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ABSTRACT. Let (R,m) be a Cohen-Macaulay local ring
of positive dimension d and infinite residue field. Let I be an
m-primary ideal of R, and let J be a minimal reduction of I.

In this paper, we show that, if Ĩk = Ik and J ∩ In = JIn−1

for all n ≥ k + 2, then Ĩn = In for all n ≥ k. As a

consequence, we can deduce that, if rJ (I) = 2, then Ĩ = I if

and only if Ĩn = In for all n ≥ 1. Moreover, we recover some
main results of [5, 11]. Finally, we give a counter example
for [21, Question 3].

1. Introduction. Throughout this paper, we assume that (R,m) is
a Cohen-Macaulay local ring of positive dimension d, infinite residue
field and I an m-primary ideal of R. An ideal J ⊆ I is called a reduction
of I if In+1 = JIn for some n ∈ N. A reduction J is called a minimal
reduction of I if it does not properly contain a reduction of I. The
least such n is called the reduction number of I with respect to J , and
denoted by rJ (I). These notions were introduced by Northcott and
Rees in [20], where they proved that minimal reductions of I always
exist if the residue field of R is infinite. Recall that x ∈ I is a superficial
element of I if there exists a k ∈ N0 such that In+1 : x = In for all
n ≥ k. A set of elements x1, . . . , xd is a superficial sequence of I if
xi is a superficial element of I/(x1, . . . , xi−1) for all i = 1, . . . , d. A
superficial sequence x1, . . . , xd of I is called tame if xi is a superficial
element of I, for all i = 1, . . . , d. Elias [8] defined and proved the tame
superficial sequence exists (see also [6]). Swanson [27] proved that,
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if x1, . . . , xd is a superficial sequence of I, then J = (x1, . . . , xd) is a
minimal reduction of I. It is known that every minimal reduction can
be generated by superficial sequence (see [6, 26]).

The Ratliff-Rush closure of I is defined as the ideal

Ĩ = ∪n≥1(I
n+1 : In).

It is a refinement of the integral closure of I and Ĩ = I if I is integrally

closed (see [23]). The Ratliff-Rush filtration Ĩn, n ∈ N0, carries
important information on the associated graded ring

G(I) =
⊕
n≥0

In/In+1.

For example, Heinzer, Lantz and Shah [13] showed that the depthG(I) ≥
1 if and only if Ĩn = In for all n ∈ N0. The aim of this paper is to
compute the Ratliff-Rush closure in some sense and, as an application,
we shall reprove some of the main results of [5, 11, 12]. Finally, we
reprove [21, Theorem 1] and [2, Theorem 1.6] with a much simpler
proof, and we also give a counter example for [21, Question 3]. This
example also states that [2, Theorem 1.8] does not hold, in general.
For any unexplained notation or terminology, the reader is referred to
[3, 16].

2. Ratliff-Rush closure, associated graded ring.

Proposition 2.1. Let d = 2, x1, x2 be a superficial sequence of I and
J = (x1, x2). Let k ∈ N0 be such that

J ∩ In = JIn−1 for all n ≥ k + 1.

Then, Ĩn = In for all n ≥ 1 if and only if In : x1 = In−1 for
n = 1, . . . , k.

Proof.

(⇒) immediately follows by [22, Corollary 2.7].

(⇐). From [22, Corollary 2.7], it is sufficient for us to prove
In : x1 = In−1 for all n ≥ k. By using induction on n, it is enough
to prove the result for n = k + 1. For this, firstly, we prove that
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JIk : x1 = Ik. However, it is an elementary fact that

JIk : x1 = (x1I
k + x2I

k) : x1 = Ik + (x2I
k : x1),

as well as
x2I

k : x1 = x2I
k−1.

Hence, JIk : x1 = Ik. Therefore, by our assumption, we have

(J ∩ Ik+1) : x1 = Ik,

and thus, we have Ik+1 : x1 = Ik, as desired. �

The next result immediately follows by Proposition 2.1.

Corollary 2.2. Let d = 2, x1, x2 be a superficial sequence of I and

J = (x1, x2). Let k ∈ N0 be such that rJ(I) = k. Then, Ĩn = In for all
n ≥ 1 if and only if In : x1 = In−1 for n = 1, . . . , k.

Corollary 2.3. Let d = 2, x1, x2 be a superficial sequence of I and

J = (x1, x2) such that rJ (I) = 2. Then, Ĩn = In for all n ≥ 1 if and
only if I2 : x1 = I.

