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COHEN-MACAULAY PROPERTIES UNDER THE
AMALGAMATED CONSTRUCTION

Y. AZIMI, P. SAHANDI AND N. SHIRMOHAMMADI

ABSTRACT. Let A and B be commutative rings with
unity, f : A → B a ring homomorphism and J an ideal of B.
Then, the subring A ◃▹f J := {(a, f(a)+j) | a ∈ A and j ∈ J}
of A × B is called the amalgamation of A with B along J
with respect to f . In this paper, we study the property of
Cohen-Macaulay in the sense of ideals, which was introduced
by Asgharzadeh and Tousi [2], a general notion of the
usual Cohen-Macaulay property (in the Noetherian case),
on the ring A ◃▹f J . Among other things, we obtain a
generalization of the well-known result of when Nagata’s
idealization is Cohen-Macaulay.

1. Introduction. The theory of Cohen-Macaulay rings is a major
area of study in commutative algebra and algebraic geometry. From the
appearance of the notion of Cohen-Macaulayness, this notion admits
a rich theory in commutative Noetherian rings. There have been
attempts to extend this notion to commutative non-Noetherian rings,
since Glaz raised the question whether there exists a generalization
of the notion of Cohen-Macaulayness with certain desirable properties
to non-Noetherian rings [13, 14]. In order to provide an answer to
Glaz’s question [14, page 220], recently, several notions of Cohen-
Macaulayness for non-Noetherian rings and modules were introduced
in [2, 15, 16]. Among those is Cohen-Macaulay in the sense of A,
introduced by Asgharzadeh and Tousi [2], where A is a non-empty
subclass of ideals of a commutative ring (the definition will be given
later in Section 2).

In [7, 8], D’Anna, Finocchiaro and Fontana introduced the following
new ring construction. Let A and B be commutative rings with unity,
let J be an ideal of B, and let f : A → B be a ring homomorphism. The
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amalgamation of A with B along J with respect to f is the following
subring

A ◃▹f J := {(a, f(a) + j) | a ∈ A and j ∈ J}

of A × B. This construction generalizes the amalgamated duplication
of a ring along an ideal (introduced and studied in [6, 10]). Moreover,
several classical constructions, such as Nagata’s idealization (cf., [17,
Chapter 6, Section 25], [19, page 2]), the A + XB[X] and the A +
XB[[X]] constructions can be studied as particular cases of this new
construction (see [7, Examples 2.5, 2.6]).

Below, we briefly review some known results regarding the behavior
of Cohen-Macaulayness under the amalgamated construction and its
particular cases.

Let M be an A-module. In 1955, Nagata introduced a ring extension
of A called the trivial extension of A by M (or the idealization of M
in A), denoted here by A n M . Now, assume that A is Noetherian
local and that M is finitely generated. It is well known that the trivial
extension AnM is Cohen-Macaulay if and only if A is Cohen-Macaulay
and M is maximal Cohen-Macaulay, see [1, Corollary 4.14].

Let A be a Noetherian local ring and I an ideal of A. Consider the
amalgamated duplication

A ◃▹ I := {(a, a+ i) | a ∈ A and i ∈ I}
as in [6, 10]. The properties of being Cohen-Macaulay, generalized
Cohen-Macaulayness, Gorenstein, quasi-Gorenstein, (Sn), (Rn) and
normality under the construction of amalgamated duplication were
further studied in many research papers, such as [3, 6, 9, 21].

In [9], under the condition that A is Cohen-Macaulay (Noetherian
local) and J is a finitely generated A-module, it is observed that A ◃▹f J
is a Cohen-Macaulay ring if and only if it is a Cohen-Macaulay A-
module if and only if J is a maximal Cohen-Macaulay module. Then,
in [22], assuming (A,m) is Noetherian local, J is contained in the
Jacobson radical of B such that depthA J < ∞ and that f−1(q) ̸= m,
for each q ∈ Spec(B)\V (J), it is shown that A ◃▹f J is Cohen-Macaulay
if and only if A is Cohen-Macaulay and J is a big Cohen-Macaulay A-
module (i.e., depthA J = dimA).

