ON THE COMPUTATION OF THE RATLIFF-RUSH CLOSURE, ASSOCIATED GRADED RING AND INVARIANCE OF A LENGTH

AMIR MAFI

Dedicated to Professor Tony J. Puthenpurakal

ABSTRACT. Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of positive dimension d and infinite residue field. Let I be an \mathfrak{m} -primary ideal of R, and let J be a minimal reduction of I. In this paper, we show that, if $\widetilde{I^k} = I^k$ and $J \cap I^n = JI^{n-1}$ for all $n \geq k + 2$, then $\widetilde{I^n} = I^n$ for all $n \geq k$. As a consequence, we can deduce that, if $r_J(I) = 2$, then $\widetilde{I} = I$ if and only if $\widetilde{I^n} = I^n$ for all $n \geq 1$. Moreover, we recover some main results of [5, 11]. Finally, we give a counter example for [21, Question 3].

1. Introduction. Throughout this paper, we assume that (R, \mathfrak{m}) is a Cohen-Macaulay local ring of positive dimension d, infinite residue field and I an \mathfrak{m} -primary ideal of R. An ideal $J \subseteq I$ is called a *reduction* of I if $I^{n+1} = JI^n$ for some $n \in \mathbb{N}$. A reduction J is called a *minimal reduction* of I if it does not properly contain a reduction of I. The least such n is called the *reduction number* of I with respect to J, and denoted by $r_J(I)$. These notions were introduced by Northcott and Rees in [20], where they proved that minimal reductions of I always exist if the residue field of R is infinite. Recall that $x \in I$ is a superficial element of I if there exists a $k \in \mathbb{N}_0$ such that $I^{n+1} : x = I^n$ for all $n \geq k$. A set of elements x_1, \ldots, x_d is a superficial sequence of I if x_i is a superficial element of $I/(x_1, \ldots, x_{i-1})$ for all $i = 1, \ldots, d$. A superficial sequence x_1, \ldots, x_d of I is called *tame* if x_i is a superficial element of I, for all $i = 1, \ldots, d$. Elias [8] defined and proved the tame superficial sequence exists (see also [6]). Swanson [27] proved that,

²⁰¹⁰ AMS Mathematics subject classification. Primary 13A30, 13D40, 13H10.

Keywords and phrases. Ratliff-Rush filtration, Minimal reduction, Associated graded ring.

Received by the editors on January 18, 2016, and in revised form on May 29, 2016.

DOI:10.1216/JCA-2018-10-4-547 Copyright ©2018 Rocky Mountain Mathematics Consortium

if x_1, \ldots, x_d is a superficial sequence of I, then $J = (x_1, \ldots, x_d)$ is a minimal reduction of I. It is known that every minimal reduction can be generated by superficial sequence (see [6, 26]).

The Ratliff-Rush closure of I is defined as the ideal

$$\widetilde{I} = \bigcup_{n \ge 1} (I^{n+1} : I^n).$$

It is a refinement of the integral closure of I and $\tilde{I} = I$ if I is integrally closed (see [23]). The Ratliff-Rush filtration $\tilde{I^n}$, $n \in \mathbb{N}_0$, carries important information on the associated graded ring

$$G(I) = \bigoplus_{n \ge 0} I^n / I^{n+1}.$$

For example, Heinzer, Lantz and Shah [13] showed that the depth $G(I) \geq 1$ if and only if $\widetilde{I^n} = I^n$ for all $n \in \mathbb{N}_0$. The aim of this paper is to compute the Ratliff-Rush closure in some sense and, as an application, we shall reprove some of the main results of [5, 11, 12]. Finally, we reprove [21, Theorem 1] and [2, Theorem 1.6] with a much simpler proof, and we also give a counter example for [21, Question 3]. This example also states that [2, Theorem 1.8] does not hold, in general. For any unexplained notation or terminology, the reader is referred to [3, 16].

2. Ratliff-Rush closure, associated graded ring.

Proposition 2.1. Let d = 2, x_1, x_2 be a superficial sequence of I and $J = (x_1, x_2)$. Let $k \in \mathbb{N}_0$ be such that

$$J \cap I^n = JI^{n-1}$$
 for all $n \ge k+1$.