The Hilbert-Samuel function of I is the numerical function that
measures the growth of the length of R/In for all n ∈ N. For all n
large, this function λ(R/In) is a polynomial in n of degree d

λ(R/In) =
d∑

i=0

(−1)iei(I)

(
n+ d− i− 1

d− i

)
,

where e0(I), e1(I), . . . , ed(I) are called the Hilbert coefficients of I. Let

A =
⊕
m≥0

Am

be a Noetherian graded ring where A0 is an Artinian local ring, A is
generated by A1 over A0, and

A+ =
⊕
m>0

Am.
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Let Hi
A+

(A) denote the ith local cohomology module of A with respect

to the graded ideal A+, and set

ai(A) = max{m | [Hi
A+

(A)]m ̸= 0},

with the convention ai(A) = −∞, if Hi
A+

(A) = 0. The Castelnuovo-

Mumford regularity is defined by reg(A) := max{ai(A) + i | i ≥ 0}.

Proposition 2.4. Let d = 2 and J be a minimal reduction of I such

that rJ (I) = 2. If Ĩ = I, then we have the following :

(i) regG(I) = 2.
(ii) e2(I) = λ(I2/JI).

Proof. Case (i) follows by Corollary 2.3 and [19, Theorem 2.1,
Corollay 2.2], and case (ii) follows from Corollary 2.3 and [4, Theorem
3.1]. �

Remark 2.5. Let d = 2, Ĩ = I and J be a minimal reduction of I. If
regG(I) = 3, then, by [19, Lemma 1.2, Corollary 2.2], [28, Proposition
3.2] and Proposition 2.4, we have rJ(I) = 3.

The next result is an improvement of [15, Theorem 2.11] and [17,
Proposition 16].

Proposition 2.6. Let d = 2, Ĩ = I and J be a minimal reduction
of I. Then, rJ(I) = 2 if and only if PI(n) = HI(n) for n = 1, 2,
where HI(n) and PI(n) are the Hilbert-Samuel function and the Hilbert-
Samuel polynomial, respectively.

Proof.

(⇒). Let rJ(I) = 2. Then, by Corollary 2.3, Ĩn = In for all n ≥ 1,
and so, by [17, Proposition 16], we have HI(n) = PI(n) for all n = 1, 2.

(⇐) is clear by [17, Proposition 16]. �

Remark 2.7. Let J be a minimal reduction of I, x1 ∈ J and
I = I/(x1), J = J/(x1). Then, by the definition of the reduction
number, we have

(i) If rJ(I) = k and Ik+1 : x1 = Ik, then rJ (I) = k.

(ii) If d = 2 and I2 : x1 = I, then rJ (I) ≤ 2 if and only if rJ (I) ≤ 2.
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Lemma 2.8. Let d = 2 and J be a minimal reduction of I such that
J ∩ In = JIn−1 for n = 1, . . . , t. If

rJ(I) = k

and
λ(In+1/JIn) = λ(I

n+1
/JI

n
)

for n = t, . . . , k − 1, then In+1 : x1 = In for n = 0, . . . , k − 1.

Proof. By [7, Proposition 1.7(ii)], (x1) ∩ In = x1I
n−1 for n =

1, . . . , t, and thus, In : x1 = In−1 for n = 1, . . . , t. Now, consider
the exact sequence

0 −→ In+1 : x1/JI
n : x1 −→ In+1/JIn −→ I

n+1
/JI

n −→ 0.(†)

By our assumption, In+1 : x1 = JIn : x1 for n = t, . . . , k − 1.
Assume that yx1 ∈ JIt. Then, we have yx1 = α1x1 + α2x2 for some
α1, α2 ∈ It. Hence, (y − α1)x1 = α2x2 ∈ x2I

t, and, since x1, x2 is
a regular sequence, we obtain y − α1 = sx2 for some s ∈ R. Since
(y − α1)x1 = sx1x2 ∈ x2I

t, and x2 is a non-zerodivisor, it follows that
sx1 ∈ It, and thus, s ∈ It : x1. Therefore, s ∈ It−1, and it follows that
y ∈ It. Thus, by repeating this argument, we obtain In+1 : x1 = In

for n = 0, . . . , k − 1, as desired. �
The following result was proven in [5, Theorem 3.10], [14, Theorem

2.4] and [25, Theorem 3.7]; here, we give a simplified proof.

Proposition 2.9. Let J be a minimal reduction of I such that J∩In =
JIn−1 for n = 1, . . . , t and λ(It+1/JIt) ≤ 1. Then, depthG(I) ≥
d− 1.

Proof. By using Sally’s descent, we may reduce the problem to the
case of d = 2. Set rJ(I) = k. Then, by using the exact sequence (†),
we have

λ(I
n+1

/JI
n
) = λ(In+1/JIn) ≤ 1 for n = t, . . . , k − 1.

