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CONTROLLING THE DIMENSIONS OF FORMAL
FIBERS OF A UNIQUE FACTORIZATION DOMAIN

AT THE HEIGHT ONE PRIME IDEALS

SARAH M. FLEMING, LENA JI, S. LOEPP, PETER M. MCDONALD,
NINA PANDE AND DAVID SCHWEIN

ABSTRACT. Let T be a complete local (Noetherian)
equidimensional ring with maximal ideal m such that the
Krull dimension of T is at least two and the depth of T is
at least two. Suppose that no integer of T is a zerodivisor
and that |T | = |T/m|. Let d and t be integers such that
1 ≤ d ≤ dimT − 1, 0 ≤ t ≤ dimT − 1 and d− 1 ≤ t. Assume
that, for every p ∈ AssT , ht p ≤ d − 1 and that if z is a
regular element of T and Q ∈ Ass(T/zT ), then htQ ≤ d. We
construct a local unique factorization domain A such that
the completion of A is T and such that the dimension of the
formal fiber ring at every height one prime ideal of A is d− 1
and the dimension of the formal fiber ring of A at (0) is t.

1. Introduction. Let A be a local (Noetherian) ring, and let T be
the completion of A with respect to its maximal ideal. One fruitful
way to study the relationship between A and T is to examine the
relationship between SpecA and SpecT , which we can do by looking
at the formal fibers of A at its prime ideals. We define the formal fiber
ring of A at p ∈ SpecA as T ⊗A κ(p), and we define the formal fiber
of A at p as Spec(T ⊗A κ(p)), where κ(p) is the residue field Ap/pAp.
There is a one-to-one correspondence between elements of the formal
fiber of A at p and the elements of the inverse image of p under the
mapping

φ : SpecT −→ SpecA,

defined by φ(q) = q ∩ A. Due to this correspondence, the formal
fibers of A encode information about the relationship between the
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prime ideals of T and the prime ideals of A. Note that, since T
is a faithfully flat extension of A, the map φ is surjective. Using
Matsumura’s notation in [6], we denote the Krull dimension of the
formal fiber ring of A at the prime ideal p by α(A, p). The supremum
of α(A, p) over all prime ideals p of A is denoted by α(A). When A is
an integral domain, we refer to the formal fiber ring of A at the prime
ideal (0) as the generic formal fiber ring, and the formal fiber of A at
(0) as the generic formal fiber.

Matsumura proved [6] that, given two elements p, p′ ∈ SpecA,
if p ⊆ p′, then α(A, p) ≥ α(A, p′). Additionally, he proved that,
given a ring of positive dimension n, the maximum possible value
of α(A) is n − 1. Furthermore, if A is a ring of essentially finite
type over a field, Matsumura showed that α(A) = n − 1, and that
α(A, p) = n − 1 − ht p. In other words, for rings of essentially finite
type over a field, the dimensions of the formal fiber rings are completely
understood. However, for a general ring, not much is known about how
the inequality α(A, p) ≥ α(A, p′) behaves when varying the heights of
p and p′. We are specifically interested in what happens when A is an
integral domain, p = (0), and p′ is a height one prime ideal of A. In
particular, Heinzer, Rotthaus and Sally informally posed the following
question:

Question 1.1. Let A be an excellent local ring with α(A) > 0, and let
∆ be the set

{p ∈ SpecA | ht p = 1 and α(A, p) = α(A)}.

Is ∆ a finite set?

We first note that, if A is a Noetherian integral domain, then
α(A) = α(A, (0)). Given Matsumura’s results, one might expect that,
for an integral domain A, the dimension of the formal fiber ring of A
at “most” height one prime ideals is strictly less than the dimension of
the formal fiber ring of A at the zero ideal. In other words, one might
expect that the set ∆ is “small,” so the above question is a very natural
one to ask.

In [1], Boocher, Daub and Loepp showed that the set ∆ need
not be finite by constructing an excellent local unique factorization
domain A for which ∆ is countably infinite. However, the UFD that
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they construct has uncountably many height one prime ideals; thus,
the set ∆ for their ring is “small” in the sense that it does not contain
“most” of the height one prime ideals of A. Based on this result,
one might think it unlikely that there exists a ring such that ∆ is an
uncountable set and even less likely that a ring exists such that ∆
contains all of its height one prime ideals. In this paper, we construct
a non-excellent unique factorization domain A for which this property
holds; that is, every height one prime ideal of A is in ∆. In fact,
we generalize the result so that, if d and t are integers such that
1 ≤ d ≤ dimT − 1, 0 ≤ t ≤ dimT − 1, d − 1 ≤ t, then our A satisfies
the property that every height one prime ideal p of A has a formal
fiber ring of dimension d−1, and the generic formal fiber ring of A has
dimension t. In other words, we show that the relationship between the
dimensions of the formal fiber rings of a ring at its height one prime
ideals and the dimension of the generic formal fiber ring of the ring is
restricted only by the inequality given by Matsumura, that is, if p is a
height one prime ideal of a ring A, then α(A, p) ≤ α(A, (0)); however,
for any nonnegative integer less than or equal to the dimension of the
generic formal fiber ring, there exists a ring such that the dimension
of the formal fiber ring at each height one prime ideal is equal to this
integer.

Our main result is given in Theorem 4.1. Let T be a complete
local equidimensional ring with maximal ideal m, and suppose that the
Krull dimension of T is at least two. Also, suppose that |T | = |T/m|,
no integer is a zerodivisor in T and T has depth greater than one. Let
d and t be integers with 1 ≤ d ≤ dimT−1, 0 ≤ t ≤ dimT−1, d−1 ≤ t.
Suppose that ht p ≤ d−1 for every p ∈ AssT and that, if z is a regular
element of T and Q ∈ Ass(T/zT ), then htQ ≤ d. We show that
there exists a local unique factorization domain A whose completion
is T such that α(A, (0)) = t and, for every p ∈ SpecA with ht p = 1,
α(A, p) = d−1, that is to say, with relatively weak conditions on T , we
can find a local UFD A where the dimensions of the formal fiber rings
of A at all height one prime ideals are equal. Moreover, we can control
the dimension of the generic formal fiber ring of A, and the dimension
of the formal fiber rings of A at its height one prime ideals can be any
nonnegative integer less than or equal to the dimension of the generic
formal fiber ring of A. In particular, if we set d − 1 = t, then we can
find a UFD A such that ∆ is the set of all height one prime ideals of
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A, which, in our case, will be an uncountable set. Furthermore, in this
case, we have the ability to set the dimension of the formal fiber rings
at our height one prime ideals and the generic formal fiber ring to be
any integer value between 0 and dimT − 2.

