + aY0Y
2
1 + (x+ b)Y 3

1 . In this case, Q can only be Y1.

Subcase (i.2). If dQ = dQ − 1, we have

degx ∆Y F ≥ dP − 1 =
d− 1

2
.
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This proves the inequality. The equality holds if and only if P is
minimal and ResY (P,Q) ∈ K. From Lemma 5.2, this is possible only if
dQ = 1 and dP = 2. By Theorem 1.6, we deduce that P is G-equivalent
to a polynomial of the form Y 2

0 + (x + a)Y 2
1 . In this case, Q can only

be Y1.

Subcase (i.3). If dQ = dP . In this case, we have d = 2dP . If P
is minimal, then, by Lemma 5.2, degx ResY (P,Q) ≥ dP − 1; hence,
degx ∆Y F ≥ dP − 1 + 2(dP − 1). This is always larger than d/2. If P
is not minimal, we have degx ∆Y P ≥ dP , whence the inequalities

degx ∆Y F ≥ dP =
d

2
.

This proves the inequality. We see here that equality holds only if
degx ∆Y P = dP and ResY (P,Q) ∈ K. Let

Q =

dP∏
i=1

Qi

be the factorization of Q into linear factors in K[Y ], and let Q0

be another linear polynomial in K[Y ], coprime to Q. We define
R0 = ResY (P,Q0) ∈ K[x]. Using interpolation at the Qi’s, we see
that P can be written as P = λQR0 + b, with λ ∈ K∗ and b ∈ K[Y ].
We clearly have

degx R0 = degx P = degx F.

We denote by r0 ∈ K∗ the leading coefficient of R0. ∆Y P is a
homogeneous polynomial of degree 2(dP −1) in terms of the coefficients
of P , hence, of degree at mostD = 2(dP−1) degx P in x. The coefficient
in xD in its expansion is equal to DiscY (λQr0), which is not zero since
Q is squarefree. This proves that

degx ∆Y P = 2(dP − 1) degx P.

Since this is also equal to dP , the only possibility is degx P = 1 and
dP = 2. Using the action of GL2(K), we can, therefore, assume that
Q = Y0Y1. Under all of these conditions, P is of the form

P = Y 2
0 + (ax+ b)Y0Y1 + Y 2

1 ,

for some a ∈ K∗ and b ∈ K.
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Subcase (i.4). If dQ ≥ dP + 1. It is impossible for P to have
constant resultants with strictly more than dP linear polynomials in
K[Y ], since otherwise, by interpolation, it would have coefficients in
K, contradicting its irreducibility. This proves that degx ResY (P,Q) ≥
dQ − dP . We then have the inequalities

degx ∆Y F ≥ dP − 1 + 2(dQ − dP ) ≥ dQ ≥ d+ 1

2
.

This proves the previously mentioned inequality and, in this case, an
equality is impossible.

Cases (ii) and (iii). In the remaining cases, we have dQ ≥ 2 and
degx ∆Y Q > dQ/2. This gives

degx ∆Y F > dP − 1 +
dQ
2

≥ dP
2

+
dQ
2

=
d

2
,

whence the conclusion. �

Lemma 5.4. Let q = y2 + ay + b be a polynomial in K[x][y], with a
and b in K[x]. Assume that degx a

2 − 4b is odd.

For a polynomial p ∈ K[x][y], we have Resy(p, q) ∈ K if and only if
p = αq + β for some α ∈ K[x][y] and β ∈ K.

Proof. Let p = αq+uy+ v be the Euclidean division of p by q, with
u and v in K[x]. We have

Resy(p, q) = Resy(uy + v, q) = (v − au/2)2 − a2 − 4b

4
u2.

By assumption, this is an element of K. Since degx a
2 − 4b is odd,

inspection by degrees shows that this is possible only if u = 0 and
v − au/2 ∈ K. This gives the conclusion. �

We are now ready to prove Theorem 1.7, which we reformulate in a
more convenient form for the proof.

Theorem 5.5. Let F ∈ K[x][Y ] be a squarefree polynomial of degree
degY F = d ≥ 0 with no factor in K[x]. Then, exactly one of the
following occurs:
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(i) degx ∆Y F = 0, and F is G-equivalent to some polynomial of
K[Y ].

(ii) d ≥ 2, and degx ∆Y F ≥ ⌈(d− 1)/2⌉.