From Lemma 2.8 , we have In+1 : x1 = In for n = 0, . . . , k − 1. By
[14, Proposition 1.1], we know that
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∑
n≥0

λ(Ĩn+1/JĨn) = e1(I) = e1(I)

=
k−1∑
n=0

λ(In+1/JIn) =
t−1∑
n=0

λ(In+1/JIn) + k − t.

Therefore, from [24, Theorem 1.3], we have rJ(I) ≤ k. Thus, by

Lemma 2.8 and Corollary 2.2, we obtain Ĩn = In for all n ≥ 1. Hence,
depthG(I) ≥ 1, as required. �

Lemma 2.10. Let d = 2 and J = (x1, x2) be a minimal reduction
of I such that J ∩ In = JIn−1 for all n ≥ 3. If either I2 : x1 = I or

I2 : x2 = I, then Ĩn = In for all n ≥ 1. In particular, depthG(I) ≥ 1.

Proof. By using the same argument that was used in the proof of
Proposition 2.1, the result immediately follows. �

Lemma 2.11. Let d = 2 and J = (x1, x2) be a minimal reduction of I
such that λ(J ∩ I2/JI) ≤ 1. Then, either I2 : x1 = I or I2 : x2 = I.

Proof. If λ(J ∩ I2/JI + I2 ∩ (x1)) = 1, then I2 ∩ (x1) ⊆ JI, and
thus, I2 ∩ (x1) ⊆ [x1I + x2I] ∩ (x1). Therefore, I2 ∩ (x1) = x1I,
and hence, I2 : x1 = I. If λ(J ∩ I2/JI + I2 ∩ (x1)) = 0, then
I2 ∩ (x1) + Ix2 = J ∩ I2. Hence,

I2 ∩ (x1x2) + Ix2 = I2 ∩ (x2),

and thus,
Ix2 = I2 ∩ (x2).

Therefore, I2 : x2 = I. �

The following result was proven in [11, Theorem 3.2] and [12,
Corollary 1.5]; we give a much easier proof.

Proposition 2.12. Let J be a minimal reduction of I such that
J ∩ In = JIn−1 for all n ≥ 3. If λ(J ∩ I2/IJ) ≤ 1, then depthG(I) ≥
d− 1.

Proof. By Sally’s descent, we may assume that d = 2. Now, using
Lemmas 2.10 and 2.11, the result follows. �
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Theorem 2.13. Let d ≥ 3 and k ∈ N0 be such that Ĩk = Ik. If
x1, . . . , xd is a tame superficial sequence of I and J = (x1, . . . , xd) such
that J ∩ In = JIn−1 for all n ≥ k + 2, then

amIn : x1 = amIn−1

for all n ≥ k + 1 and all m ∈ N0, where a = (x2, . . . , xd). In particular,

Ĩn = In for all n ≥ k.

Proof. We will proceed by induction on n. Assume that n = k + 1.
Then, by [18, Lemma 2.7] and our assumption, we have

amIk+1 : x1 ⊆ amĨk+1 : x1 = amĨk = amIk.

Therefore, amIk+1 : x1 = amIk for all m ∈ N0. Assume that n ≥ k + 1
and that, for all t with k + 1 ≤ t ≤ n and all m ∈ N0,

amIt : x1 = amIt−1.

We show that, for all m ∈ N0,

amIn+1 : x1 = amIn.

Let yx1 be an element of amIn+1. Then, yx1 ∈ am and, by using [18,
Lemma 2.1], we obtain y ∈ am. Therefore, we can write the expression

y =
∑

i2+···+id=m

ri2···dx
i2
2 · · ·xid

d .

Since the element yx1 belongs to amIn+1, as well, we obtain the
following equalities∑

i2+···+id=m

ri2···idx1x
i2
2 · · ·xid

d = yx1 =
∑

i2+···+id=m

si2···idx
i2
2 · · ·xid

d ,

where si2···id ∈ In+1 for all i2, . . . , id such that i2 + · · · + id = m. As
x1, . . . , xd is a regular sequence in R, by equating coefficients in the
previous expressions, we obtain

ri2···idx1 − si2···id ∈ (x2, . . . , xd)

for all i2, . . . , id such that i2 + · · ·+ id = m. Hence, si2···id ∈ J ∩ In+1

and, by our assumption, we obtain si2···id ∈ JIn for all i2, . . . , id such
that i2 + · · ·+ id = m. Hence, returning to the equalities we wrote for
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yx1, we obtain yx1 ∈ amJIn = am+1In + x1a
mIn. Therefore, we have

amIn+1∩ (x1) ⊆ am+1In∩ (x1)+x1a
mIn = x1(a

m+1In : x1)+x1a
mIn.