In [3], Heitmann found necessary and sufficient conditions for a
complete local ring to be the completion of a unique factorization
domain. For our ring A to exist, then, our ring T must satisfy those
conditions. In particular, this means that T must have depth greater
than one and satisfy the condition that no integer of T is a zerodivisor.
We impose the additional condition that dimT ≥ 2 to avoid any trivial
examples. The remaining conditions we put on T are relatively weak.
We base our construction on that employed by Heitmann [3], modifying
and adding lemmas so that we can control the dimensions of the formal
fiber rings of A at (0) and at the height one prime ideals. We employ
Lemma 2.1, which gives necessary and sufficient conditions for a quasi-
local subring of a complete local ring T to be Noetherian and have
completion T . In particular, if T is a complete local ring with maximal
ideal m and A is a quasi-local subring of T with maximal ideal m ∩A,
then A is Noetherian and has completion isomorphic to T if the map

A −→ T/m2

is onto and every finitely generated ideal a of A is closed; that is,
aT ∩ A = a. To ensure that our subring A satisfies these conditions
and has the desired formal fibers, we construct a strictly ascending
chain of subrings of T starting with a localization of the prime subring
of T . We then adjoin elements of T in succession to make the above
map onto, to close up finitely generated ideals and to manipulate the
dimensions of the formal fiber rings. We argue that the union of the
subrings in this chain is our desired local UFD A.

In this paper, all rings are commutative with unity. We define a
quasi-local ring as any ring with exactly one maximal ideal and a local
ring as a quasi-local Noetherian ring. We use (T,m) to refer to a local
ring T with maximal ideal m and Speck T to refer to the set of prime

ideals of T of height k. T̂ will denote the completion of T in the m-adic
topology.

2. Preliminaries. Before beginning our construction, we present,
without proof, several lemmas which we use throughout the construc-
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tion. The next lemma will be used to show that the completion of A
is indeed T .

Lemma 2.1 ([4, Proposition 1]). If (A,m∩A) is a quasi-local subring
of a complete local ring (T,m), A → T/m2 is onto and aT ∩ A = a
for every finitely generated ideal a of A, then A is Noetherian, and the

natural homomorphism Â → T is an isomorphism.

We use the following lemma to find prime ideals of T of height d to
include in the formal fibers at the height one prime ideals of A.

Lemma 2.2 ([2, Lemma 2.3]). Let (T,m) be a complete local ring of
dimension at least one. Let p be a nonmaximal prime ideal of T . Then,
|T/p| = |T | ≥ 2ℵ0 .

Throughout our construction, we adjoin elements of T to our inter-
mediate subrings. The next two lemmas ensure that we can adjoin the
necessary elements of T while also preserving the desired properties of
our subrings.

Lemma 2.3 ([3, Lemma 2]). Let (T,m) be a complete local ring, and
let D ⊂ T . Suppose that C ⊂ SpecT such that m /∈ C, and suppose
that a is an ideal of T such that a ̸⊆ p for all p ∈ C. If C and D are
countable, then

a *
∪

{t+ p | t ∈ D, p ∈ C}.

Lemma 2.4 ([3, Lemma 3]). Let (T,m) be a local ring, and let D ⊂ T .
Suppose that C ⊂ SpecT and that a is an ideal of T such that a ̸⊆ p
for all p ∈ C. If |C ×D| < |T/m|, then a *

∪
{t+ p | t ∈ D, p ∈ C}.

3. The construction. Here, we describe the construction of our
local UFD A. We begin with the definition of a Zd-subring of T . If we
can maintain Zd-subrings throughout the construction, then the formal
fiber rings of A will be of the desired dimension.
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Definition 3.1. Let (T,m) be a complete local ring, let d be an integer
such that 1 ≤ d ≤ dimT − 1 and let (R,m∩R) be a quasi-local unique
factorization domain contained in T satisfying the following:

(i) |R| ≤ sup(ℵ0, |T/m|) with equality only if T/m is countable;
(ii) q ∩R = (0) for all q ∈ AssT ;
(iii) if t ∈ T is regular and q ∈ Ass(T/tT ), then ht(q ∩R) ≤ 1; and
(iv) there exists a set QR ⊂ Specd T such that the map

f : QR −→ Spec1 R,

given by f(q) = q ∩R, is a bijection.

Then, R is called a Zd-subring of T with distinguished set QR. Note
that if (R,m ∩R) satisfies conditions (i)–(iii), but not necessarily (iv),
R is an N -subring of T , as defined in [3].

Definition 3.2. If R ⊆ S are Zd-subrings of T with distinguished sets
QR and QS , we say that S is an A+-extension of R if:

(i) prime elements of R are prime in S;
(ii) |S| ≤ sup(ℵ0, |R|); and
(iii) QR ⊆ QS .

If R ⊆ S are N -subrings of T satisfying conditions (i) and (ii), but not
necessarily (iii), then S is an A-extension of R, as defined in [3].

In order to simplify the statements of many of our subsequent
lemmas, we will refer to the following assumption.

Assumption 3.3. (T,m) is a complete local equidimensional ring with
2 ≤ dimT , d is an integer such that 1 ≤ d ≤ dimT − 1 and (R,m∩R)
is a Zd-subring of T with distinguished set QR.

The next lemma is used to adjoin a coset representative of an element
of T/m2 to our subring R. Applying this lemma infinitely often will
allow us to ensure that the map A → T/m2 is onto so that we can
employ Lemma 2.1.

Lemma 3.4. Under Assumption 3.3, let t ∈ T , and suppose that
depthT > 1. Let P be a nonmaximal prime ideal of T such that
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P ∩R = (0). Then, there exists an A+-extension S of R such that

t+m2 ∈ Image(S → T/m2)

and P ∩ S = (0).

Proof. Note that this lemma is similar to [3, Lemma 5]. Let

C = {p ∈ SpecT | p ∈ Ass(T/rT ) with 0 ̸= r ∈ R}∪AssT ∪QR∪{P}.

Since depthT > 1, we have that m /∈ C, so m2 ̸⊂ p for every p ∈ C. For
p ∈ C, let D(p) be a set of coset representatives of the cosets u+p ∈ T/p
that make u+ t+ p algebraic over R/p ∩R. Define

D =
∪
p∈C

D(p).