Then, $\widetilde{I^n} = I^n$ for all $n \ge 1$ if and only if $I^n : x_1 = I^{n-1}$ for $n = 1, \ldots, k$.

Proof.

 (\Rightarrow) immediately follows by [22, Corollary 2.7].

(\Leftarrow). From [22, Corollary 2.7], it is sufficient for us to prove $I^n : x_1 = I^{n-1}$ for all $n \ge k$. By using induction on n, it is enough to prove the result for n = k + 1. For this, firstly, we prove that

 $JI^k: x_1 = I^k$. However, it is an elementary fact that

$$JI^k : x_1 = (x_1I^k + x_2I^k) : x_1 = I^k + (x_2I^k : x_1),$$

as well as

$$x_2 I^k : x_1 = x_2 I^{k-1}$$

Hence, $JI^k : x_1 = I^k$. Therefore, by our assumption, we have

$$(J \cap I^{k+1}) : x_1 = I^k,$$

and thus, we have $I^{k+1}: x_1 = I^k$, as desired.

The next result immediately follows by Proposition 2.1.

Corollary 2.2. Let d = 2, x_1, x_2 be a superficial sequence of I and $J = (x_1, x_2)$. Let $k \in \mathbb{N}_0$ be such that $r_J(I) = k$. Then, $\widetilde{I^n} = I^n$ for all $n \ge 1$ if and only if $I^n : x_1 = I^{n-1}$ for $n = 1, \ldots, k$.

Corollary 2.3. Let d = 2, x_1, x_2 be a superficial sequence of I and $J = (x_1, x_2)$ such that $r_J(I) = 2$. Then, $\widetilde{I^n} = I^n$ for all $n \ge 1$ if and only if $I^2 : x_1 = I$.

The Hilbert-Samuel function of I is the numerical function that measures the growth of the length of R/I^n for all $n \in \mathbb{N}$. For all nlarge, this function $\lambda(R/I^n)$ is a polynomial in n of degree d

$$\lambda(R/I^n) = \sum_{i=0}^{d} (-1)^i e_i(I) \binom{n+d-i-1}{d-i},$$

where $e_0(I), e_1(I), \ldots, e_d(I)$ are called the *Hilbert coefficients* of *I*. Let

$$A = \bigoplus_{m \ge 0} A_m$$

be a Noetherian graded ring where A_0 is an Artinian local ring, A is generated by A_1 over A_0 , and

$$A_+ = \bigoplus_{m>0} A_m.$$

Let $H_{A_+}^i(A)$ denote the *i*th local cohomology module of A with respect to the graded ideal A_+ , and set

$$a_i(A) = \max\{m \mid [H^i_{A_+}(A)]_m \neq 0\},\$$

with the convention $a_i(A) = -\infty$, if $H^i_{A_+}(A) = 0$. The Castelnuovo-Mumford regularity is defined by $\operatorname{reg}(A) := \max\{a_i(A) + i \mid i \geq 0\}$.

Proposition 2.4. Let d = 2 and J be a minimal reduction of I such that $r_J(I) = 2$. If $\tilde{I} = I$, then we have the following:

(i)
$$\operatorname{reg} G(I) = 2.$$

(ii) $e_2(I) = \lambda(I^2/JI)$

Proof. Case (i) follows by Corollary 2.3 and [19, Theorem 2.1, Corollay 2.2], and case (ii) follows from Corollary 2.3 and [4, Theorem 3.1]. \Box

Remark 2.5. Let d = 2, $\tilde{I} = I$ and J be a minimal reduction of I. If reg G(I) = 3, then, by [19, Lemma 1.2, Corollary 2.2], [28, Proposition 3.2] and Proposition 2.4, we have $r_J(I) = 3$.

The next result is an improvement of [15, Theorem 2.11] and [17, Proposition 16].

Proposition 2.6. Let d = 2, $\tilde{I} = I$ and J be a minimal reduction of I. Then, $r_J(I) = 2$ if and only if $P_I(n) = H_I(n)$ for n = 1, 2, where $H_I(n)$ and $P_I(n)$ are the Hilbert-Samuel function and the Hilbert-Samuel polynomial, respectively.

Proof.