The next natural step is to seek when the amalgamated algebra
A ◃▹f J is Cohen-Macaulay without the Noetherian assumption.
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In this paper, we investigate the property of Cohen-Macaulayness
in the sense of ideals (respectively, maximal ideals, finitely generated
ideals) on the amalgamation. More precisely, in Section 2, we recall
some essential definitions and results on which we base our approach.
In Section 3, we fix our notation and give some elementary results
on the behavior of the Koszul grade with respect to amalgamation.
In Section 4, we classify some necessary and sufficient conditions for
the amalgamated algebra A ◃▹f J to be Cohen-Macaulay in the
sense of ideals (respectively, maximal ideals, finitely generated ideals)
(Theorems 4.1, 4.6 and 4.11). Among the applications of our results
are the classification of when the trivial extension A n M and the
amalgamated duplication A ◃▹ I are Cohen-Macaulay in the sense of
ideals (Corollaries 4.8 and 4.16).

2. Preliminaries. To facilitate the reading of the paper, we recall
in this section some preliminary definitions and properties to be used
later.

Let b be a finitely generated ideal of a commutative ring A and M an
A-module. Assume that b is generated by the sequence x = x1, . . . , xℓ.
We denote the Koszul complex related to x by K•(x). The Koszul
grade of b on M is defined by

K. gradeA(b,M) := inf{i ∈ N ∪ {0} | Hi(HomA(K•(x),M)) ̸= 0}.

It follows from [5, Proposition 1.6.10(d), Corollary 1.6.22] that this
does not depend upon the choice of generating sets of b.

Let a be an arbitrary ideal of A. The Koszul grade of a on M can
then be defined by setting

K. gradeA(a,M)

:= sup{K. gradeA(b,M) | b is a finitely generated subideal of a}.

In view of [5, Proposition 9.1.2(f)], this definition coincides with the
original one for finitely generated ideals. In particular, when (A,m) is
locally Noetherian, depthA M was defined by K. gradeA(m,M) in [5,
subsection 9.1].

The Čech grade of b on M is defined by

Č. gradeA(b,M) := inf{i ∈ N ∪ {0} | Hi
x(M) ̸= 0}.
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Here, Hi
x(M) denotes the ith cohomology of the Čech complex of M

related to x. It follows from [16, Proposition 2.1(e)] that Hi
x(M) is

independent of the choice of sequence of generators for b. One can then
define

Č. gradeA(a,M)

:= sup{Č. gradeA(b,M) | b is a finitely generated subideal of a}.

By virtue of [16, Proposition 2.7], we have Č. gradeA(a,M) = K. gradeA
(a,M).

Let p be a prime ideal of R. By htM p, we mean the Krull dimension
of the Rp-module Mp. Also,

htM a := inf{htM p | p ∈ SuppA(M) ∩ V (a)}.

Let A be a non-empty subclass of the class of all ideals of the ring A
and M an A-module. We say that M is Cohen-Macaulay in the
sense of A if htM (a) = K. gradeA(a,M) for all ideals a in A, see [2,
Definition 3.1]. The classes we are interested in include the class of
all maximal ideals, the class of all ideals and the class of all finitely
generated ideals. Assume that A is Noetherian. It is well known that
A is Cohen-Macaulay (in the sense of the original definition in the
Noetherian setting) if and only if it is Cohen-Macaulay in the sense of
ideals (respectively, maximal ideals, finitely generated ideals), see [5,
Corollary 2.1.4].

3. The Koszul grade on amalgamation. We fix some notation
which we shall use frequently throughout the paper: A and B are two
commutative rings with unity, f : A → B is a ring homomorphism
and J denotes an ideal of B so that J is an A-module via the
homomorphism f . In the sequel, we consider contraction and extension
with respect to the natural embedding

ιA : A → A ◃▹f J,

defined by ιA(x) = (x, f(x)), for every x ∈ A. In particular, for every
ideal a of A, ae means a(A ◃▹f J).

This section is devoted to proving some lemmas on the behavior of
the Koszul grade on amalgamation. These lemmata provide the key
for some crucial arguments later in this paper. In the proof of the
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next lemma, we use Hi(x,M) to denote the ith Koszul homology of an
A-module M with respect to a finite sequence x ⊂ A.