Using Lemma 2.3 ifR is countable and Lemma 2.4, otherwise, we choose
x ∈ m2 such that (x+ t) + p is transcendental over R/(p∩R) for every
p ∈ C. Define S = R[x + t]m∩R[x+t]; we claim that S is our desired
Zd-subring with distinguished set QS , where we will define QS later.

We first show that p∩S = (p∩R)S for any p ∈ C. Elements of p∩S
are of the form uf , where u ∈ S× is a unit and f ∈ R[x+ t]. Since u is
a unit, we have that f ∈ p. Treating f as a polynomial in x+ t over R,
each of its coefficients must be in p∩R since x+ t+p is transcendental
over R/p ∩R. Thus, f ∈ (p ∩R)R[x+ t], and so, uf ∈ (p ∩R)S. This
gives us that

p ∩ S ⊆ (p ∩R)S,

and the opposite containment is clear, so we have equality.

Clearly, |S| = sup(ℵ0, |R|) as we are simply adjoining a transcenden-
tal element and localizing, and so S satisfies condition (i) of Zd-subrings
and condition (ii) of A+-extensions. Now, let q ∈ AssT ; then,

q ∩ S = (q ∩R)S = (0),

and so condition (ii) of Zd-subrings is satisfied. By the same argument,
S ∩ P = (0).

Now, let p ∈ Ass(T/rT ) for some regular r ∈ T . First, suppose that
p ∩R = (0). Then, in

Sp∩S = R[x+ t]p∩R[x+t],
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all nonzero elements of R are units, and thus, Sp∩S is isomorphic
to k[X] with additional elements inverted, where k is a field and
X is an indeterminate. It follows that dimSp∩S ≤ 1, and we have
ht(p ∩ S) ≤ 1. Now, suppose p ∩ R = aR for some a ∈ R. We know
that p ∈ Ass(T/rT ) if and only if pTp ∈ Ass(Tp/rTp) [5, Theorem 6.2],
and so, pTp consists of zerodivisors of Tp/rTp. Then, Tp/rTp consists
only of zerodivisors and units, and hence, has depth zero, and, since
a ∈ T is regular, Tp/aTp must also have depth zero. Then, pTp consists
only of zerodivisors of Tp/aTp, and thus,

pTp ∈ Ass(Tp/aTp),

and we have that p ∈ Ass(T/aT ). Therefore, p ∈ C; hence, we have
that

p ∩ S = (p ∩R)S = aS.

Since R is a UFD and x+ t is transcendental over R, R[x+ t] is a UFD
as well, and furthermore, any localization of a UFD is a UFD; thus,
S = R[x+ t]m∩R[x+t] is a UFD. Therefore, since aS is a principal ideal
of S, ht(p ∩ S) ≤ 1, and S satisfies condition (iii) of Zd-subrings.

Note that, since x + t is transcendental over R, prime elements of
R are prime in S. Finally, we define the distinguished set QS for S.
We first show that there is a one-to-one correspondence between height
one prime ideals of R and height one prime ideals pS of S such that
pS ∩ R ̸= (0) given by pR 7→ pS. If pS is a height one prime ideal
of S such that pS ∩R ̸= (0), then there is an element s ∈ S such that
ps ∈ R. Factoring ps into primes in R, we obtain

ps = q1 · · · qn,

where qi are prime elements in R. Since prime elements in R are prime
in S, we have that q1 · · · qn is a prime factorization of ps in S. It follows
that p = qiu for some i, where u is a unit in S. Hence,

pS = (qiu)S = qiS;

thus, for every height one prime ideal pS of S with pS ∩R ̸= (0), there
is a prime element q of R such that pS = qS, and it follows that our
map is onto. Now, suppose that p and q are prime elements of R such
that pS = qS. Then, letting P ′ ∈ Ass(T/pT ), we have that

pS ∩R ⊆ P ′ ∩R = pR.
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Clearly, pR ⊆ pS ∩R. This gives us that

pR = pS ∩R = qS ∩R = qR,

showing that our map is one-to-one. Let qp ∈ QR, where p is a prime
element of R satisfying qp ∩R = pR. Then,

qp ∩ S = (qp ∩R)S = pS.

Hence, the map from QR to the set of height one prime ideals pS of S
satisfying pS ∩R ̸= (0), given by qp 7→ qp ∩ S = pS, is a bijection.

Now, let p be a nonzero prime element of S such that pS ∩R = (0).
We claim that there is a qp ∈ Specd T such that qp ∩ S = pS, and we
show this by induction on d. If d = 1, let qp be a minimal prime ideal
of pT . In the case d = 2, let p ∈ SpecT be a minimal prime ideal of pT ,
and consider the embedding

S/p ∩ S ↩→ T/p.

Since T/p is a Noetherian integral domain, each nonzero element of
S/p ∩ S is contained in finitely many height one prime ideals of T/p,
and since, by Lemma 2.2,

|S/p ∩ S| < |T | = |T/p|,

there must be some q ∈ Spec1(T/p), whose intersection with S/p ∩ S
is zero. Lifting to T and using the fact that T is equidimensional and
catenary, we have a height two prime ideal q of T containing p such
that q∩S ⊆ p∩S. By condition (iii) of Zd-subrings, p∩S = pS, and so,
q ∩ S = pS. Now, let 2 < d < dimT , and suppose that q′ ∈ Specd−1 T
satisfies q′ ∩ S = pS. Applying the above argument to the injection

S/q′ ∩ S = S/pS ↩→ T/q′,

we can find some qp ∈ Specd T containing p and satisfying qp ∩ S ⊆
q′ ∩ S, and thus, qp ∩ S = pS, and the induction is complete. Now, for
every height one prime ideal pS of S such that pS∩R = (0), choose one
q ∈ Specd T such that q∩S = pS. We define QS to be the union of the
set of these prime ideals and QR. Then, S is our desired A+-extension
of R. �

Lemma 3.5. Under Assumption 3.3, let a be a finitely generated ideal
of R, and let c ∈ aT ∩R. Let P be a nonmaximal prime ideal of T such
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that P ∩R = (0). Then, there exists an A+-extension S of R such that
c ∈ aS and P ∩ S = (0).