 (\Rightarrow) . Let $r_J(I) = 2$. Then, by Corollary 2.3, $\widetilde{I^n} = I^n$ for all $n \ge 1$, and so, by [17, Proposition 16], we have $H_I(n) = P_I(n)$ for all n = 1, 2.

 (\Leftarrow) is clear by [17, Proposition 16].

Remark 2.7. Let J be a minimal reduction of I, $x_1 \in J$ and $\overline{I} = I/(x_1)$, $\overline{J} = J/(x_1)$. Then, by the definition of the reduction number, we have

- (i) If $r_{\overline{I}}(\overline{I}) = k$ and $I^{k+1} : x_1 = I^k$, then $r_J(I) = k$.
- (ii) If d = 2 and $I^2 : x_1 = I$, then $r_{\overline{J}}(\overline{I}) \leq 2$ if and only if $r_J(I) \leq 2$.

Lemma 2.8. Let d = 2 and J be a minimal reduction of I such that $J \cap I^n = JI^{n-1}$ for $n = 1, \ldots, t$. If

$$r_{\overline{J}}(\overline{I}) = k$$

and

$$\lambda(I^{n+1}/JI^n) = \lambda(\overline{I}^{n+1}/\overline{JI}^n)$$

for $n = t, \ldots, k - 1$, then $I^{n+1} : x_1 = I^n$ for $n = 0, \ldots, k - 1$.

Proof. By [7, Proposition 1.7(ii)], $(x_1) \cap I^n = x_1 I^{n-1}$ for $n = 1, \ldots, t$, and thus, $I^n : x_1 = I^{n-1}$ for $n = 1, \ldots, t$. Now, consider the exact sequence

$$(\dagger) \quad 0 \longrightarrow I^{n+1} : x_1/JI^n : x_1 \longrightarrow I^{n+1}/JI^n \longrightarrow \overline{I}^{n+1}/\overline{J}\overline{I}^n \longrightarrow 0.$$

By our assumption, I^{n+1} : $x_1 = JI^n$: x_1 for $n = t, \ldots, k - 1$. Assume that $yx_1 \in JI^t$. Then, we have $yx_1 = \alpha_1x_1 + \alpha_2x_2$ for some $\alpha_1, \alpha_2 \in I^t$. Hence, $(y - \alpha_1)x_1 = \alpha_2x_2 \in x_2I^t$, and, since x_1, x_2 is a regular sequence, we obtain $y - \alpha_1 = sx_2$ for some $s \in R$. Since $(y - \alpha_1)x_1 = sx_1x_2 \in x_2I^t$, and x_2 is a non-zerodivisor, it follows that $sx_1 \in I^t$, and thus, $s \in I^t : x_1$. Therefore, $s \in I^{t-1}$, and it follows that $y \in I^t$. Thus, by repeating this argument, we obtain $I^{n+1} : x_1 = I^n$ for $n = 0, \ldots, k - 1$, as desired.

The following result was proven in [5, Theorem 3.10], [14, Theorem 2.4] and [25, Theorem 3.7]; here, we give a simplified proof.

Proposition 2.9. Let J be a minimal reduction of I such that $J \cap I^n = JI^{n-1}$ for $n = 1, \ldots, t$ and $\lambda(I^{t+1}/JI^t) \leq 1$. Then, depth $G(I) \geq d-1$.

Proof. By using Sally's descent, we may reduce the problem to the case of d = 2. Set $r_{\overline{J}}(\overline{I}) = k$. Then, by using the exact sequence (†), we have

$$\lambda(\overline{I}^{n+1}/\overline{J}\overline{I}^n) = \lambda(I^{n+1}/JI^n) \le 1 \quad \text{for } n = t, \dots, k-1.$$

From Lemma 2.8, we have $I^{n+1}: x_1 = I^n$ for $n = 0, \ldots, k - 1$. By [14, Proposition 1.1], we know that

$$\sum_{n\geq 0} \lambda(\widetilde{I^{n+1}}/J\widetilde{I^n}) = e_1(I) = e_1(\overline{I})$$
$$= \sum_{n=0}^{k-1} \lambda(I^{n+1}/JI^n) = \sum_{n=0}^{t-1} \lambda(I^{n+1}/JI^n) + k - t.$$

Therefore, from [24, Theorem 1.3], we have $r_J(I) \leq k$. Thus, by Lemma 2.8 and Corollary 2.2, we obtain $\widetilde{I^n} = I^n$ for all $n \geq 1$. Hence, depth $G(I) \geq 1$, as required.