Furthermore, if d ≥ 2, equality degx ∆Y F = ⌈(d− 1)/2⌉ occurs if
and only if F is G-equivalent to one of the following polynomials:

• (Case d odd). Y1

∏n
i=1(Y

2
0 + (x+ ai)Y

2
1 ) (ai ∈ K);

• (Case d even).
∏n

i=1(Y
2
0 + (x+ ai)Y

2
1 ) (ai ∈ K);

• (Case d = 4). Y1(Y
3
0 + aY0Y

2
1 + (x+ b)Y 3

1 ) (a, b ∈ K);
• (Case d = 4). Y0Y1(Y

2
0 + (ax + b)Y0Y1 + Y 2

1 ) (a ∈ K∗ and
b ∈ K).

Proof. Write F = PQ, where Q has only linear factors and P has
no linear factor. Let

P =

n∏
i=1

Pi

be the decomposition of P into irreducible factors in K[x][Y ]. If n = 0,
then the result is given by Lemma 5.1. Assume now that n ≥ 1. The
polynomial F1 = P1Q satisfies Lemma 5.3, hence,

degx ∆Y F1 ≥ degQ+ degP1 − 1

2
.

For i ≥ 2, the polynomials Pi satisfy Theorem 1.3, thus,

degx ∆Y Pi ≥ degPi − 1 ≥ degPi

2
.

Putting these inequalities together gives

(5.1) degx ∆Y F ≥ degQ+ degP1 − 1

2
+
∑
i≥2

degPi

2
=

d− 1

2

Consider now the question of equality. The easiest case is when d is odd.
In this situation, all inequalities in (5.1) are equalities. This implies
that degPi = 2 for all i ≥ 2, and degF1 is odd with degx ∆Y F1 =
(degF1 − 1)/2. From Lemma 5.3, we can, therefore, assume that
F1 = Y1(Y

2
0 + (x+ a1)Y

2
1 ). The Pi’s have a constant resultant with Y1

and Y 2
0 + (x + a1)Y

2
1 . Using Lemma 5.4, we deduce that they are of

the form
Pi = bi(Y

2
0 + (x+ ai)Y

2
1 )
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with ai, bi ∈ K. The constant
∏

bi can be removed using G-equivalence.
This gives the conclusion for d odd.

If d is even, Lemma 5.3 shows that F cannot have more than two
linear factors. We have, therefore, three cases to consider:

• If F has no linear factor, then, by Lemma 5.3, we can assume that
P1 = Y 2

0 + (x+ a1)Y
2
1 for some a1 ∈ K. The proof in this case is very

similar to the previous case and is left to the reader.

• If F has one linear factor, then, by Lemma 5.3, it is sufficient to
consider the case F1 = Y1P1 with

P1 = Y 3
0 + aY0Y

2
1 + (x+ b)Y 3

1

for some a, b ∈ K. The other factors Pi must be quadratic and minimal,
and also have constant resultant with F1. The resultant with Y1 shows
that the Pi’s are monic in Y0. If n ≥ 2, the resultant of P2 and
P1 = Y 3

0 +aY0Y
2
1 +(x+ b)Y 3

1 is constant, and Lemma 5.4 imposes that
P1 = Y0P2 + βY 3

1 with β ∈ K. This is incompatible with β = x + b;
hence, we must deduce that n = 1 and F = F1.

• If F has two linear factors, then, by Lemma 5.3, it is sufficient
to consider the case F1 = Y0Y1P1 with P1 = Y 2

0 + (ax + b)Y0Y1 + Y 2
1

for some a ∈ K∗ and b ∈ K. The other factors Pi must be quadratic
and minimal, and also have constant resultant with F1. In particular,
if n ≥ 2, ResY (Y0Y1, P2) ∈ K imposes that

P2 = a2Y
2
0 + b2Y0Y1 + c2Y

2
1

with a2 and c2 inK. However, this is incompatible with degx ∆Y P2 = 1;
hence, we must deduce that n = 1 and F = F1. �

APPENDICES

A. Small ∆y versus small ∆x. The equivalence (a) ⇔ (b) of
Theorem 3.3 asserts that a monic polynomial is minimal with respect
to y if and only it is monic and minimal with respect to x. We prove here
a generalization of this statement to the case of nonmonic polynomials.