Proof. Note that this lemma is similar to [3, Lemma 4] with the
change that, instead of R and S being merely N -subrings, R and S
are Zd-subrings of T with distinguished sets QR and QS satisfying
QR ⊆ QS . Therefore, most of the proof follows the proof of [3, Lemma
4], and we need only show that condition (iv) of Definition 3.1 holds for
the S we construct, that we can choose QS so that QR ⊆ QS , and that
P ∩S = (0). We will proceed by inducting on the number of generators
of a. Let a = (a1, . . . , an)R.

It is shown in the proof of [3, Lemma 4] that, without loss of
generality, we may assume that a is not contained in a height one prime
ideal of R, and thus, we will assume this for the rest of our proof. If
n = 1, this implies that a = R, so S = R is the desired A+-extension
of R. As in the proof of Lemma 3.4, we define

C = {p ∈ SpecT | p ∈ Ass(T/rT ) with 0 ̸= r ∈ R}∪AssT ∪QR∪{P}.

Now, we consider the case n = 2. Then, c = a1t1 + a2t2 for some
t1, t2 ∈ T , and thus, c = (t1 + a2t)a1 + (t2 − a1t)a2 for any t ∈ T .
Following the proof of [3, Lemma 4], let x1 = t1+a2t and x2 = t2−a1t
for some t to be carefully chosen later. We claim that, if p ∈ C, then at
most one of a1 or a2 is contained in p. This is clear if p∩R = (0), and
if ht(p ∩R) = 1, then p ∩R = pR for some prime element p ∈ R. If a1
and a2 are both in p, then a ⊂ p ∩R = pR, contradicting that a is not
contained in a height one prime ideal of R. Hence, we can assume that
no p ∈ C contains both a1 and a2. Define R̊ = R[a−1

2 , x1] ∩R[a−1
1 , x2]

and S = R̊m∩R̊.

If p ∈ C, then |R/p ∩ R| ≤ |R|, and so, the algebraic closure of
R/p ∩R in T/p has cardinality at most |R| if R is infinite, and will be
countable if R is finite. Now, let p ∈ C, and suppose that a2 /∈ p. Then,
each choice of t modulo p gives a different x1 modulo sp, and thus, for
all but max(ℵ0, |R|) choices of t modulo p, the element x1 + p of T/p
will be transcendental over R/p∩R. For each p ∈ C with a2 /∈ p, define

Gp = {t+ p ∈ T/p | t+ p yields an x1 + p

that is algebraic over R/p ∩R} ⊆ T/p.
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Now, for each element t+ p of Gp, choose exactly one element of t+ p,
and call that element αt+p. Define

D1
p =

∪
t+p∈Gp

{αt+p}.

Then, D1
p ⊆ T is a full set of coset representatives for those choices of

t+p such that x1+p is algebraic over R/p∩R. Similarly, for each p ∈ C
that does not contain a1, let D2

p be a full set of coset representatives
for the elements t that make x2 + p algebraic over R/p∩R, and define

D =
∪

{D1
p ∪D2

p | p ∈ C}.

Then, |C × D| ≤ max(ℵ0, |R|), and thus, using Lemma 2.3 if R is
countable and Lemma 2.4 otherwise, we can choose t such that, for
p ∈ C, we have x1 + p is transcendental over R/p ∩ R if a2 /∈ p and
x2 + p is transcendental over R/p ∩ R if a1 /∈ p. It is shown in [3,
Lemma 4] that, for such a choice of t, S is an N-subring, and prime
elements in R are prime in S.

Suppose that f ∈ P ∩ R̊. Then, f ∈ R[a−1
1 , x2], and thus, there is a

positive integer r such that ar1f ∈ R[x2]. By the way that t was chosen,
x2 + P is transcendental over R/R ∩ P , and so, the coefficients of ar1f
are in R ∩ P = (0). Since a1 is not a zerodivisor, we have that the

coefficients of f are all zero. It follows that P ∩ R̊ = (0), and thus, we
have P ∩ S = (0).

Now suppose that q ∈ QR. If a1 /∈ q, then, by the way that t
was chosen, x2 + q is transcendental over R/q ∩ R. Let f ∈ q ∩ R̊.
Viewing f as an element of R[x2, a

−1
1 ], for sufficiently large k, we

have that (a1)
kf ∈ R[x2]. It follows that the coefficients of (a1)

kf
are in q ∩ R = pR for some prime element p of R. Hence, we have
f ∈ pR[x2, a

−1
1 ]. Similarly, if a2 /∈ q, then f ∈ pR[x1, a

−1
2 ]. If a2 ∈ q,

then a2 ∈ R ∩ q = pR, and thus, p is a unit in R[x1, a
−1
2 ]. Therefore,

pR[x1, a
−1
2 ] = R[x1, a

−1
2 ].

In any case,
f ∈ pR[x2, a

−1
1 ] ∩ pR[x1, a

−1
2 ] = pR̊,

and it follows that q ∩ R̊ = pR̊, and thus, q ∩ S = pS. We will define
QS to contain QR; then, each height one prime ideal of S generated by
a prime element of R will have a corresponding element in QS .
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For every height one prime ideal of S whose intersection with R is
the zero ideal, we use the same procedure as in Lemma 3.4 to choose
an appropriate corresponding qp ∈ Specd T . We define QS to be the
union of the set of these prime ideals of T with QR. Then, S is our
desired A+-extension of R, and the n = 2 case is shown.

For n > 2, we construct an A+-extension R′′ of R with

R ⊆ R′′ ⊂ T, P ∩R′′ = (0),

and such that there exists a c∗ ∈ R′′ and an (n− 1) generated ideal b
of R′′ with c∗ ∈ bT . By induction, there exists an A+-extension S of
R′′ such that

c∗ ∈ bS and P ∩ S = (0).

We then show that c ∈ aS, which will complete the proof.

Let a = (a1, . . . , an)R, and let b = (a1, . . . , an−1)R. We first
assume that b is not contained in a height one prime ideal of R. Since
c ∈ aT ∩R, we can write c =

∑
aiti, where ti ∈ T . We define

t̃ = tn +
n−1∑
i=1

aiui,

where ui ∈ T will be chosen later, and we define c∗ = c − t̃an. Note
that c∗ ∈ bT as desired. Now, we work to define R′′ so that it is an
A+-extension of R, c∗ ∈ R′′ and P ∩R′′ = (0). Since we are assuming
that b is not contained in a height one prime ideal of R, we cannot have
a p ∈ C that contains all of

a1, a2, . . . , an−1.

Now, as in the n = 2 case, choose u1 ∈ T so that tn + a1u1 is
transcendental over R/p ∩R for all p ∈ C satisfying a1 /∈ p.