Lemma 2.10. Let d = 2 and $J = (x_1, x_2)$ be a minimal reduction of I such that $J \cap I^n = JI^{n-1}$ for all $n \ge 3$. If either $I^2 : x_1 = I$ or $I^2 : x_2 = I$, then $\widetilde{I^n} = I^n$ for all $n \ge 1$. In particular, depth $G(I) \ge 1$.

Proof. By using the same argument that was used in the proof of Proposition 2.1, the result immediately follows. \Box

Lemma 2.11. Let d = 2 and $J = (x_1, x_2)$ be a minimal reduction of I such that $\lambda(J \cap I^2/JI) \leq 1$. Then, either $I^2 : x_1 = I$ or $I^2 : x_2 = I$.

Proof. If $\lambda(J \cap I^2/JI + I^2 \cap (x_1)) = 1$, then $I^2 \cap (x_1) \subseteq JI$, and thus, $I^2 \cap (x_1) \subseteq [x_1I + x_2I] \cap (x_1)$. Therefore, $I^2 \cap (x_1) = x_1I$, and hence, $I^2 : x_1 = I$. If $\lambda(J \cap I^2/JI + I^2 \cap (x_1)) = 0$, then $I^2 \cap (x_1) + Ix_2 = J \cap I^2$. Hence,

$$I^2 \cap (x_1 x_2) + I x_2 = I^2 \cap (x_2),$$

and thus,

 $Ix_2 = I^2 \cap (x_2).$

Therefore, $I^2 : x_2 = I$.

The following result was proven in [11, Theorem 3.2] and [12, Corollary 1.5]; we give a much easier proof.

Proposition 2.12. Let J be a minimal reduction of I such that $J \cap I^n = JI^{n-1}$ for all $n \ge 3$. If $\lambda(J \cap I^2/IJ) \le 1$, then depth $G(I) \ge d-1$.

Proof. By Sally's descent, we may assume that d = 2. Now, using Lemmas 2.10 and 2.11, the result follows.

Theorem 2.13. Let $d \geq 3$ and $k \in \mathbb{N}_0$ be such that $\widetilde{I^k} = I^k$. If x_1, \ldots, x_d is a tame superficial sequence of I and $J = (x_1, \ldots, x_d)$ such that $J \cap I^n = JI^{n-1}$ for all $n \geq k+2$, then

$$\mathfrak{a}^m I^n : x_1 = \mathfrak{a}^m I^{n-1}$$

for all $n \ge k+1$ and all $m \in \mathbb{N}_0$, where $\mathfrak{a} = (x_2, \ldots, x_d)$. In particular, $\widetilde{I^n} = I^n$ for all $n \ge k$.

Proof. We will proceed by induction on n. Assume that n = k + 1. Then, by [18, Lemma 2.7] and our assumption, we have

$$\mathfrak{a}^m I^{k+1}: x_1 \subseteq \mathfrak{a}^m \widetilde{I^{k+1}}: x_1 = \mathfrak{a}^m \widetilde{I^k} = \mathfrak{a}^m I^k$$

Therefore, $\mathfrak{a}^m I^{k+1}$: $x_1 = \mathfrak{a}^m I^k$ for all $m \in \mathbb{N}_0$. Assume that $n \ge k+1$ and that, for all t with $k+1 \le t \le n$ and all $m \in \mathbb{N}_0$,

$$\mathfrak{a}^m I^t : x_1 = \mathfrak{a}^m I^{t-1}.$$

We show that, for all $m \in \mathbb{N}_0$,

$$\mathfrak{a}^m I^{n+1} : x_1 = \mathfrak{a}^m I^n.$$

Let yx_1 be an element of $\mathfrak{a}^m I^{n+1}$. Then, $yx_1 \in \mathfrak{a}^m$ and, by using [18, Lemma 2.1], we obtain $y \in \mathfrak{a}^m$. Therefore, we can write the expression

$$y = \sum_{i_2 + \dots + i_d = m} r_{i_2 \cdots_d} x_2^{i_2} \cdots x_d^{i_d}.$$