Lemma 3.1. Let the notation and hypotheses be as at the beginning of
this section. Then:

(i) for any finitely generated ideal b of A, we have the equality

K. gradeA◃▹fJ(b
e, A ◃▹f J) = min{K. gradeA(b, A),K. gradeA(b, J)};

(ii) for any ideal a of A, we have the inequality

K. gradeA◃▹fJ(a
e, A ◃▹f J) ≤ min{K. gradeA(a, A),K. gradeA(a, J)}.

Proof. Assume that b is a finitely generated ideal of A and that b is
generated by a finite sequence x of length ℓ. Then, using [2, Proposition
2.2(iv)], together with [16, Proposition 2.7], we have

K. gradeA◃▹fJ (b
e, A ◃▹f J)

= K. gradeA(b, A ◃▹f J)

= sup{k ≥ 0 | Hℓ−i(x, A ◃▹f J) = 0 for all i < k}
= sup{k ≥ 0 | Hℓ−i(x, A)⊕Hℓ−i(x, J) = 0 for all i < k}
= min{K. gradeA(b, A),K. gradeA(b, J)}.

For the third equality, note that the amalgamation A ◃▹f J , as an A-
module, is isomorphic to the direct sum of A ⊕ J using [7, Lemma
2.3(4)]. This proves (i).

In order to obtain (ii), assume that a is an ideal of A. Let Σ be
the class of all finitely generated subideals of a. It follows from the
definition that

K. gradeA(a, A ◃▹f J)

= sup{K. gradeA(b, A ◃▹f J) | b ∈ Σ}
= sup{min{K. gradeA(b, A),K. gradeA(b, J)} | b ∈ Σ}
≤ min{sup{K. gradeA(b, A) | b ∈ Σ}, sup{K. gradeA(b, J) | b ∈ Σ}}
= min{K. gradeA(a, A),K. gradeA(a, J)}.
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Again, using this in conjunction with [2, Proposition 2.2(iv)], we
deduce that

K. gradeA◃▹fJ(a
e, A ◃▹f J) = K. gradeA(a, A ◃▹f J)

≤ min{K. gradeA(a, A),K. gradeA(a, J)}.�

Lemma 3.2. Assume that A is Cohen-Macaulay in the sense of
(finitely generated) ideals and K. gradeA(a, J) ≥ ht a for every (finitely
generated) ideal a of A. Then:

K. gradeA◃▹fJ(a
e, A ◃▹f J) = K. gradeA(a, A) ≤ K. gradeA(a, J)

for any (finitely generated) ideal a of A.

Proof. Assume that a is a (finitely generated) ideal of A, and let Σ
be the class of all finitely generated subideals of a. Then, as in the
proof of Lemma 3.1, again, using [2, Proposition 2.2(iv)], we have

K. gradeA◃▹fJ(a
e, A ◃▹f J)

= K. gradeA(a, A ◃▹f J)

= sup{K. gradeA(b, A ◃▹f J) | b ∈ Σ}
= sup{min{K. gradeA(b, A),K. gradeA(b, J)} | b ∈ Σ}
= sup{K. gradeA(b, A) | b ∈ Σ}
= K. gradeA(a, A).

The forth equality follows from [2, Lemma 3.2] and our assumption.
This completes the proof. �

The next lemma is a slight modification of [2, Lemma 3.2].

Lemma 3.3. Let a be an ideal of A and M an A-module.

(i) Let A be quasi-local with the maximal ideal m. If K. gradeA
(m,M) < ∞, then K. gradeA(m,M) ≤ dimA.

(ii) If, for every minimal prime ideal p over a, K. gradeA(pAp,Mp)
< ∞, e.g., when M is finitely generated, and V (a) ⊆ SuppA(M),
then K. gradeA(a,M) ≤ ht a.
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Proof.

(i) Using [16, Proposition 2.7], it is sufficient for us to show that
Č. gradeA(m,M) ≤ dimA. In order to prove this, assume that dimA <
∞, and let x be a finite sequence of elements in m. It follows
from [16, Proposition 2.4] that Č. gradeA(x,M) ≤ dimA. Therefore,
Č. gradeA(m,M) ≤ dimA.