We then repeat the process and choose u2 so that tn+a1u1+a2u2 is
transcendental over R/p∩R whenever p ∈ C and a2 /∈ p. Now, if a2 ∈ p
and a1 /∈ p, then a2u2 ∈ p, and tn + a1u1 + a2u2 + p is transcendental
over R/p∩R; thus, transcendental elements will remain transcendental
as additional terms are added. Continuing the process until all ui have
been chosen, we obtain t̃ so that t̃ + p is transcendental over R/p ∩ R
for all p ∈ C. We then define

R′′ = R[t̃]m∩R[t̃],
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and we note that c∗ ∈ R′′. As in the n = 2 case, we have that
P ∩R′′ = (0). Following the proof of Lemma 3.4, R′′ can be shown to
be an A+-extension of R. By induction, there exists an A+-extension
S of R′′ such that c∗ ∈ bS and P ∩ S = (0). Since c = c∗ + t̃an, we
have that c ∈ aS as desired.

Now, suppose that b is contained in a height one prime ideal of R.
By factoring out common divisors, we obtain an element r ∈ R and
an ideal b∗ = (z1, . . . , zn−1) of R such that b = rb∗, ai = rzi for all
i = 1, 2, . . . , n− 1, and b∗ is not contained in a height one prime ideal
of R. Define

w =
n−1∑
i=1

tizi.

Then, c = rw+tnan. We now use the n = 2 case with a = (r, an) to find
an A+-extension R′′′ of R such that P ∩R′′′ = (0) and c = v1an + v2r
with v1 and v2 in R′′′. Note that b∗R′′′ is not contained in a height
one prime ideal of R′′′, and v2 = w − tan for some t ∈ T . Hence, we
can use the previous case with b = b∗R′′′, a = (z1, z2, . . . , zn−1, an)R

′′′

and c = v2 to obtain our A+-extension R′′ of R, and our element
c∗ ∈ b∗T . By induction, we get S. We need only show that c ∈ aS.
Since v2 ∈ b∗S + anS, we have that v2r ∈ bS + ranS, and it follows
that c = v1an + v2r ∈ aS, as desired. �

Recall that, at the end of our construction, we want α(A, (0)) = t and
α(A, pA) = d− 1 for all prime elements p of A. We will construct A to
be a UFD and to satisfy condition (iv) of Zd-subrings; thus, α(A, pA) ≥
d − 1 for all prime elements p of A. For the case where d − 1 = t, we
will construct A so that α(A, (0)) ≤ d− 1. In order to ensure this, we
simply need A to contain a nonzero element of every height d prime
ideal of T . The next lemma allows us to adjoin nonzero elements of
the height d prime ideals of T to A. Then, by Matsumura’s inequality,
we have α(A, (0)) ≥ α(A, pA) for all prime elements p of A, and so, we
get that

d− 1 ≥ α(A, (0)) ≥ α(A, pA) ≥ d− 1.

We can conclude that

α(A, (0)) = α(A, pA) = d− 1,
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as desired. For the case d−1 ̸= t, we construct A so that there is a prime
ideal P of T of height t such that P ∩A = (0) so that α(A, (0)) ≥ t. In
addition, if q is a prime ideal of T whose height is greater than d and
q ̸⊆ P , we use Lemma 3.7 to construct A so that ht(q ∩ A) > 1. This
ensures that α(A, (0)) ≤ t and that, if p is a height one prime ideal
of A, then α(A, p) ≤ d− 1.

Lemma 3.6. Under Assumption 3.3, let (T,m) be such that, for all
p ∈ AssT , ht p ≤ d− 1, and suppose that T satisfies the condition that,
if z is a regular element of T and Q ∈ Ass(T/zT ), then htQ ≤ d. Let
P be a nonmaximal prime ideal of T such that P ∩ R = (0), and let
q ∈ Specr T with d ≤ r ≤ dimT and such that q ̸⊆ P , and q∩R = (0).
Then, there exists an A+-extension S of R such that S ∩ P = (0) and
q ∩ S ̸= (0).

Proof. Let C be the same set detailed in the proof of Lemma 3.4.
Our hypotheses yield that q ̸⊆ p for all p ∈ C. Using Lemma 2.3 or
Lemma 2.4, choose x ∈ q such that x+p is transcendental over R/p∩R
for every p ∈ C. We let S = R[x]m∩R[x]. As in the proof of Lemma 3.4,
S will be our desired A+-extension of R. �

The following lemma allows us to control the formal fibers at height
one prime ideals. We want to make sure that there are no prime ideals
of T with height greater than d in the formal fiber of a height one
prime ideal of our final ring. We accomplish this in the next lemma by
adjoining elements of prime ideals of T of height greater than d.

Lemma 3.7. Under Assumption 3.3, let (T,m) be such that, for all
p ∈ AssT , ht p ≤ d− 1, and suppose that T satisfies the condition that,
if z is a regular element of T and Q ∈ Ass(T/zT ), then htQ ≤ d.
Let P be a nonmaximal prime ideal of T such that P ∩ R = (0). Let
q ∈ Specr T with d + 1 ≤ r ≤ dimT , q ̸⊆ P , and ht(q ∩ R) ≤ 1.
Then, there exists an A+-extension S of R such that P ∩ S = (0) and
ht(q ∩ S) > 1.

Proof. First, suppose that q∩R = (0). Then, use Lemma 3.6 to find
an A+-extension S0 such that q ∩ S0 ̸= (0) and P ∩ S0 = (0). Now,
ht(q ∩ S0) ≥ 1. If

ht(q ∩ S0) > 1,
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then S = S0, and we are done. Therefore, consider the case where
ht(q ∩ S0) = 1. Then, since S0 is a UFD, q ∩ S0 = pS0 for some prime
element p ∈ S0. Let qp be the element of QS0 corresponding to pS0.
Now, we let

C = {p ∈ SpecT | p ∈ Ass(T/rT ) with 0 ̸= r ∈ S0}∪AssT∪QS0∪{P},

and, as before, adjoin some element x ∈ q such that x+ p is transcen-
dental over S0/p ∩ S0 for every p ∈ C. We let S = S0[x]m∩S0[x]. Then,
S is an A+-extension of S0, which is an A+-extension of R, and so,
S is an A+-extension of R. Since P ∈ C, we have that P ∩ S = (0).
Note that pS ⊆ q ∩ S, and that pS is a height one prime ideal of S.
Clearly, x ∈ q ∩ S. If x ∈ pS, then x ∈ qp, contradicting that x+ qp is
transcendental over S0/qp ∩ S0. It follows that pS is strictly contained
in q ∩ S, and thus, ht(q ∩ S) > 1. �

Lemma 3.8. Under Assumption 3.3, let (T,m) be such that depthT >
1 and, for all p ∈ AssT , ht p ≤ d− 1, and suppose that T satisfies the
condition that, if z is a regular element of T and Q ∈ Ass(T/zT ),
then htQ ≤ d. Let P be a nonmaximal prime ideal of T such that
P ∩R = (0), and let t ∈ T . If q ∈ Specd T with q ̸⊆ P , then there exists
an A+-extension S of R such that

t+m2 ∈ Image(S −→ T/m2),

P ∩ S = (0) and q ∩ S ̸= (0). If q ∈ Specr T with d + 1 ≤ r ≤ dimT ,
and q ̸⊆ P , then there exists an A+-extension S of R such that
t+m2 ∈ Image(S → T/m2), P ∩ S = (0) and ht(q ∩ S) > 1.

Proof. If q ∈ Specd T , use Lemma 3.4 to find an A+-extension R′ of
R such that

t+m2 ∈ Image(R′ −→ T/m2)

and P ∩ R′ = (0). If q ∩ R′ ̸= (0), then S = R′, and we are done. If
q ∩ R′ = (0), then we use Lemma 3.6 to find an A+-extension S of R′

such that q ∩ S ̸= (0) and P ∩ S = (0).

If q ∈ Specr T , where d + 1 ≤ r ≤ dimT , then, as before, first
use Lemma 3.4 to find an A+-extension R′ of R such that t + m2 ∈
Image(R′ → T/m2) and P ∩ R′ = (0). If ht(q ∩ R′) > 1, then S = R′,
and we are done. If ht(q ∩ R′) ≤ 1, then use Lemma 3.7 to find an
A+-extension of R′ such that P ∩ S = (0) and ht(q ∩ S) > 1. �



490 FLEMING, JI, LOEPP, MCDONALD, PANDE AND SCHWEIN

For the proof of our main theorem, we apply Lemmas 3.5 and 3.8
infinitely often. The next result, adapted from [3, Lemma 6], will allow
us to do so.

Lemma 3.9. Let (T,m) be a complete local ring and R0 a Zd-subring
of T with distinguished set QR0 . Let P be a nonmaximal ideal of T such
that P ∩R0 = (0). Let Ω be a well-ordered set with least element 0, and
assume either Ω is countable or, for all β ∈ Ω,

|{γ ∈ Ω | γ < β}| < |T/m|.

Suppose that {Rβ | β ∈ Ω} is an ascending collection of rings such that
Rα ∩ P = (0) for every α ∈ Ω and such that, if β is a limit ordinal,
then

Rβ =
∪
γ<β

Rγ ,

with QRβ
defined as ∪

γ<β

QRγ ,

while, if β = γ + 1 is a successor ordinal, then Rβ is an A+-extension
of Rγ .

Then,

S =
∪
β∈Ω

Rβ

satisfies all of the conditions to be a Zd-subring of T with distinguished
set

QS =
∪
β∈Ω

QRβ
,

except the cardinality condition. Instead, |S| ≤ sup(ℵ0, |R0|, |Ω|).
Furthermore, P∩S = (0), elements which are prime in some Rβ remain
prime in S, and QR0

⊆ QS.

Proof. First note that, since Rα∩P = (0) for every α ∈ Ω, it is clear
that S ∩ P = (0). We now follow the proof of [3, Lemma 6], adding
steps where necessary. Define Ω′ = Ω ∪ {δ}, and declare that δ > α
for all α ∈ Ω. Now, define Rδ = S. We will show that, for all α ∈ Ω′,
there is a set QRα such that Rα satisfies conditions (ii), (iii), and (iv)
of Definition 3.1 and that
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|Rα| ≤ sup(ℵ0, |R0|, |{β ∈ Ω | β < α}|).

Furthermore, we will show that, for β < α, we have QRβ
⊆ QRα and

prime elements of Rβ remain prime in Rα. We proceed with transfinite
induction, the base case being trivial.

Assume that α ∈ Ω′, and that the inductive hypotheses hold for
every β < α. In the proof of [3, Lemma 6], it is shown that Rα satisfies
conditions (ii) and (iii) of Definition 3.1, that the cardinality condition
given in the preceding paragraph holds, and that, if β < α, every prime
element of Rβ is prime in Rα. If α = γ + 1 is a successor ordinal, then
Rα is an A+-extension of Rγ , and so, Rα satisfies condition (iv) of
Definition 3.1 and QRγ ⊆ QRα .

If α is a limit ordinal, then

Rα =
∪
γ<α

Rγ ,

and we have
QRα =

∪
γ<α

QRγ .

By definition, QRγ ⊆ QRα for all γ < α. It remains to show that QRα

is a distinguished set for Rα. Let qp ∈ QRα . Then, qp ∈ QRγ for some
γ < α. Therefore, qp ∩Rγ = pRγ for some prime element p of Rγ . We
will show that qp ∩Rα = pRα. Clearly, pRα ⊆ qp ∩Rα. If x ∈ Rα ∩ qp,
then x ∈ Rβ for some β < α. Define λ = max{β, γ}. Then, p, x ∈ Rλ

and qp ∈ QRλ
. It follows that

qp ∩Rλ = pRλ;

thus,
x ∈ qp ∩Rλ = pRλ ⊆ pRα,

and we have that qp ∩Rα = pRα as desired. It is not difficult to show
that, if qp, q

′
p ∈ QRα with

qp ∩Rα = q′p ∩Rα,

then qp = q′p, and that, if p = pRα is a height one prime ideal of Rα,
then there is a qp ∈ QRα such that

qp ∩Rα = p.

Hence, QRα is a distinguished set for Rα.
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By induction, then, we have that S satisfies all of the desired
properties. �

Lemma 3.10. Under Assumption 3.3, let (T,m) be such that depthT >
1 and, for all p ∈ AssT , ht p ≤ d− 1, and suppose that T satisfies the
condition that, if z is a regular element of T and Q ∈ Ass(T/zT ),
then htQ ≤ d. Let P be a nonmaximal prime ideal of T such that
P ∩ R = (0), and let t+ m2 ∈ T/m2. If q ∈ Specd T with q ̸⊆ P , then
there exists an A+-extension S of R such that

t+m2 ∈ Image(S −→ T/m2),

q∩ S ̸= (0), P ∩ S = (0), and, for every finitely generated ideal a of S,
aT∩S = a. If q ∈ Specr T with d+1 ≤ r ≤ dimT and q ̸⊆ P , then there
exists an A+-extension S of R such that t + m2 ∈ Image(S → T/m2),
ht(q ∩ S) > 1, P ∩ S = (0), and, for every finitely generated ideal a of
S, aT ∩ S = a.