Since the element yx_1 belongs to $\mathfrak{a}^m I^{n+1}$, as well, we obtain the following equalities

$$\sum_{i_2+\dots+i_d=m} r_{i_2\dots i_d} x_1 x_2^{i_2} \cdots x_d^{i_d} = y x_1 = \sum_{i_2+\dots+i_d=m} s_{i_2\dots i_d} x_2^{i_2} \cdots x_d^{i_d},$$

where $s_{i_2\cdots i_d} \in I^{n+1}$ for all i_2, \ldots, i_d such that $i_2 + \cdots + i_d = m$. As x_1, \ldots, x_d is a regular sequence in R, by equating coefficients in the previous expressions, we obtain

$$r_{i_2\cdots i_d}x_1 - s_{i_2\cdots i_d} \in (x_2, \ldots, x_d)$$

for all i_2, \ldots, i_d such that $i_2 + \cdots + i_d = m$. Hence, $s_{i_2 \cdots i_d} \in J \cap I^{n+1}$ and, by our assumption, we obtain $s_{i_2 \cdots i_d} \in JI^n$ for all i_2, \ldots, i_d such that $i_2 + \cdots + i_d = m$. Hence, returning to the equalities we wrote for

 yx_1 , we obtain $yx_1 \in \mathfrak{a}^m JI^n = \mathfrak{a}^{m+1}I^n + x_1\mathfrak{a}^m I^n$. Therefore, we have $\mathfrak{a}^m I^{n+1} \cap (x_1) \subseteq \mathfrak{a}^{m+1}I^n \cap (x_1) + x_1\mathfrak{a}^m I^n = x_1(\mathfrak{a}^{m+1}I^n : x_1) + x_1\mathfrak{a}^m I^n$. By applying the induction hypothesis, we get

$$\mathfrak{a}^m I^{n+1} \cap (x_1) \subseteq x_1 \mathfrak{a}^{m+1} I^{n-1} + x_1 \mathfrak{a}^m I^n = x_1 \mathfrak{a}^m I^n$$

This proves that $\mathfrak{a}^m I^{n+1} : x_1 \subseteq \mathfrak{a}^m I^n$, and thus, $\mathfrak{a}^m I^{n+1} : x_1 = \mathfrak{a}^m I^n$ for all $m \in \mathbb{N}_0$. In particular, if we set m = 0, then $I^{n+1} : x_1 = I^n$ for all n > k; hence, by [22, Corollary 2.7], $\widetilde{I^n} = I^n$ for all $n \ge k$, as desired.

The next result easily follows by Theorem 2.13.

Corollary 2.14. Let x_1, \ldots, x_d be a tame superficial sequence of I and $J = (x_1, \ldots, x_d)$.

- (i) If $\widetilde{I} = I$ and $J \cap I^n = JI^{n-1}$ for all $n \ge 3$, then $\widetilde{I^n} = I^n$ for all $n \ge 1$. In particular, depth $G(I) \ge 1$.
- (ii) If $r_J(I) = 2$, then $\widetilde{I} = I$ if and only if depth $G(I) \ge 1$.
- (iii) Let $k \in \mathbb{N}_0$ be such that $r_J(I) = k + 1$ and $\widetilde{I^k} = I^k$. Then, $\widetilde{I^n} = I^n$ for all $n \ge k$.

The following example shows that the equality of Corollary 2.14 (ii) may occur.

Example 2.15. Let K be a field, R = K[[x, y]], $I = (x^6, x^4y^2, x^3y^3, x^2y^4, xy^5, y^6)$ and $J = (x^6, y^6 + x^4y^2)$. Then, $r_J(I) = 2$, depth G(I) = 1, and thus, G(I) is not Cohen-Macaulay.