By applying the induction hypothesis, we get

amIn+1 ∩ (x1) ⊆ x1a
m+1In−1 + x1a

mIn = x1a
mIn.

This proves that amIn+1 : x1 ⊆ amIn, and thus, amIn+1 : x1 = amIn

for all m ∈ N0. In particular, if we set m = 0, then In+1 : x1 = In

for all n > k; hence, by [22, Corollary 2.7], Ĩn = In for all n ≥ k, as
desired. �

The next result easily follows by Theorem 2.13.

Corollary 2.14. Let x1, . . . , xd be a tame superficial sequence of I and
J = (x1, . . . , xd).

(i) If Ĩ = I and J ∩ In = JIn−1 for all n ≥ 3, then Ĩn = In for
all n ≥ 1. In particular, depthG(I) ≥ 1.

(ii) If rJ (I) = 2, then Ĩ = I if and only if depthG(I) ≥ 1.

(iii) Let k ∈ N0 be such that rJ(I) = k + 1 and Ĩk = Ik. Then,

Ĩn = In for all n ≥ k.

The following example shows that the equality of Corollary 2.14 (ii)
may occur.

Example 2.15. Let K be a field, R = K[[x, y]], I = (x6, x4y2,
x3y3, x2y4, xy5, y6) and J = (x6, y6 + x4y2). Then, rJ (I) = 2,
depthG(I) = 1, and thus, G(I) is not Cohen-Macaulay.

3. Invariance of a length. Let J = (x1, . . . , xd) be a minimal
reduction of I. In [29], Wang defined the following exact sequence for
all n, k as

0 −→ Tn,k −→ ⊕(k+d−1
d−1 )In/JIn−1 ϕk−→ JkIn/Jk+1In−1 −→ 0,(∗)

where ϕk = (xk
1 , x

k−1
1 x2, . . . , x

k−1
1 xd, . . . , x

k
d) and Tn,k = ker(ϕk). He

also showed that T1,k = 0 for all k and, if d = 1, then Tn,k = 0 for
all n, k. Using the exact sequence (∗), we derive the following, simple
lemma, and the proof is left to the reader.
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Lemma 3.1. Let t ∈ N0 and J = (x1, . . . , xd) be a minimal reduction
of I. Then, we have the following :

(i) if J ∩ In = JIn−1 for n = 1, . . . , t, then Tn,k = 0 for
n = 1, . . . , t and all k.

(ii) If I is integrally closed, then T2,k = 0 for all k. In particular,
if I = m, then T2,k = 0 for all k.

The next lemma is well known; see the proof of [5, Proposition 2.1].

Lemma 3.2. Let J = (x1, . . . , xd) be a minimal reduction of I. Then,
λ(I/J) = e0(I)− λ(R/I) and

λ(In+1/JnI) = e0(I)

(
n+ d− 1

d

)
+ λ(R/I)

(
n+ d− 1

d− 1

)
− λ(R/In+1)

for n ≥ 1, which are independent of J .

In [21], Puthenpurakal proved that λ(m3/Jm2) is independent of
the minimal reduction J of m and, subsequently, Ananthnarayan and
Huneke [2] extended it for n-standard admissible I-filtrations.

The following result was proven in [2, Theorem 3.5] and [21,
Theorem 1]. We reprove it here with a much simpler proof.

Theorem 3.3. Let t ∈ N0 and J = (x1, . . . , xd) be a minimal reduction
of I. If J ∩ In = JIn−1 for n = 1, . . . , t, then λ(In+1/JIn) is
independent of J for n = 1, . . . , t.

Proof. We have

λ(In+1/JIn) = λ(In+1/JnI)−
n−1∑
k=1

λ(JkIn+1−k/Jk+1In−k).

Therefore, by Lemma 3.1 and the exact sequence (∗), we obtain

λ(In+1/JIn) = λ(In+1/JnI)−
n−1∑
k=1

(
k + d− 1

d− 1

)
λ(In+1−k/JIn−k).

Now by using Lemma 3.2 and induction on n, the result follows. �
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The next example is a counterexample for [21, Question 3], and
it also states that [2, Theorem 1.8] does not hold, in general. The
computations were performed by using Macaulay2 [9], CoCoA [1] and
Singular [10].

Example 3.4. Let K be a field and S = K[[x, y, z, u, v]], where
I = (x2 + y5, xy + u4, xz + v3). Then, R = S/I is a Cohen-Macaulay
local ring of dimension two, ideals J1 = (y, z)R and J2 = (z, u)R
are minimal reduction of m = (x, y, z, u, v)R and λ(m4/J1m

3) = 17,
λ(m4/J2m

3) = 20.
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