Proof. If q ∈ Specd T , employ Lemma 3.8 to obtain an A+-extension
R0 of R such that t + m2 ∈ Image(R0 → T/m2), P ∩ R0 = (0),
and q ∩ R0 ̸= (0). If q ∈ Specr T with d + 1 ≤ r ≤ dimT ,
employ Lemma 3.8 to obtain an A+-extension R0 of R such that
t + m2 ∈ Image(R0 → T/m2), P ∩ R0 = (0), and ht(q ∩ R0) > 1.
Let

Ω = {(a, c) | a is a finitely generated ideal of R0 and c ∈ aT ∩R0}.

Then, |Ω| = |R0|, and so, either Ω is countable or |Ω| < |T/m|. Well
order Ω, letting 0 designate its initial element in such a way that Ω does
not have a maximal element; then, it clearly satisfies the hypothesis of
Lemma 3.9. We will recursively define an increasing chain of rings
with one ring for every element of Ω. We begin with R0. If β = γ + 1
is a successor ordinal and γ = (a, c), then we choose Rβ to be an
A+-extension of Rγ , given by Lemma 3.5 such that c ∈ aRβ and
P ∩Rβ = (0). If β is a limit ordinal, define

Rβ =
∪
γ<β

Rγ and QRβ
=

∪
γ<β

QRγ .

Set R1 =
∪
Rβ . From Lemma 3.9, we see that R1 is an A+-extension

of R0 and P ∩ R1 = (0). Also, if a is any finitely generated ideal of
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R0 and c ∈ aT ∩ R0, then (a, c) = γ for some γ ∈ Ω. Then, for some
β > γ, c ∈ aRβ ⊆ aR1. Thus, aT ∩R0 ⊆ aR1.

We repeat the process to obtain an A+-extension R2 of R1 such that
P ∩R2 = (0) and aT ∩R1 ⊆ aR2 for every finitely generated ideal a of
R1. Continue recursively to obtain an ascending chain R0 ⊆ R1 ⊆ · · ·
such that P∩Rn = (0) and aT∩Rn ⊂ aRn+1 for every finitely generated
ideal a of Rn. Then, by Lemma 3.9,

S =
∪

Ri with QS =
∪

QRi

is an A+-extension of R0, and so, also of R, and P ∩ S = (0).
Furthermore, if a is a finitely generated ideal of S, then some Rn

contains a generating set {a1, . . . , ak} for a. If c ∈ aT ∩S, then c ∈ Rm

for some m ≥ n; thus,

c ∈ (a1, . . . , ak)T ∩Rm ⊆ (a1, . . . , ak)Rm+1 ⊆ a.

Hence, aT ∩ S = a. In order to see that ht(q ∩ R0) > 1 implies
ht(q ∩ S) > 1, let

(0) ⊂ pR0 ⊂ q ∩R0

be a strictly increasing chain of prime ideals of R0, and let x ∈ q ∩R0

with x /∈ pR0. Since prime elements in R0 are prime in S, the prime
factorization of x in R0 is the prime factorization of x in S, and thus,
x /∈ pS, and we have

(0) ⊂ pS ⊂ q ∩ S

is a strictly increasing chain of prime ideals of S. �

4. The main theorem and corollaries.

Theorem 4.1. Let (T,m) be a complete local equidimensional ring such
that dimT ≥ 2 and depthT > 1. Suppose that no integer of T is a
zerodivisor in T and |T | = |T/m|. Let d and t be integers such that
1 ≤ d ≤ dimT − 1, 0 ≤ t ≤ dimT − 1 and d− 1 ≤ t. Assume that, for
every p ∈ AssT , ht p ≤ d−1 and that, if z is a regular element of T and
Q ∈ Ass(T/zT ), then htQ ≤ d. Then, there exists a local UFD A such

that Â = T , α(A, (0)) = t, and, if p ∈ Spec1 A, then α(A, p) = d− 1.

Proof. First, assume t = d − 1. Let Ω1 = Specd T , and recall that
|Ω1| is a cardinal number that we can think of as the set of ordinal
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numbers less than |Ω1|. Well order Ω1 using the elements in the cardinal
|Ω1|. Then, each element of Ω1 has fewer than |Ω1| predecessors.
Similarly, let Ω2 = T/m2, well ordered so that each element of Ω2 has
fewer than |Ω2| predecessors. Since |Ω1| = |Ω2| and we are ordering
both sets so that each element of Ωi has fewer than |Ωi| predecessors,
we can use B as the index set for both of the Ωis. Let

Ω = {(qa, ta) | qa ∈ Ω1, ta ∈ Ω2 where a ∈ B},

well ordered using B as the index set. Then, Ω is the diagonal of
Ω1 × Ω2. Let 0 designate the first element of Ω. Now, Ω satisfies the
hypothesis of Lemma 3.9, and we now recursively define a family of
rings

{Rβ | β ∈ Ω}

which also satisfies the hypotheses of Lemma 3.9. As in the proof of [3,
Theorem 8], let R0 be the appropriate localization of the prime subring
of T : eitherQ, Zp or Z(p), where p is a prime integer. It is not difficult to
verify that R0 is an N -subring. Now, R0 is either dimension 0 or 1. If it
is dimension 0, define QR0 to be the empty set, and, if it is dimension 1,
define QR0 to be any height d prime ideal of T that contains a minimal
associated prime ideal of pT . Then, R0 is a Zd-subring of T with
distinguished set QR0 . We will use the shorthand β = (qβ , tβ) for an
element of Ω. Then, whenever β = ω + 1 is a successor ordinal, we let
Rβ be an A+-extension of Rω, chosen in accordance with Lemma 3.10
so that qω ∩ Rβ ̸= (0), tω ∈ Image(Rβ → T/m2) and aT ∩ Rβ = a for
every finitely generated ideal a of Rβ . Note that, in this case (where
t = d− 1), we do not need to use the P given in Lemma 3.10. If β is a
limit ordinal, choose

Rβ =
∪
γ<β

Rγ .