3. Invariance of a length. Let $J = (x_1, \ldots, x_d)$ be a minimal reduction of *I*. In [29], Wang defined the following exact sequence for all n, k as

$$(*) \quad 0 \longrightarrow T_{n,k} \longrightarrow \oplus^{\binom{k+d-1}{d-1}} I^n / J I^{n-1} \xrightarrow{\phi_k} J^k I^n / J^{k+1} I^{n-1} \longrightarrow 0,$$

where $\phi_k = (x_1^k, x_1^{k-1}x_2, \ldots, x_1^{k-1}x_d, \ldots, x_d^k)$ and $T_{n,k} = \ker(\phi_k)$. He also showed that $T_{1,k} = 0$ for all k and, if d = 1, then $T_{n,k} = 0$ for all n, k. Using the exact sequence (*), we derive the following, simple lemma, and the proof is left to the reader.

Lemma 3.1. Let $t \in \mathbb{N}_0$ and $J = (x_1, \ldots, x_d)$ be a minimal reduction of I. Then, we have the following:

- (i) if $J \cap I^n = JI^{n-1}$ for $n = 1, \ldots, t$, then $T_{n,k} = 0$ for $n = 1, \ldots, t$ and all k.
- (ii) If I is integrally closed, then $T_{2,k} = 0$ for all k. In particular, if I = m, then $T_{2,k} = 0$ for all k.

The next lemma is well known; see the proof of [5, Proposition 2.1].

Lemma 3.2. Let $J = (x_1, ..., x_d)$ be a minimal reduction of I. Then, $\lambda(I/J) = e_0(I) - \lambda(R/I)$ and

$$\lambda(I^{n+1}/J^nI) = e_0(I)\binom{n+d-1}{d} + \lambda(R/I)\binom{n+d-1}{d-1} - \lambda(R/I^{n+1})$$

for $n \geq 1$, which are independent of J.

In [21], Puthenpurakal proved that $\lambda(\mathfrak{m}^3/J\mathfrak{m}^2)$ is independent of the minimal reduction J of \mathfrak{m} and, subsequently, Ananthnarayan and Huneke [2] extended it for *n*-standard admissible *I*-filtrations.

The following result was proven in [2, Theorem 3.5] and [21, Theorem 1]. We reprove it here with a much simpler proof.

Theorem 3.3. Let $t \in \mathbb{N}_0$ and $J = (x_1, \ldots, x_d)$ be a minimal reduction of I. If $J \cap I^n = JI^{n-1}$ for $n = 1, \ldots, t$, then $\lambda(I^{n+1}/JI^n)$ is independent of J for $n = 1, \ldots, t$.

Proof. We have

$$\lambda(I^{n+1}/JI^n) = \lambda(I^{n+1}/J^nI) - \sum_{k=1}^{n-1} \lambda(J^k I^{n+1-k}/J^{k+1}I^{n-k})$$

Therefore, by Lemma 3.1 and the exact sequence (*), we obtain

$$\lambda(I^{n+1}/JI^n) = \lambda(I^{n+1}/J^nI) - \sum_{k=1}^{n-1} \binom{k+d-1}{d-1} \lambda(I^{n+1-k}/JI^{n-k}).$$

Now by using Lemma 3.2 and induction on n, the result follows. \Box

The next example is a counterexample for [21, Question 3], and it also states that [2, Theorem 1.8] does not hold, in general. The computations were performed by using Macaulay2 [9], CoCoA [1] and Singular [10].

Example 3.4. Let K be a field and S = K[x, y, z, u, v], where $I = (x^2 + y^5, xy + u^4, xz + v^3)$. Then, R = S/I is a Cohen-Macaulay local ring of dimension two, ideals $J_1 = (y, z)R$ and $J_2 = (z, u)R$ are minimal reduction of $\mathfrak{m} = (x, y, z, u, v)R$ and $\lambda(\mathfrak{m}^4/J_1\mathfrak{m}^3) = 17$, $\lambda(\mathfrak{m}^4/J_2\mathfrak{m}^3) = 20$.

Acknowledgments. This paper was done while I was visiting the University of Osnabruck. I would like to thank the Institute of Mathematics of the University of Osnabruck for hospitality and partial financial support, and I also would like to express my very great appreciation to Professor Winfried Bruns for his valuable and constructive suggestions during the planning and development of this research work. Moreover, I would am deeply grateful to the referee for the careful reading of the manuscript and the helpful suggestions.

REFERENCES

1. J. Abbott and A.M. Bigatti, A C++ library for doing computations in commutative algebra, available at http://cocoa.dima.unige.it/cocoalib.