For f ∈ K[x, y], a nonconstant bivariate polynomial, we let lcy(f)
(respectively, lcx(f)) stand for the leading coefficient of f seen as a
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polynomial in y (respectively, in x). We denote by nx (respectively,
ny) the number of distinct roots of lcy (respectively, of lcx). We have
the inequalities

nx ≤ degx lcy(f) and ny ≤ degy lcx(f),

and we say that f is nondegenerate if both equalities hold, that is,
if both leading coefficients of f are squarefree. We write, for short,
f(∞,∞) = 0 if the bihomogenization F of f vanishes at the point
X1 = Y1 = 0, that is, if f has no monomial of bidegree (dx, dy).

Proposition A.1. Let f ∈ K[x, y] be a nondegenerate, irreducible,
bivariate polynomial such that f(∞,∞) = 0. The following assertions
are equivalent :

(a) degx ∆y(f) = dy + ny − 1;
(b) degy ∆x(f) = dx + nx − 1;
(c) The Zariski closure

C ⊂ P1 × P1

of the affine curve f = 0 is rational, unicuspidal and smooth
outside of (∞,∞).

Moreover, the equivalence (c) ⇔ (a) ∩ (b) still holds for degenerate
polynomials.

Proof. First, we prove (c) ⇔ (a) ∩ (b). Hence, f is allowed to be
degenerate.

• (c) ⇒ (a) ∩ (b). By Proposition 2.3, we have the equality

degx ∆y(f) = 2dx(dy − 1)− 2δ∞ − r∞,

where δ∞ and r∞ stand, respectively, for the delta invariant and the
ramification index of f over x = ∞. Since C is assumed to be rational
with a unique possible singularity at (∞,∞), the adjunction formula
leads to the equality

δ∞ = pa(C) = (dx − 1)(dy − 1).

Moreover, the curve is assumed everywhere to be locally irreducible.
Hence, the number of places of C over x = ∞ coincides with the
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number of intersection points of C with x = ∞, that is, nx + 1. It
follows that

r∞ = dy − (nx + 1).

Equality (a) then follows from Proposition 2.3. The implication (c) ⇒
(b) follows from (c) ⇒ (a) by symmetry.

• (a) ∩ (b) ⇒ (c). Let us assume that (a) holds. From Proposi-
tion 2.3, we have:

(A.1) 2δ∞ = 2dx(dy − 1)− (dy + nx − 1)− r∞.

By assumption, the curve C of f has at least ny +1 places over x = ∞
so that

r∞ ≤ dy − ny − 1.

Combined with (A.1), we obtain the inequality

2δ∞ ≥ 2(dx − 1)(dy − 1).

On the other hand, the genus being nonnegative, the adjunction for-
mula leads to the inequality

δ∞ = pa(C)− g ≤ pa(C) = (dx − 1)(dy − 1).

This forces δ∞ = pa(C). Hence, g = 0, and the singularities of C are
located along the line x = ∞. This also forces r∞ = dy−ny−1 so that
the curve C has exactly ny +1 places over x = ∞ and, hence, is locally
irreducible along the line x = ∞. If, moreover, (b) holds, we obtain
by symmetry that C has all its singularities located on the line y = ∞
and that C has exactly nx + 1 places over y = ∞. Hence, (a) ∩ (b)
forces C to be rational, with a unique possible singularity at (∞,∞),
this singularity being irreducible.

To finish the proof, we need to show that implication (a) ⇒ (c) holds
when f is nondegenerate. We just proved that (a) implies that C is
rational with all of its singularities irreducible and located on the line
x = ∞. The nondegenerate assumption ensures that C is transversal
to the line x = ∞ (hence, smooth), except possibly at (∞,∞). Hence,
(c) holds. �
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Corollary A.2. Let f ∈ K[x, y] be an irreducible bivariate polynomial
such that f(∞,∞) = 0. Then

degx ∆y(f) = dy − 1 =⇒

{
degy ∆x(f) = dx + nx − 1,

ny = 0,

and the converse holds for nondegenerate polynomials. In particular,
polynomials vanishing at (∞,∞) and minimal with respect to y are
monic with respect to x.

Proof. If f is minimal, its curve C ⊂ P1 × P1 is rational unicuspidal
with a unique place on x = ∞ by Theorem 1.3. This place must be
(∞,∞), by assumption. This forces ny = 0. The equality degy ∆x(f) =
dx + nx − 1 follows from Proposition A.1. If f is nondegenerate, the
converse holds, again by Proposition A.1. �

B. Parametrization of minimal polynomials. Let

f =
∑

αijx
iyj ∈ K[x, y]

be a polynomial with parameters (dx, dy, c) and with indeterminate
coefficients

α = (αij)(i,j)∈P (f)∩Z2 .