We claim that
A =

∪
β∈Ω

Rβ

is the desired example.

By construction, A → T/m2 is onto. Now, let a = (a1, . . . , an) be
a finitely generated ideal of A, and let x ∈ aT ∩ A. Then, there is a
β ∈ Ω such that β is a successor ordinal and x, a1, . . . , an ∈ Rβ ; thus,

x ∈ (a1, . . . , an)T ∩Rβ = (a1, . . . , an)Rβ ⊆ a.
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It follows that aT ∩ A = a for all finitely generated ideals of A. Then,

by Lemma 2.1, Â = T and A is Noetherian. From Lemma 3.9,
except for the cardinality condition, A satisfies all of the conditions
of Definition 3.1 for being a Zd-subring of T with some distinguished
set, which implies that, for any p ∈ Spec1 A,

α(A, p) ≥ d− 1.

Now, let q ∈ Specd T . Then, by our construction, there is some Rβ such
that q ∩ Rβ ̸= (0), and hence, q ∩ A ̸= (0). Thus, α(A, (0)) ≤ d − 1.
Then, by [6, Theorem 1],

d− 1 ≥ α(A, (0)) ≥ α(A, p) ≥ d− 1.

Therefore, for every p ∈ Spec1 A, α(A, p) = α(A, (0)) = d− 1.

Now, we consider the case t ̸= d − 1. In this case, we adjust the
construction described above. We first find a prime ideal P of T such
that htP = t and P ∩ R0 = (0). If R0 = Q or R0 = Zp, then all of
the nonzero elements of R0 are units of T , and thus, we can choose
P to be any prime ideal of T with height t. If R0 = Z(p) and t = 0,
then choose P to be any minimal prime ideal of T . Since p is not a
zerodivisor of T , we have P ∩ R0 = (0). If R0 = Z(p), and t > 0, then
note that p is contained in finitely many height one prime ideals of T ,
and hence, there is a height one prime ideal P1 such that P1∩R0 = (0).
Now, the element p + P1 in T/P1 is contained in finitely many height
one prime ideals of T/P1, and thus, there is a height one prime ideal
P 2 of T/P1 such that p + P1 /∈ P 2. As T is universally catenary and
equidimensional, there is a height two prime ideal P2 of T such that
R0 ∩P2 = (0). Continue in this way to find a height t prime ideal P of
T such that P ∩R0 = (0).

Now suppose that t = d = dimT − 1. Then, using the same
construction described for the t = d − 1 case with the following
adjustments, let Ω1 = Specd T − {P} where P is the height t prime
ideal of T chosen in the above paragraph. Then, in the construction,
whenever β = ω + 1 is a successor ordinal, let Rβ be an A+-extension
of Rω, chosen in accordance with Lemma 3.10, so that qω ∩ Rβ ̸= (0),
P ∩Rβ = (0),

tω ∈ Image(Rβ −→ T/m2),

and aT ∩ Rβ = aRβ for every finitely generated ideal a of Rω. Then,
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using this adjusted construction, we obtain a UFD A such that Â = T ,
P ∩A = (0), and, for every p ∈ Spec1 A, there is a height d = dimT −1
prime ideal of T whose intersection with A is p. It follows that
α(A, (0)) = t and α(A, p) = d− 1 for all p ∈ Spec1 A.

Finally, consider all other cases, that is, suppose either that t > d or
t = d with t < dimT − 1. Then, use the same construction described
for the t = d− 1 case with the following adjustments. Let

Ω1 = {q ∈ Specr T | d+ 1 ≤ r ≤ dimT and q ̸⊆ P},

where P is the height t prime ideal of T chosen previously. Then, in
the construction, whenever β = ω + 1 is a successor ordinal, let Rβ

be an A+-extension of Rω, chosen in accordance with Lemma 3.10 so
that ht(qω ∩ Rβ) > 1, P ∩ Rβ = (0), tω ∈ Image(Rβ → T/m2) and
aT ∩ Rβ = aRβ , for every finitely generated ideal a of Rβ . Then,

using this adjusted construction, we get a UFD A such that Â = T ,
P ∩A = (0), and, for every p ∈ Spec1 A, there is a height d prime ideal
of T whose intersection with A is p. Moreover, if q ∈ Specr T with
d+ 1 ≤ r ≤ dimT and q ̸⊆ P , then ht(q ∩A) > 1. It follows that

α(A, (0)) = t and α(A, p) = d− 1

for all p ∈ Spec1 A. �

Corollary 4.2. Let (T,m) be a complete local equidimensional ring
such that dimT ≥ 2, no integer is a zerodivisor in T , depthT > 1 and
|T | = |T/m|. Let d be an integer such that 1 ≤ d ≤ dimT − 1, and
assume that, for every p ∈ AssT , ht p ≤ d−1 and that, if z is a regular
element of T and Q ∈ Ass(T/zT ), then htQ ≤ d. Then, there exists

a local unique factorization domain A such that Â = T and, for every
pA ∈ Spec1 A,

α(A, pA) = α(A, (0)) = d− 1.

Note that Corollary 4.2 answers Question 1.1 stated in the introduc-
tion, posed by Heinzer, Rotthaus and Sally in the nonexcellent case. In
particular, it shows that there are nonexcellent local integral domains
where the dimension of the generic formal fiber ring is positive, and
where the set

∆ = {p ∈ SpecA | ht p = 1 and α(A, p) = α(A)}
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is equal to the set of all of the height one prime ideals of the integral
domain.

Example 4.3. Let T = C[[x1, . . . , xn]]. Then, for any 1 ≤ d ≤ n− 1,
0 ≤ t ≤ n − 1 and d − 1 ≤ t, we can find a local unique factorization

domain A such that Â = T , α(A, (0)) = t, and α(A, pA) = d − 1 for
every pA ∈ Spec1 A. Note that this will also hold if we replace C with
any uncountable field.

Example 4.4. Let T = C[[x, y, z, w]]/(xy − zw). Then, there exists a

local unique factorization domain A such that Â = T and α(A, pA) =
α(A, (0)) = 2 for every pA ∈ Spec1 A.

Example 4.5. Let T = C[[v, w, x, y, z]]/(vx − w2, xz − y2). Then,

there exists a local unique factorization domain A such that Â = T ,
α(A, (0)) = 2, and α(A, pA) = 0 for every pA ∈ Spec1 A.
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