2. H. Ananthnarayan and C. Huneke, 3-standardness of the maximal ideal, J. Pure Appl. Alg. 215 (2011), 2674–2683.

3. W. Bruns and J. Herzog, *Cohen-Macaulay rings*, Cambridge University Press, Cambridge, UK, 1998.

4. A. Corso, C. Polini and M.E. Rossi, Depth of associated graded rings via Hilbert coefficients of ideals, J. Pure Appl. Alg. **201** (2005), 126–141.

5. A. Corso, C. Polini and M. Vaz Pinto, Sally modules and associated grade rings, Comm. Alg. 26 (1998), 2689–2708.

6. T.T. Dinh, M.E. Rossi and N.V. Trung, *Castelnuovo-Mumford regularity and Ratliff-Rush closure*, J. Algebra **504** (2018), 568–586.

7. J. Elias, Depth of higher associated graded rings, J. Lond. Math. Soc. **70**(2004), 41–58.

8. _____, On the computation of the Ratliff-Rush closure, J. Symbol. Comp. 37 (2004), 717–725.

9. D.R. Grayson and M.E. Stillman, *Macaulay 2*, *A software system for research in algebraic geometry*, available at http://www.math.uiuc.edu/Macaulay2.

556

10. G.M. Greuel, S. Laplagne and G. Pfister, normal.lib, A Singular 4-0-2 library for computing the normalization of affine rings, 2015.

11. A. Guerrieri, On the depth of the associated graded ring of an \mathfrak{m} -primary ideal of a Cohen-Macaulay local ring, J. Algebra 167 (1994), 745–757.

12. A. Guerrieri and M.E. Rossi, *Estimates on the depth of the associated graded ring*, J. Algebra 211 (1999), 457–471.

13. W. Heinzer, D. Lantz and K. Shah, *The Ratliff-Rush ideals in a Noetherian ring*, Comm. Alg. **20**(1992), 591–622.

14. S. Huckaba, On the associated graded rings having almost maximal depth, Comm. Alg. 26 (1998), 967–976.

15. C. Huneke, *Hilbert functions and symbolic powers*, Michigan Math. J. **34** (1987), 293–318.

16. C. Huneke and I. Swanson, *Integral closure of ideals, rings and modules*, Cambridge University Press, Cambridge, UK, 2006.

 S. Itoh, Hilbert coefficients of integrally closed ideals, J. Algebra 176 (1995), 638–652.

18. A. Mafi, *Ratliff-Rush ideal and reduction numbers*, Comm. Alg. 46 (2018), 1272–1276.

19. T. Marley, The reduction number of an ideal and the local cohomology of the associated graded ring, Proc. Amer. Math. Soc. **117** (1993), 335–341.

20. D.G. Northcott and D. Rees, *Reduction of ideals in local rings*, Math. Proc. Cambr. Philos. Soc. 50 (1954), 145–158.

21. T.J. Puthenpurakal, *Invariance of a length associated to a reduction*, Comm. Alg. **33** (2005), 2039–2042.

22. _____, Ratliff-Rush filtration, regularity and depth of higher associated graded modules, I, J. Pure Appl. Alg. **208** (2007), 159–176.

 L.J. Ratliff and D. Rush, Two notes on reductions of ideals, Indiana Univ. Math. J. 27(1978), 929–934.

24. M.E. Rossi, A bound on the reduction number of a primary ideal, Proc. Amer. Math. Soc. **128** (2000), 1325–1332.

Primary ideals with good associated graded ring, J. Pure Appl. Alg.
(2000), 75–90.

26. J.D. Sally, *Hilbert coefficients and reduction number* 2, J. Alg. Geom. **1** (1992), 325–333.

27. I. Swanson, A note on analytic spread, Comm. Alg. 22 (1994), 407–411.

28. N.V. Trung, Reduction exponent and dgree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. **101** (1987), 229–236.

29. H. Wang, An interpretation of depth(G(I)) and $e_1(I)$ via the Sally module, Comm. Alg. **25** (1997), 303–309.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KURDISTAN, P.O. BOX 416, SANANDAJ, IRAN

Email address: a_mafi@ipm.ir