(ii) Note, by [2, Proposition 2.2(iii)], that K. gradeA(a,M) < ∞.
Then, by [2, Proposition 2.2(ii), (iii)], we may assume that A is quasi-
local with the maximal ideal m. Now (i) completes the proof. �

4. Main results. Assume that A is Noetherian local, that J is
contained in the Jacobson radical of B and it is a finitely generated
A-module. Recall that a finitely generated module M over A is called
a maximal Cohen-Macaulay A-module if depthA M = dimA. Note
that, in this circumstance, depthA M equals the common length of
the maximal M -regular sequences in the maximal ideal of A. In [22,
Corollary 2.5], it is shown that A ◃▹f J is Cohen-Macaulay if and
only if A is Cohen-Macaulay and J is a maximal Cohen-Macaulay A-
module. Our first main result improves this corollary by removing the
Noetherian assumption.

The reader should be aware that, when we say A ◃▹f J is Cohen-
Macaulay in the sense of a non-empty class of ideals, we mean A ◃▹f J
is Cohen-Macaulay as a ring.

Theorem 4.1. Assume that (A,m) is quasi-local such that m is finitely
generated. Assume that J is contained in the Jacobson radical of B
and it is finitely generated as an A-module. Then, A ◃▹f J is Cohen-
Macaulay (ring) in the sense of maximal ideals if and only if A is
Cohen-Macaulay in the sense of maximal ideals and K. gradeA(m, J) =
dimA.

Proof. Assume that m is generated by the sequence a = a1, . . . , an
and that J is generated by the sequence b = b1, . . . , bm. Hence,
m′f = m ◃▹f J , the unique maximal ideal of A ◃▹f J [9, Corollary
2.7(3)], is generated by the sequence

c = (a1, f(a1)), . . . , (an, f(an)), (0, b1), . . . , (0, bm).
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Notice that, by [9, Corollary 3.2, Remark 3.3], we have√
ιA(a)(A ◃▹f J) =

√
m(A ◃▹f J) = m′f = c(A ◃▹f J).

Therefore,

K. gradeA◃▹fJ (m
′f , A ◃▹f J) = Č. gradeA◃▹fJ(m

′f , A ◃▹f J)

= inf{i | Hi
c(A ◃▹f J) ̸= 0}

= inf{i | Hi
ιA(a)(A ◃▹f J) ̸= 0}

= inf{i | Hi
a(A ◃▹f J) ̸= 0}

= inf{i | Hi
a(A)⊕Hi

a(J) ̸= 0}
= min{Č. gradeA(m, A), Č. gradeA(m, J)}
= min{K. gradeA(m, A),K. gradeA(m, J)}.

The first equality is obtained by [16, Proposition 2.7], the third
equality follows from [16, Proposition 2.1(e)] in conjunction with√
ιA(a)(A ◃▹f J) = c(A ◃▹f J), the forth equality is deduced from

[16, Proposition 2.1(f)] and the fifth equality holds as an A-module,
A ◃▹f J ∼= A⊕ J [7, Lemma 2.3(4)].

Consequently, the conclusion follows by the equality

K. gradeA◃▹fJ (m
′f , A ◃▹f J) = min{K. gradeA(m, A),K. gradeA(m, J)},

together with dimA ◃▹f J = dimA. This last equality holds , since
A ◃▹f J is integral over A (see [8, Proposition 4.2]). �

Corollary 4.2 ([22, Corollary 2.5]). Assume that A is Noetherian
local, that J is contained in the Jacobson radical of B and it is finitely
generated as an A-module. Then, A ◃▹f J is a Cohen-Macaulay
(ring) if and only if A is Cohen-Macaulay and J is a maximal Cohen-
Macaulay A-module.