The discriminant of f is a polynomial in (x, α) of degree 2dx(dy − 1)
in x. Thus, in order to find which specializations of α which lead to a
minimal polynomial, ∆y(f) must be computed and then a system of

2dx(dy − 1)− (dy − 1) ∈ O(dxdy)

polynomial equations in α with

Card(P (f) ∩ Z2) ∈ O(dxdy)

unknowns must be solved. This polynomial system very quickly turns
out to be too complicated to be solved on a computer, even for the
reasonable size of dx and dy. Moreover, an irreducibility test for
each solution must be performed. However, we know that minimal
polynomials define a rational curve, a strong information that was not
used in the previous basic strategy. In particular, the curve admits
a rational parametrization, that is to say, there exist two rational
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functions u, v ∈ K(s) such that the equality

f(u(s), v(s)) = 0

holds in K(s). The next result summarizes the relations between
minimality and parametrization.

Proposition B.1. An irreducible polynomial f ∈ K[x, y] is minimal if
and only if there exist two rational functions u, v ∈ K(s) such that :

(i) f(u, v) = 0 in K(s) (rationality);
(ii) K(s) = K(u, v) (proper parametrization);
(iii) u ∈ K[s] (unique place along x = ∞);
(iv) K[s] = K[u, v] ∩K[u, v−1] (smoothness in A1 × P1).

Moreover, given such a pair u, v, we have the equality

dy = degs u, a(f) = degs v1 and b(f) = degs v2

where v1, v2 ∈ K[t] are coprime polynomials such that v = v1/v2.

Proof. We know from Theorem 1.3 that f is minimal if and only if
the curve C ⊂ P1 × P1 is rational, with a unique place along x = ∞
and smooth outside this line. Rationality is equivalent to the existence
of a proper parametrization, that is, the existence of rational functions
u, v ∈ K(s) such that items (i) and (ii) hold. The rational map

(u, v) : K 99K K2

extends to a morphism

ρ : P1 −→ P1 × P1,

whose image is C. Moreover, the parametrization being proper, this
morphism establishes a one-to-one correspondence between P1 and the
places of C. The fact that C has a unique place along the line x = ∞ is
equivalent to the fact that u has a unique pole on P1. Up to a Mobius
transformation on P1, it is no less to assume that this pole is s = ∞,
meaning precisely that u ∈ K[s]. The restriction of C to A1 × P1 is
smooth if and only if so are its restrictions to the two affine charts

U := A1 × {y ̸= ∞} ≃ A2

and
V := A1 × {y ̸= 0} ≃ A2.
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However, this is also equivalent to the fact that the coordinate rings

K[x, y]

(f(x, y))
≃ K[u, v] and

K[x, y]

(ydyf(x, 1/y))
≃ K[u, v−1]

of the affine curves C|U and C|V are integrally closed in their field of
fractions K(u, v) = K(s). Since u ∈ K[s], we deduce that s is integrally
closed over K[u, v] and over K[u, v−1], whence the inclusion

K[s] ⊂ K[u, v] ∩K[u, v−1].

The reverse inclusion always holds by a Gauss lemma argument, and
we obtain item (iv). Conversely, if item (iv) holds, then

K[u, v] ∩K[u, v−1] = K[s]

is integrally closed so that the curve is smooth in A1×P1. The formulas
for degy f , a(f) and b(f) follow, for instance, from [7], where the
authors compute the Newton polygon of a parametrized curve. �

Due to Proposition B.1, computing all minimal polynomials of given
parameters (dx, dy, c) is equivalent to computing the discriminant of
the implicit equation of the parametrization (u, v) with indeterminate
coefficients that satisfies items (i), (ii), (iii) and solving a system of

(2dx − 1)(dy − 1) ∈ O(dxdy)

polynomial equations with

dy + dx + c ∈ O(dx + dy)

unknowns. When compared to the previous approach, this drastically
reduces the number of unknowns, and irreducibility tests are avoided.
This is the approach which allowed us to find the crucial example of
Theorem 1.5 by computer. It must be noted, however, that the degree
of the polynomial system then increases. Finally, we mention that
item (iv) (hence, minimality) can also be directly verified by requiring
that the so-called D-resultant of the pair (u, v) is constant (see [9]), a
computational problem of an a priori equivalent complexity.
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