The key to the next theorem is given by the following elementary
lemmas. Their proofs are straightforward; thus, we omit them here.
Recall from [9, Corollary 2.5] that the prime ideals of A ◃▹f J are of

type qf or p′f , for q varying in Spec(B)\V (J) and p in Spec(A), where

p′f := p ◃▹f J := {(p, f(p) + j) | p ∈ p, j ∈ J},



COHEN-MACAULAY PROPERTIES 465

qf := {(a, f(a) + j) | a ∈ A, j ∈ J, f(a) + j ∈ q}.

Lemma 4.3. Assume that a is an ideal of A, p is a prime ideal of A
and that q is a prime ideal of B. Then:

(i) ae ⊆ p′f if and only if a ⊆ p;
(ii) ae ⊆ q̄f if and only if f(a) ⊆ q.

In the sequel, we use Nil(B) to denote the nil radical of the ring B.

Lemma 4.4. Assume that a is an ideal of A, J ⊆ Nil(B) and that p
is a prime ideal of A. Then:

(i) p ∈ Min(a) if and only if p
′
f ∈ Min(ae).

(ii) ht a = ht ae.

(iii) Min(pe) = {p
′
f }. In particular, ht pe = ht p

′
f .

Proposition 4.5. Let A be a non-empty class of ideals of A. Assume
that ht ae ≥ ht a for each a ∈ A. If A ◃▹f J is Cohen-Macaulay (ring)
in the sense of Ae := {ae | a ∈ A}, then A is Cohen-Macaulay in the
sense of A and K. gradeA(a, J) ≥ ht a for each a ∈ A.

Proof. Assume that a ∈ A. Then, by Lemma 3.1 (ii), we have

K. gradeA(a, A) ≥ K. gradeA◃▹fJ (a
e, A ◃▹f J)

= ht ae

≥ ht a

≥ K. gradeA(a, A).

Thus, K. gradeA(a, A) = ht a. This means that A is Cohen-Macaulay
in the sense of A. Similarly, we obtain K. gradeA(a, J) ≥ ht a. �

It is unclear whether, in general, the inequality ht ae ≥ ht a holds
for each a ∈ A. However, under the assumption J ⊆ Nil(B), for each
ideal a, we have the equality ht ae = ht a by Lemma 4.4.

The second main result of the paper is the following theorem.
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Theorem 4.6. Assume that J ⊆ Nil(B). Then, A ◃▹f J is Cohen-
Macaulay (ring) in the sense of ideals if and only if A is Cohen-
Macaulay in the sense of ideals and K. gradeA(a, J) ≥ ht a for every
ideal a of A.

Proof. One implication follows from Proposition 4.5 and Lemma
4.4 (ii). Then, to prove the converse, assume that A is Cohen-Macaulay
in the sense of ideals and K. gradeA(a, J) ≥ ht a for every ideal a of A.
Let a be an ideal of A. First observe, by Lemmas 3.2 and 4.4 (ii), that

K. gradeA◃▹fJ(a
e, A ◃▹f J) = K. gradeA(a, A)

= ht a

= ht ae.

Now, let I be an arbitrary proper ideal of A ◃▹f J . Then, by [20,
Chapter 5, Theorem 16], there exists a prime ideal P of A ◃▹f J
containing I such that

K. gradeA◃▹fJ (I, A ◃▹f J) = K. gradeA◃▹fJ(P, A ◃▹f J).

Note that P = p′f for some prime ideal p of A by [9, Corollaries 2.5,
2.7]. Hence, by Lemma 4.4 (iii), we have

ht I ≥ K. gradeA◃▹fJ(I,A ◃▹f J)

= K. gradeA◃▹fJ(p
′f , A ◃▹f J)

≥ K. gradeA◃▹fJ(p
e, A ◃▹f J)

= ht pe

= ht p′f

≥ ht I.

Therefore, A ◃▹f J is Cohen-Macaulay in the sense of ideals. �

The next example shows that, if, in Theorem 4.6, the hypothesis
J ⊆ Nil(B) is dropped, then the corresponding statement is no longer
always true.

Example 4.7. Let k be a field and X, Y algebraically independent
indeterminates over k. Set A := k[[X]], B := k[[X,Y ]], and let
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J := (X,Y ). Let f : A → B be the inclusion. Note that A is Cohen-
Macaulay and K. gradeA(a, J) = ht a for every ideal a of A. Indeed, if
a is a non-zero proper ideal of A, and a is a non-zero element of a, then
we have

1 ≤ K. gradeA(aA, J) ≤ K. gradeA(a, J) ≤ htJ a ≤ ht a ≤ 1.

The first and second inequalities follow from [5, Proposition 9.1.2(a),(f)],
respectively, while the third inequality follows from Lemma 3.3 (ii),
and the others are obvious. However, A ◃▹f J , which is isomorphic to
k[[X,Y, Z]]/(Y, Z) ∩ (X − Y ), is not Cohen-Macaulay.

Let M be an A-module. Then, AnM denotes the trivial extension
of A by M . It should be noted that 0 nM is an ideal in A nM and
(0nM)2 = 0. As in [7, Example 2.8], if B := AnM , J := 0nM , and
f : A → B is the natural embedding, then A ◃▹f J ∼= A nM . Hence,
the next result follows from Theorem 4.6. With it, we not only offer
an application of Theorem 4.6, but we also provide a generalization of
the well-known characterization of when the trivial extension is Cohen-
Macaulay in the Noetherian (local) case, see [1, Corollary 4.14].

Corollary 4.8. Let M be an A-module. Then, A n M is Cohen-
Macaulay (ring) in the sense of ideals if and only if A is Cohen-
Macaulay in the sense of ideals and K. gradeA(a,M) ≥ ht a for every
ideal a of A.

Assume that A is Noetherian. In [22, Corollary 2.7], the authors
showed that A is Cohen-Macaulay if A ◃▹f J is Cohen-Macaulay,
provided that f−1(q) ̸= m for each q ∈ Spec(B)\V (J) and each
m ∈ Max(A). In the following corollary, we improve the conclusion of
the previously mentioned result in the circumstance that J ⊆ Nil(B).

Assume that A is Noetherian and M is a finitely generated A-
module. It can be seen that

ht a ≤ gradeA(a,M)(= K. gradeA(a,M))

for every ideal a of A if and only if Mp is maximal Cohen-Macaulay for
every prime ideal p ∈ SuppA(M). Indeed, assume that Mp is maximal
Cohen-Macaulay for every prime ideal p ∈ SuppA(M), and a is an
ideal of R. There is nothing to prove if aM = M since, in this case,
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gradeA(a,M) = ∞. Thus, assume that aM ̸= M . Then, using [5,
Proposition 1.2.10(a)], there is a prime ideal p containing a such that
gradeA(a,M) = depthMp. Hence, by assumption, we have

gradeA(a,M) = depthMp = dimRp = ht p ≥ ht a.

In order to prove the converse, assume that p ∈ SuppA(M). Then,
again in view of [5, Proposition 1.2.10(a)], we have

dimRp = ht p ≤ gradeA(p,M) ≤ depthMp.

Thus, Mp is maximal Cohen-Macaulay.

Corollary 4.9. Assume that A is Noetherian, and that J ⊆ NilB is
finitely generated as an A-module. Then, A ◃▹f J is Cohen-Macaulay if
and only if A is Cohen-Macaulay and Jp is maximal Cohen-Macaulay
for every prime ideal p ∈ SuppA(J).

The next proposition provides more sufficient and necessary condi-
tions for A ◃▹f J to be Cohen-Macaulay in the sense of ideals.

Proposition 4.10. With the notation and hypotheses from the begin-
ning of Section 3, we have:

(i) Let A be a non-empty class of ideals of A. Assume that
ht f−1(q) ≤ ht q for every q ∈ Spec(B)\V (J). If A ◃▹f J is Cohen-
Macaulay (ring) in the sense of Ae := {ae | a ∈ A}, then A is Cohen-
Macaulay in the sense of A, and K. gradeA(a, J) ≥ ht a for every a ∈ A.

(ii) Assume that htP ≤ htPc for every P ∈ Spec(A ◃▹f J), where
the contraction Pc is given with respect to ιA. If A is Cohen-Macaulay
in the sense of ideals and K. gradeA(a, J) ≥ ht a for every ideal a of A,
then A ◃▹f J is Cohen-Macaulay (ring) in the sense of ideals.

Proof.

(i) Assume that A ◃▹f J is a Cohen-Macaulay ring in the sense of Ae.
In order to prove the assertion, by Proposition 4.5, it is sufficient to
show that ht ae ≥ ht a for each ideal a ∈ A. Towards this end, assume
that a ∈ A, and that P is a prime ideal of A ◃▹f J containing ae. In
view of [9, Corollaries 2.5, 2.7], we have the following three cases to
consider.
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Case 1. If P = p′f for some prime ideal p of A such that f−1(J) * p,
then

htP = ht p′f = dim(A ◃▹f J)p′f = dimAp = ht p ≥ ht a,

by [9, Proposition 2.9] and Lemma 4.3 (i).

Case 2. If P = p′f for some prime ideal p of A such that f−1(J) ⊆ p,
then

htP = ht p′f

= dim(A ◃▹f J)p′f

= dim(Ap ◃▹fp JSp
)

= max{dimAp, dim(fp(Ap) + JSp
)}

≥ dimAp

= ht p

≥ ht a,

by [8, Proposition 4.1], [9, Proposition 2.9] and Lemma 4.3 (i), where
Sp := f(A \ p) + J .

Case 3. If P = qf for some prime ideal q of B, then

htP = ht qf

= dim(A ◃▹f J)q̄f

= dimBq

= ht q

≥ ht f−1(q)

≥ ht a.

The third equality follows from [9, Proposition 2.9], the first inequality
holds by assumption, and the second one follows from Lemma 4.3. This
completes the proof of the first assertion.

(ii) Assume that A is Cohen-Macaulay in the sense of ideals and
that K. gradeA(a, J) ≥ ht a for every ideal a of A. As indicated by [2,
Theorem 3.3], it is sufficient to show that

K. gradeA◃▹fJ(P, A ◃▹f J) = htP
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for every prime ideal P of A ◃▹f J . Let P be a prime ideal of A ◃▹f J .
Then,

htP ≤ htPc

= K. gradeA(Pc, A)

= K. gradeA◃▹fJ(Pce, A ◃▹f J)

≤ K. gradeA◃▹fJ(P, A ◃▹f J)

≤ htP.

The first inequality holds by assumption, the second inequality is from
[5, Proposition 9.1.2(f)], and the last one is from Lemma 3.3 (ii), and
the second equality follows from Lemma 3.2. �

We are now in a position to present our third main result.

Theorem 4.11. With the notation and hypotheses as at the beginning
of Section 3, the following statements hold :

(i) Let A be a non-empty class of ideals of A. Assume that the
homomorphism f : A → B satisfies the going-down property. If A ◃▹f J
is Cohen-Macaulay (ring) in the sense of Ae := {ae | a ∈ A}, then A
is Cohen-Macaulay in the sense of A, and K. gradeA(a, J) ≥ ht a for
every a ∈ A.

(ii) Assume that ιA : A → A ◃▹f J is an integral ring extension. If
A is Cohen-Macaulay in the sense of ideals and K. gradeA(a, J) ≥ ht a
for every ideal a of A, then A ◃▹f J is Cohen-Macaulay (ring) in the
sense of ideals.

Proof. It is well known that ht f−1(q) ≤ ht q for every q ∈ Spec(B)
if the homomorphism f : A → B satisfies the going-down property
by [18, Exercise 9.9]. In light of Proposition 4.10, this proves (i).
To prove (ii), keeping in mind Proposition 4.10, note that, for every
P ∈ Spec(A ◃▹f J), the inequality htP ≤ htPc holds since

ιA : A −→ A ◃▹f J

is an integral ring extension [18, Exercise 9.8], where the contraction
Pc is given with respect to ιA. �
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Note that Example 4.7 also shows that we cannot neglect the integral
assumption in Theorem 4.11 (ii).

Example 4.12.

(1) Assume that A is an integral domain with dimA ≤ 1 and that B
is an integral domain containing A. Assume that J is an ideal of B
which is a finitely generated A-module. Hence, as in Example 4.7, we
have K. gradeA(a, J) = ht a for every proper ideal a of A. Note that A
is Cohen-Macaulay in the sense of ideals by [2, page 2305]. Therefore,
we obtain that A ◃▹f J is Cohen-Macaulay in the sense of ideals by
Theorem 4.11.

(2) To construct a concrete example for (1), set

A := Q+XR[X],

where Q is the field of rational numbers, R is the field of real numbers
and X is an indeterminate over R. It is easy to see that A is a one-
dimensional non integrally closed domain. Put B := A[

√
2], which is

finitely generated as an A-module. Let J be a finitely generated ideal
of B. Consequently, from (1), A ◃▹f J is Cohen-Macaulay in the sense
of ideals.

(3) Assume that A is a valuation domain, B an arbitrary integral
domain containing A and that J is an ideal of B. Then, by [11,
Corollary 4] and [12, Theorem 1], the inclusion homomorphism f :
A ↩→ B satisfies the going-down property. Also note that, by [2,
Proposition 3.12], A is Cohen-Macaulay in the sense of ideals if and
only if dimA ≤ 1. Further, assume that dimA > 1. Then, A ◃▹f J can
never be Cohen-Macaulay in the sense of ideals by Theorem 4.11. In
particular, the composite ring extensions A+XB[X] and A+XB[[X]]
can never be Cohen-Macaulay in the sense of ideals.

Note that, if J is finitely generated as an A-module, then

ιA : A −→ A ◃▹f J

is an integral ring extension, and that, in this case, K. gradeA(a, J) ≤
ht a for every ideal a of A by Lemma 3.3. Hence, this immediately
yields the following corollaries.
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Corollary 4.13. Assume that the homomorphism f : A → B satisfies
the going-down property and that J is finitely generated as an A-
module. Then, A ◃▹f J is Cohen-Macaulay (ring) in the sense of
ideals if and only if A is Cohen-Macaulay in the sense of ideals and
K. gradeA(a, J) = ht a for every ideal a of A.

Corollary 4.14. Assume that f : A → B is a monomorphism of inte-
gral domains, A is integrally closed and that B is integral over A. Then,
A ◃▹f J is Cohen-Macaulay (ring) in the sense of ideals if and only if
A is Cohen-Macaulay in the sense of ideals and K. gradeA(a, J) ≥ ht a
for every ideal a of A.

Proof. From [18, Theorem 9.4], f : A → B satisfies the going-down
property. In addition, ιA : A → A ◃▹f J is an integral ring extension
by assumption and [8, Lemma 3.6]. �

Corollary 4.15. Assume that f : A → B is a flat and integral
homomorphism. Then, A ◃▹f J is Cohen-Macaulay (ring) in the sense
of ideals if and only if A is Cohen-Macaulay in the sense of ideals and
K. gradeA(a, J) ≥ ht a for every ideal a of A.

Proof. From [18, Theorem 9.5], f : A → B satisfies the going-down
property. Also, ιA : A → A ◃▹f J is an integral ring extension by
assumption and [8, Lemma 3.6]. �

In conclusion, we apply Corollary 4.15 on amalgamated duplication.
Recall that, if f := idA is the identity homomorphism on A, and J is
an ideal of A, then

A ◃▹ J := A ◃▹idA J

is called the amalgamated duplication of A along J . Assume that (A,m)
is Noetherian local. In [6, Discussion 10], assuming that A is Cohen-
Macaulay, D’Anna showed that A ◃▹ J is Cohen-Macaulay if and only
if J is maximal Cohen-Macaulay. Next, in [21, Corollary 2.7], the
authors improved D’Anna’s result as A ◃▹ J is Cohen-Macaulay if and
only if A is Cohen-Macaulay and J is maximal Cohen-Macaulay. Our
final corollary generalizes these results.
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Corollary 4.16. Let J be an ideal of A. Then, A ◃▹ J is Cohen-
Macaulay (ring) in the sense of ideals if and only if A is Cohen-
Macaulay in the sense of ideals and K. gradeA(a, J) ≥ ht a for every
ideal a of A.

Proof. This immediately follows from Corollary 4.15 since f = idA :
A → A is flat and integral. �
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